mirror of
https://git.code.sf.net/p/quake/quakeforge
synced 2024-11-23 12:52:46 +00:00
Add support for set of everything, and a lot of docs.
Set of everything is implemented by inverting the meaning of bits in the bitmap: 1 becomes non-member, 0 member. This means that set_size and set_first/set_next become inverted and represent non-members as counting members becomes impossible :)
This commit is contained in:
parent
b6ae9867c2
commit
b28ac6672b
2 changed files with 515 additions and 34 deletions
|
@ -36,43 +36,286 @@
|
|||
*/
|
||||
//@{
|
||||
|
||||
/** Represent a set using a bitmap.
|
||||
|
||||
When \a inverted is zero, ones in the bitmap represent members, but when
|
||||
\a inverted is non-zero, zeros in the bitmap represent members. However,
|
||||
this really is all private implementation details and it is best to treat
|
||||
set_t as a black box.
|
||||
*/
|
||||
typedef struct set_s {
|
||||
struct set_s *next; //< private. for ALLOC
|
||||
unsigned *map;
|
||||
unsigned size;
|
||||
unsigned defmap[8];
|
||||
struct set_s *next; ///< private. for ALLOC
|
||||
int inverted; ///< if true, 0 indicates membership
|
||||
unsigned *map; ///< bitmap of set members
|
||||
unsigned size; ///< number of representable members
|
||||
unsigned defmap[8]; ///< backing store for small sets
|
||||
} set_t;
|
||||
|
||||
/** Represent the state of a scan through a set.
|
||||
|
||||
Very useful in for-loops:
|
||||
\code
|
||||
set_t *set;
|
||||
set_iter_t *iter;
|
||||
|
||||
create_and_populate (set);
|
||||
for (iter = set_first (set); iter; iter = set_next (iter))
|
||||
do_something (iter->member);
|
||||
\endcode
|
||||
*/
|
||||
typedef struct set_iter_s {
|
||||
struct set_iter_s *next; //< private. for ALLOC
|
||||
const set_t *set;
|
||||
struct set_iter_s *next; ///< private. for ALLOC
|
||||
const set_t *set; ///< the set to which this iterator belongs
|
||||
/** The result of set_first() or set_next(). set_next() will start at the
|
||||
following member.
|
||||
|
||||
\note For inverted sets, indicates a non-member.
|
||||
*/
|
||||
unsigned member;
|
||||
} set_iter_t;
|
||||
|
||||
void set_del_iter (set_iter_t *set_iter);
|
||||
set_t *set_new (void);
|
||||
void set_delete (set_t *set);
|
||||
void set_add (set_t *set, unsigned x);
|
||||
void set_remove (set_t *set, unsigned x);
|
||||
/** Delete a set iterator that is no longer needed.
|
||||
|
||||
\param set_iter The set iterator to be deleted.
|
||||
*/
|
||||
void set_del_iter (set_iter_t *set_iter);
|
||||
|
||||
/** Create a new set.
|
||||
|
||||
The set is initialized to be the empty set.
|
||||
|
||||
\return The newly created, empty set.
|
||||
*/
|
||||
set_t *set_new (void);
|
||||
|
||||
/** Delete a set that is no longer needed.
|
||||
|
||||
\param set The set to be deleted.
|
||||
*/
|
||||
void set_delete (set_t *set);
|
||||
|
||||
/** Add a value to a set.
|
||||
|
||||
It is not an error to add a value that is already a member of the set.
|
||||
|
||||
\note \a set is modified.
|
||||
|
||||
\param set The set to which the value will be added.
|
||||
\param x The value to be added.
|
||||
\return The modified set.
|
||||
*/
|
||||
set_t *set_add (set_t *set, unsigned x);
|
||||
|
||||
/** Remove a value from a set.
|
||||
|
||||
It is not an error to remove a value that is not a member of the set.
|
||||
|
||||
\note \a set is modified.
|
||||
|
||||
\param set The set from which the value will be removed.
|
||||
\param x The value to be removed.
|
||||
\return The modified set.
|
||||
*/
|
||||
set_t *set_remove (set_t *set, unsigned x);
|
||||
|
||||
/** Compute the inverse of a set.
|
||||
|
||||
The computation is done as \a set = ~\a set.
|
||||
|
||||
\note \a set is modified.
|
||||
|
||||
\param set The set to be inverted.
|
||||
\return The set modified to be ~\a src.
|
||||
*/
|
||||
set_t *set_invert (set_t *set);
|
||||
|
||||
/** Compute the union of two sets.
|
||||
|
||||
The computation is done as \a dst = \a dst | \a src.
|
||||
|
||||
\note \a dst is modified.
|
||||
|
||||
\param dst The destination set to be modified.
|
||||
\param src The source set.
|
||||
\return The destination set modified to be \a dst | \a src.
