Since test_build_hierarchy2 already tested removal of a sub-hierarchy
(once fixed), it seems test_build_hierarchy3 testing parenting within
the same hierarchy would be a good idea. Reparenting such that
everything moves to later in the arrays works nicely (not very
surprising).
Setting the parent to another object in the same hierarchy still causes
a segfault (worked around for now), but the mangled views were caused by
View_UpdateHierarchy not being called prior to the first call to
set_hud_sbar (why, though? I suspect something to do with oldlen). And
ECS_SortComponentPool finally gets used to ensure the sbar panels are
behind the info pics.
Its updates to the various indices were out, but this was missed due to
the tests being wrong. I wonder if I got interrupted while working on
them last and just assumed the removals were correct. This improves
sbar's behavior, but it's still wrong when pulling the armory view out
of the inventory. Very unsure what's going on, but the various indices
look ok, as do the view positions.
Ugh, things were quite bad, it turns out. It seems a lot of trouble
would have been saved if these tests had worked (however, something is
still not quite right as views are out of place).
This is the bug that sbar found when pulling a sub-hierarchy out of a
larger hierarchy: child indices not getting updated correctly for later
siblings and any niece objects.
The hierarchy-specific tests from the transform tests have been moved
into the ecs tests and the transform tests renamed appropriately. As
part of the process, hierarchies can now have a null type (ie, no
additional components maintained by the hierarchy). This should make
sorting out the issues highlighted by sbar a bit easier.
It should have always been here, but when I first created the hierarchy
and transform objects, I didn't know where things would go. Having two
chunks of code for setting an entity's parent was too already too much,
and I expect to have other hierarchy types. Doesn't fix the issues
encountered with sbar, of course.
Frags, minifrags and miniteam now work (mostly, the auto-switching
between them is not working yet). Switching between hud and sbar is
mostly working, except for some problems with the hierarchies corrupting
themselves: setting the parent of an object to another object in the
same hierarchy is just completely broken, and working with complex
hierarchies seems to mess up something (things getting out of phase). I
guess my unit tests were too simple.
For nq, all that remains is the various overlays (death-match,
intermission and finale) and rogue and hipnotic specific updates.
Fortunately, other than the death-match overlay, qw is just a subset of
nq for the hud (and even then, I imagine the info in qw would be nice in
nq).
While the word-level text objects aren't used (because standard center
print messages are already flowed as such), using a passage object makes
dealing with the lines and incremental printing quite easy and
efficient (everything is counted just the once or twice, not every frame).
The text object covering the whole passage was not being initialized,
thus center print tried to print rubbish when (incorrectly) printing the
entire message.
Most of the update functions are scheduled by Sbar_Changed() using
tables to determine what update functions need to be called for which
view entities. As hud_updateonce is called, and an entity can have only
one of any component, this becomes a set of updates to call when during
hud/sbar rendering.
I'm not particularly happy with the way onresize is handled, but at this
stage a better way of dealing with resizing views and getting the child
views to flow correctly hasn't come to mind. However, the system should
at least be usable.
I'm not sure when things broke on my laptop (I thought I got warp and
fisheye working on my laptop), but it turns out things weren't quite
right, thus warp (and presumably fisheye) weren't working properly due
to GLSL errors that I only just noticed. This fixes water warp (and
probably fisheye).
This includes moving the related cvars from botn nq and qw into the
client hud code. In addition, the hud code supports update and
update-once function components. The update component is for updates
that occur every frame, but update-once components (not used yet) are
for one-shot updates (eg, when a value updates very infrequently).
Now only the time portion updates every frame, and then only when the
scores are shown (no real change for that one). Not really a significant
optimization, as the information was updated only while the scores were
shown, but it's still nice.
Much of the nq/qw HUD system is quite broken, but the basic status bar
seems to be working nicely. As is the console (both client and server).
Possibly the biggest benefit is separating the rendering of HUD elements
from the updating of them, and much less traversing of invisible views
whose only purpose is to control the positioning of the visible views.
The view flow tests are currently disabled until I adapt the flow code
to ECS.
There seems to be a problem with view resizing in that some gravities
don't follow resizing correctly.
As the bookkeeping data is spread between three arrays, sorting a
component pool is not trivial and thus not something to duplicate around
the codebase.
It doesn't check that the entity itself is valid, but it does at least
check that the index fetched from the sparse array is valid. Fixes a
segfault when a valid entity never had the component.
It's not quite complete in that entities need to be created for the
objects, and passage text object might get additional components in the
hierarchy, but the direct use of views has been replaced by the use of a
hierarchy object with the same tree structure, and now has text objects
for paragraphs and the entire passage.
As an implementation detail, inserting null hierarchies (src hierarchy
is null) is supported for ease of hierarchy construction from data. No
component data is copied, only the child and parent indices and counts
are updated.
The resource functions assume the requested layers is correct (really,
the lighting code assumes that the resource functions assume such), but
QFV_CreateImage multiplies the layer count by 6 for cube maps (really,
the issue is in QFV_CreateImage, but I want to move away from it
anyway).