I want to support reading VkPhysicalDeviceLimits but it has some arrays.
While I don't need to parse them (VkPhysicalDeviceLimits should be
treated as read-only), I do need to be able to access them in property
list expressions, and vkgen generates the cexpr type descriptors too.
However, I will probably want to parse arrays some time in the future.
This ensures that unused parser blocks do not get emitted. In the
testing of the upcoming support for fixed arrays, the blend color
constants were being double emitted (both as custom and normal parser)
due to being an array. gcc did not like that (what with all those
warning flags).
Multiple render passes are needed for supporting shadow mapping, and
this is a huge step towards breaking the Vulkan render free of Quake,
and hopefully will lead the way for breaking the GL renderers free as
well.
This is actually a better solution to the renderer directly accessing
client code than provided by 7e078c7f9c.
Essentially, V_RenderView should not have been calling R_RenderView, and
CL_UpdateScreen should have been calling V_RenderView directly. The
issue was that the renderers expected the world entity model to be valid
at all times. Now, R_RenderView checks the world entity model's validity
and immediately bails if it is not, and R_ClearState (which is called
whenever the client disconnects and thus no longer has a world to
render) clears the world entity model. Thus R_RenderView can (and is)
now called unconditionally from within the renderer, simplifying
renderer-specific variants.
While using binary data objects for specialization data works for bools
(as they can be 0 or -1), they don't work so well for numeric values due
to having to get the byte order correct and thus are not portable, and
difficult to get right.
Binary data is still supported, but the data can be written as a string
with an array(...) "constructor" expression taking any number of
parameters, with each parameter itself being an expression (though
values are limited at this stage).
Due to the plist format, quotes are required around the expression
("array(...)")
Sets never shrink, so assigning a dynamically created set to a
statically created set after the working size has reduced (going from
demo2 to demo3) causes the set code to attempt to resize the statically
created set, which leads to libc having a bad time.
Why nvidia's drivers accepted double-destroyed framebuffers is beyond
me, but this fixes the Intel drivers complaining about such (and the
subsequent segfault).
When I changed the matrices from an array of floats to an array of
vec4f_t, I forgot to update the flush offsets. Yay for having a
Vulkan-capable Intel device with its different alignment requirements.
When allocating memory for multiple objects that have alignment
requirements, it gets tedious keeping track of the offset and the
alignment. This is a simple function for walking the offset respecting
size and alignment requirements, and doubles as a size calculator.
While using barriers is a zillion times better than actually grabbing
the mouse and keyboard, they're still a pain when debugging as qf is not
able to respond to the barrier-hit events. All the other logic is still
there so even when "grabbing", the mouse will not be blocked if the
window doesn't have focus.
The stack is arbitrary strings that the validation layer debug callback
prints in reverse order after each message. This makes it easy to work
out what nodes in a pipeline/render pass plist are causing validation
errors. Still have to narrow down the actual line, but the messages seem
to help with that.
Putting qfvPushDebug/qfvPopDebug around other calls to vulkan should
help out a lot, tool.
As a bonus, the stack is printed before debug_breakpoint is called, so
it's immediately visible in gdb.
Rather than just 0/1, it now acts as flags to control what messages are
printed. In addition to the Vulkan enum names (long and short), none and
all are supported (as well as raw numbers, but they're not checked for
validity). This makes vulkan_use_validation a bit easier to use and less
verbose by default.
Now, if only it was easier to remember the name :P
It seems X11 does not like creating barriers entirely off the screen,
though the error seems to be a little unreliable (however, off the left
edge was definitely bad).
For now, only the first two axis (mouse X and Y) are supported (XInput
treats the scroll wheel events as axes too, so mice have up to 4!), but
most importantly, this prevents the scroll wheel from being seen as the
X axis. Oops.
With the old headers removed, X11_SetGamma became a stub and gcc
complained about it wanting the const attribute. On investigation, it
turned out the X_XF86VidModeSetGamma was a holdover from the initial
implementation of hardware gamma support.
UI key presses are still handled by regular X events, but in-game
"button" presses arrive via raw keyboard events. This gives transparent
handling of keyboard repeat (UI keys see repeat, game keys do not),
without messing with the server's settings (yay, that was most annoying
when it came to debugging), and the keyboard is never grabbed, so this
is a fairly user-friendly setup.