|
||||
*/
|
||||
set_t *set_union (set_t *dst, const set_t *src);
|
||||
|
||||
/** Compute the intersection of two sets.
|
||||
|
||||
The computation is done as \a dst = \a dst & \a src.
|
||||
|
||||
\note \a dst is modified.
|
||||
|
||||
\param dst The destination set to be modified.
|
||||
\param src The source set.
|
||||
\return The destination set modified to be \a dst & \a src.
|
||||
*/
|
||||
set_t *set_intersection (set_t *dst, const set_t *src);
|
||||
|
||||
/** Compute the diffedrence of two sets.
|
||||
|
||||
The computation is done as \a dst = \a dst - \a src.
|
||||
|
||||
\note \a dst is modified.
|
||||
|
||||
\param dst The destination set to be modified.
|
||||
\param src The source set.
|
||||
\return The destination set modified to be \a dst - \a src.
|
||||
*/
|
||||
set_t *set_difference (set_t *dst, const set_t *src);
|
||||
|
||||
/** Compute the diffedrence of two sets.
|
||||
|
||||
The computation is done as \a dst = \a src - \a dst.
|
||||
|
||||
\note \a dst is modified.
|
||||
|
||||
\param dst The destination set to be modified.
|
||||
\param src The source set.
|
||||
\return The destination set modified to be \a src - \a dst.
|
||||
*/
|
||||
set_t *set_reverse_difference (set_t *dst, const set_t *src);
|
||||
|
||||
/** Make a set equivalent to another.
|
||||
|
||||
\note \a dst is modified.
|
||||
|
||||
\param dst The destination set to make equivalent.
|
||||
\param src The source set to assign to \a dst.
|
||||
\return The modified destination set.
|
||||
*/
|
||||
set_t *set_assign (set_t *dst, const set_t *src);
|
||||
|
||||
/** Make a set the empty set.
|
||||
|
||||
\note \a set is modified.
|
||||
|
||||
\param set The set to make the empty set.
|
||||
\return \a set.
|
||||
*/
|
||||
set_t *set_empty (set_t *set);
|
||||
|
||||
/** Make a set the set of everything.
|
||||
|
||||
\note \a set is modified.
|
||||
|
||||
\param set The set to make the set of everything.
|
||||
\return \a set.
|
||||
*/
|
||||
set_t *set_everything (set_t *set);
|
||||
|
||||
/** Test if a set is the set of everything.
|
||||
|
||||
\param set The set to test.
|
||||
\return 1 if \a set is empty (non-inverted).
|
||||
*/
|
||||
int set_is_empty (const set_t *set);
|
||||
|
||||
/** Test if a set is the set of everything.
|
||||
|
||||
\param set The set to test.
|
||||
\return 1 if \a set is the set of everything (empty inverted set).
|
||||
*/
|
||||
int set_is_everything (const set_t *set);
|
||||
|
||||
/** Test if two sets are disjoint.
|
||||
|
||||
\param s1 The first set to test.
|
||||
\param s2 The second set to test.
|
||||
\return 1 if \a s2 is disjoint from \a s1, 0 if not.
|
||||
*/
|
||||
int set_is_disjoint (const set_t *s1, const set_t *s2);
|
||||
|
||||
/** Test if two sets intersect.
|
||||
|
||||
\param s1 The first set to test.
|
||||
\param s2 The second set to test.
|
||||
\return 1 if \a s2 intersects \a s1, 0 if not.
|
||||
*/
|
||||
int set_is_intersecting (const set_t *s1, const set_t *s2);
|
||||
|
||||
/** Test if two sets are equivalent.
|
||||
|
||||
\param s1 The first set to test.
|
||||
\param s2 The second set to test.
|
||||
\return 1 if \a s2 is equivalent to \a s1, 0 if not.
|
||||
*/
|
||||
int set_is_equivalent (const set_t *s1, const set_t *s2);
|
||||
|
||||
/** Test if a set is a subset of another set.
|
||||
|
||||
An equivalent set is considered to be a subset.
|
||||
|
||||
\param set The potential super-set.
|
||||
\param sub The potential subset.
|
||||
\return 1 if \a sub is a subset of \a set, or if the sets are
|
||||
equivalent.
|
||||
*/
|
||||
int set_is_subset (const set_t *set, const set_t *sub);
|
||||
|
||||
/** Test a value for membership in a set.
|
||||
|
||||
\param set The set to test.
|
||||
\param x The value to test.
|
||||
\return 1 if the value is a member of the set, otherwise 0.
|
||||
*/
|
||||
int set_is_member (const set_t *set, unsigned x);
|
||||
|
||||
/** Obtain the number of members (or non-members) of a set.
|
||||
|
||||
Normal sets return the number of members, inverted sets return the number
|
||||
of non-members.
