And other related fields so integer is now int (and uinteger is uint). I
really don't know why I went with integer in the first place, but this
will make using macros easier for dealing with types.
They are both gone, and pr_pointer_t is now pr_ptr_t (pointer may be a
little clearer than ptr, but ptr is consistent with things like intptr,
and keeps the type name short).
This includes calls and unconditional jumps, relative and through a
table. The parameters are all lumped into the one object, with some
being unused by the different types (eg, args and ret_type used only by
call expressions). Just having nice names for the parameters (instead of
e1 and e2) makes it nice, even with all the sub-types lumped together.
No mysterious type aliasing bugs this time ;)
The move operator names are definitely obsolete (due to dropping the
expressions a year or two ago) and the precedence checks seem to be
handled elsewhere. Memset and state expressions went away a while back
too.
While this was a pain to get working, that pain only went to prove the
value of using proper "types" (even if only an enum) for different
expression types: just finding all the places to edit was a chore, and
easy to make mistakes (forgetting bits here and there).
Strangely enough, this exposed a pile of *type* aliasing bugs (next
commit).
And partial implementations in qfcc (most places will generate an
internal error (not implemented) or segfault, but some low-hanging fruit
has already been implemented).
Forgetting to invoke [super dealloc] in a derived class's -dealloc
method has caused me to waste far too much time chasing down the
resulting memory leaks and crashes. This is actually the main focus of
issue #24, but I want to take care of multiple paths before I consider
the issue to be done.
However, as a bonus, four cases were found :)
While get_selector does the job of getting a selector from a selector
reference expression, I have long considered lumping various expression
types under ex_expr to be a mistake. Not only is this a step towards
sorting that out, it will make working on #24 easier.
It now takes a context pointer (opaque data) that holds the buffers it
uses for the temporary strings. If the context pointer is null, a static
context is used (making those uses of va NOT thread-safe). Most calls to
va use the static context, but all such calls have been formatted
consistently so they are easy to find when it comes time to do a full
audit.
Block expressions hide ex_error, but get_type() always returns null when
it finds one (which it does by recursing into block expression), so just
check the type itself.
There's still some cleanup to do, but everything seems to be working
nicely: `make -j` works, `make distcheck` passes. There is probably
plenty of bitrot in the package directories (RPM, debian), though.
The vc project files have been removed since those versions are way out
of date and quakeforge is pretty much dependent on gcc now anyway.
Most of the old Makefile.am files are now Makemodule.am. This should
allow for new Makefile.am files that allow local building (to be added
on an as-needed bases). The current remaining Makefile.am files are for
standalone sub-projects.a
The installable bins are currently built in the top-level build
directory. This may change if the clutter gets to be too much.
While this does make a noticeable difference in build times, the main
reason for the switch was to take care of the growing dependency issues:
now it's possible to build tools for code generation (eg, using qfcc and
ruamoko programs for code-gen).
When aliasing a type that already has aliases, the top node needs to be
replaced if it is unnamed, or the alias-free branch of the new node
needs to reach around to the alias-free branch of the existing node.
This fixes the bogus param counts in qwaq.
This eases type unaliasing on functions a little.
Still more to to go, but this fixes a really hair-pulling bug: linux's
heap randomiser was making the typedef test fail randomly whenever
typedef.qfo was compiled.
When a type is aliased, the alias has two type chains: the simple type
chain with all other aliases stripped, and the full type chain. There
are still plenty of bugs in it, but having the clean type chain takes
care of the major issue that was in the previous attempt as only the
head of the type-chain needs to be skipped for type comparison.
Most of the bugs are in finding the locations where the head needs to be
skipped.
All simple type checks are now done using is_* helper functions. This
will help hide the implementation details of the type system from the
rest of the compiler (especially the changes needed for type aliasing).
This reverts commit c78d15b331.
While a block expression's result may be an l-value, block expressions
are not (and their results may not be), thus taking the address of one
is not really correct. It seems the only place that tries to do so is
the assignment code when dealing with structures.
This reverts commit b49d90e769.
I suspect this was a workaround for the mess in assignment chains.
However, it caused compile errors with the new implementation, and is
just bogus anyway.
Now convert_nil only assigns the nil expression a type, and nil makes
its way down to the statement emission code (where it belongs, really).
Breaks even more things :)
It's not possible to take the address of constants (at this stage) and
trying to use a move instruction with .zero as source would result in
the VM complaining about null pointer access when bounds checking is on.
Thus, don't convert a nil source expression until it is known to be
safe, and use memset when it is not.
This fixes the problem of using the return value of a function as an
element in a compound initializer. The cause of the problem is that
compound initializers were represented by block expressions, but
function calls are contained within block expressions, so def
initialization saw the block expression and thought it was a nested
compound initializer.
Technically, it was a bug in the nested element parsing code in that it
wasn't checking the result value of the block expression, but using a
whole new expression type makes things much cleaner and the work done
paves the way for labeled initializers and compound assignments.
Not that it really makes any difference for labels since they're
guaranteed unique, but it does remove the question of "why nva instead
of save_string?". Looking at history, save_string came after I changed
it from strdup (va()) to nva(), and then either didn't think to look for
nva or thought it wasn't worth changing.