At first, I wasn't too keen on capturing them from the root window
(thinking about the user's security), but after a lot of investigation,
I found a post by Peter Hutterer
(http://who-t.blogspot.com/2011/09/whats-new-in-xi-21-raw-events.html)
commenting that root window events were added to XInput2 specifically
for games. Since application focus is tracked and unfocused key events
are dropped very early on, there's no way for code further down the
food-chain to know there even was an event, abusing the access would
require modifying the x11 input code, in which case all bets are off
anyway and any attempt at security anywhere in the code will fail,
meaning that nefarious progs code and the like shouldn't be a problem.
After a lot of thought, it really doesn't make sense to have an option
to block mouse input in x11 (not grabbing or similar does make sense, of
course). Not initializing mouse input made perfect sense in DOS and even
console Linux (SVGA) what with the low level access.
It turns out that if the barriers are set on the app window, and the app
grabs the pointer (even passively), barrier events will no longer be
sent to the app. However, creating the barriers on the root window and
the events are selected on the root window, the barrier events are sent
regardless of the grab state.
Other subsystems, especially low-level input drivers, need to know when
the app has input focus. eg, as the evdev driver uses the raw stream
from the kernel, which has no idea about X application focus (in fact,
it seems the events are shared across multiple apps without any issue),
the evdev driver sees all the events thus needs to know when to drop
them.
It turns out to be possible to get a barrier event at the same time as a
configure notify event (which rebuilds the barriers), and trying to
release the pointer at such a time results in a bad barrier error and
program crash. Thus check the event barrier against the currently
existing barriers before attempting to release the pointer.
This does mean that a better mechanism for sequencing window
repositioning and barrier creation may be required.
This should be a much friendlier way of "grabbing" input, though I
suspect that using raw keyboard events will result in a keyboard grab,
which is part of the reason for wanting a friendly grab.
There does seem to be a problem with the mouse sneaking out of the
top-right and bottom-left corners. I currently suspect a bug in the X
server, but further investigation is needed.
This is needed for getting window position info into in_x11 without
exposing more globals, and is likely to be useful for other things,
especially as it doubles as a resize event when that's eventually
supported.
This is necessary in focus-follows-mouse environments (at least for
openbox, but it wouldn't surprise me if most other WMs behave the same
way) because the WMs don't set focus when the pointer is grabbed (which
XInput does before the WM sees the enter event). This is especially
important when the window is fullscreen on a multi-monitor setup as
there is no border to *maybe* catch the mouse before it enters the
window.
Right now, only raw pointer motion and button events are handled, and
the mouse escapes the window, and there are some issues with focus in
focus-follows-mouse environments. However, this should be a much nicer
setup than DGA.
The current limit is still 32. Dealing with it properly will take some
rather advanced messing with XInput, and will be necessary assuming
non-XInput support is continued.
There's now IN_X11_Preinit, IN_X11_Postinit (both for want of better
names), and in_x11_init. The first two are for taking care of
initialization that needs to be done before window creation and between
window creation and mapping (ie, are very specific to X11 stuff) while
in_x11_init takes care of the setup for the input system. This proved
necessary in my XInput experimentation: a passive enter grab takes
effect only when the pointer enters the window, thus setting up the grab
with the pointer already in the window has no effect until the pointer
leaves the window and returns.
This was always a horrible hack just to get the screen centered on the
window back when we were doing fullscreen badly. With my experiments
with XInput, it has proven to be a liability (I'd forgotten it was even
there until it started imposing a 2s delay to QF's startup).
Input driver can now have an optional init_cvars function. This allows
them to create all their cvars before the actual init pass thus avoiding
some initialization order interdependency issues (in this case, fixing a
segfault when starting x11 clients fullscreen due to the in_dga cvar not
existing yet).
Well... it could be done better, but this works for now assuming it's in
/usr/include (and it's correct for mxe builts). Does need proper
autoconfiscation, though.
Seems to work nicely for keyboard (though key bindings are not
cross-platform). Mouse not tested yet, and I expect there are problems
with it for absolute inputs (yay mouse warp :P).
Mouse axis and button names are handled internally (and thus
case-insensitive).
Key names are handled by X11. Case-sensitivity is currently determined
by Xlib.