|
||||
|
||||
\param set The set from which the number of (non-)members will be
|
||||
obtained.
|
||||
\return The number of (non-)members. Both empty sets and sets of
|
||||
evertything will return 0.
|
||||
*/
|
||||
unsigned set_size (const set_t *set);
|
||||
|
||||
/** Find the first "member" of the set.
|
||||
|
||||
\warning For normal sets, the set iterator represents a member of the
|
||||
set, but for inverted sets, the set iterator represetns a
|
||||
<em>non</em>-member of the set.
|
||||
|
||||
\param set The set to scan.
|
||||
\return A pointer to a set iterator indicating the first
|
||||
(non-)member of the set, or null if the set is empty or
|
||||
of everything.
|
||||
*/
|
||||
set_iter_t *set_first (const set_t *set);
|
||||
|
||||
/** Find the next "member" of the set.
|
||||
|
||||
\warning For normal sets, the set iterator represents a member of the
|
||||
set, but for inverted sets, the set iterator represetns a
|
||||
<em>non</em>-member of the set.
|
||||
|
||||
\param set_iter The set iterator representing the state of the current
|
||||
scan.
|
||||
\return A pointer to a set iterator indicating the next
|
||||
(non-)member of the set, or null if no mor (non-)members
|
||||
are available.
|
||||
|
||||
\note The set iterator is automatically deleted when the end of the set
|
||||
is reached.
|
||||
*/
|
||||
set_iter_t *set_next (set_iter_t *set_iter);
|
||||
|
||||
/** Return a human-readable string representing the set.
|
||||
|
||||
Empty sets will be represented by the string "[empty]". Sets of everything
|
||||
will be represented by the string "[everything]". Inverted sets will have
|
||||
the first implicit member followed by "..." (eg, "256 ...").
|
||||
|
||||
\param set The set to be converted to a string.
|
||||
\return The human readable representation of the string.
|
||||
|
||||
\warning The string is kept in a static variable, so subsequent calls
|
||||
will overwrite the results of preceeding calls.
|
||||
*/
|
||||
const char *set_as_string (const set_t *set);
|
||||
|
||||
//@}
|
||||
|
|
|
@ -108,16 +108,16 @@ set_expand (set_t *set, unsigned x)
|
|||
free (map);
|
||||
}
|
||||
|
||||
void
|
||||
set_add (set_t *set, unsigned x)
|
||||
static inline void
|
||||
_set_add (set_t *set, unsigned x)
|
||||
{
|
||||
if (x >= set->size)
|
||||
set_expand (set, x);
|
||||
set->map[x / BITS] |= 1 << (x % BITS);
|
||||
}
|
||||
|
||||
void
|
||||
set_remove (set_t *set, unsigned x)
|
||||
static inline void
|
||||
_set_remove (set_t *set, unsigned x)
|
||||
{
|
||||
if (x >= set->size)
|
||||
return;
|
||||
|
@ -125,7 +125,34 @@ set_remove (set_t *set, unsigned x)
|
|||
}
|
||||
|
||||
set_t *
|
||||
set_union (set_t *dst, const set_t *src)
|
||||
set_add (set_t *set, unsigned x)
|
||||
{
|
||||
if (set->inverted)
|
||||
_set_remove (set, x);
|
||||
else
|
||||
_set_add (set, x);
|
||||
return set;
|
||||
}
|
||||
|
||||
set_t *
|
||||
set_remove (set_t *set, unsigned x)
|
||||
{
|
||||
if (set->inverted)
|
||||
_set_add (set, x);
|
||||
else
|
||||
_set_remove (set, x);
|
||||
return set;
|
||||
}
|
||||
|
||||
set_t *
|
||||
set_invert (set_t *set)
|
||||
{
|
||||
set->inverted = !set->inverted;
|
||||
return set;
|
||||
}
|
||||
|
||||
static set_t *
|
||||
_set_union (set_t *dst, const set_t *src)
|
||||
{
|
||||
unsigned size;
|
||||
unsigned i;
|
||||
|
@ -137,8 +164,8 @@ set_union (set_t *dst, const set_t *src)
|
|||
return dst;
|
||||
}
|
||||
|
||||
set_t *
|
||||
set_intersection (set_t *dst, const set_t *src)
|
||||
static set_t *
|
||||
_set_intersection (set_t *dst, const set_t *src)
|
||||
{
|
||||
unsigned size;
|
||||
unsigned i;
|
||||
|
@ -152,8 +179,8 @@ set_intersection (set_t *dst, const set_t *src)
|
|||
return dst;
|
||||
}
|
||||
|
||||
set_t *
|
||||
set_difference (set_t *dst, const set_t *src)
|
||||
static set_t *
|
||||
_set_difference (set_t *dst, const set_t *src)
|
||||
{
|
||||
unsigned size;
|
||||
unsigned i;
|
||||
|
@ -165,6 +192,81 @@ set_difference (set_t *dst, const set_t *src)
|
|||
return dst;
|
||||
}
|
||||
|
||||
static set_t *
|
||||
_set_reverse_difference (set_t *dst, const set_t *src)
|
||||
{
|
||||
unsigned size;
|
||||
unsigned i;
|
||||
|
||||
size = max (dst->size, src->size);
|
||||
set_expand (dst, size);
|
||||
for (i = 0; i < src->size / BITS; i++)
|
||||
dst->map[i] = ~dst->map[i] & src->map[i];
|
||||
return dst;
|
||||
}
|
||||
|
||||
set_t *
|
||||
set_union (set_t *dst, const set_t *src)
|
||||
{
|
||||
if (dst->inverted && src->inverted) {
|
||||
return _set_intersection (dst, src);
|
||||
} else if (src->inverted) {
|
||||
dst->inverted = 1;
|
||||
return _set_difference (dst, src);
|
||||
} else if (dst->inverted) {
|
||||
return _set_reverse_difference (dst, src);
|
||||
} else {
|
||||
return _set_union (dst, src);
|
||||
}
|
||||
}
|
||||
|
||||
set_t *
|
||||
set_intersection (set_t *dst, const set_t *src)
|
||||
{
|
||||
if (dst->inverted && src->inverted) {
|
||||
return _set_union (dst, src);
|
||||
} else if (src->inverted) {
|
||||
return _set_difference (dst, src);
|
||||
} else if (dst->inverted) {
|
||||
dst->inverted = 0;
|
||||
return _set_reverse_difference (dst, src);
|
||||
} else {
|
||||
return _set_intersection (dst, src);
|
||||
}
|
||||
}
|
||||
|
||||
set_t *
|
||||
set_difference (set_t *dst, const set_t *src)
|
||||
{
|
||||
if (dst->inverted && src->inverted) {
|
||||
dst->inverted = 0;
|
||||
return _set_reverse_difference (dst, src);
|
||||
} else if (src->inverted) {
|
||||
return _set_intersection (dst, src);
|
||||
} else if (dst->inverted) {
|
||||
return _set_union (dst, src);
|
||||
} else {
|
||||
return _set_difference (dst, src);
|
||||
}
|
||||
}
|
||||
|
||||
set_t *
|
||||
set_reverse_difference (set_t *dst, const set_t *src)
|
||||
{
|
||||
if (dst->inverted && src->inverted) {
|
||||
dst->inverted = 0;
|
||||
return _set_difference (dst, src);
|
||||
} else if (src->inverted) {
|
||||
dst->inverted = 1;
|
||||
return _set_union (dst, src);
|
||||
} else if (dst->inverted) {
|
||||
dst->inverted = 0;
|
||||
return _set_intersection (dst, src);
|
||||
} else {
|
||||
return _set_reverse_difference (dst, src);
|
||||
}
|
||||
}
|
||||
|
||||
set_t *
|
||||
set_assign (set_t *dst, const set_t *src)
|
||||
{
|
||||
|
@ -173,6 +275,7 @@ set_assign (set_t *dst, const set_t *src)
|
|||
|
||||
size = max (dst->size, src->size);
|
||||
set_expand (dst, size);
|
||||
dst->inverted = src->inverted;
|
||||
for (i = 0; i < src->size / BITS; i++)
|
||||
dst->map[i] = src->map[i];
|
||||
for ( ; i < dst->size / BITS; i++)
|
||||
|
@ -185,13 +288,25 @@ set_empty (set_t *set)
|
|||
{
|
||||
unsigned i;
|
||||
|
||||
set->inverted = 0;
|
||||
for (i = 0; i < set->size / BITS; i++)
|
||||
set->map[i] = 0;
|
||||
return set;
|
||||
}
|
||||
|
||||
int
|
||||
set_is_empty (const set_t *set)
|
||||
set_t *
|
||||
set_everything (set_t *set)
|
||||
{
|
||||
unsigned i;
|
||||
|
||||
set->inverted = 1;
|
||||
for (i = 0; i < set->size / BITS; i++)
|
||||
set->map[i] = 0;
|
||||
return set;
|
||||
}
|
||||
|
||||
static inline int
|
||||
_set_is_empty (const set_t *set)
|
||||
{
|
||||
unsigned i;
|
||||
|
||||
|
@ -201,6 +316,22 @@ set_is_empty (const set_t *set)
|
|||
return 1;
|
||||
}
|
||||
|
||||
int
|
||||
set_is_empty (const set_t *set)
|
||||
{
|
||||
if (set->inverted)
|
||||
return 0;
|
||||
return _set_is_empty (set);
|
||||
}
|
||||
|
||||
int
|
||||
set_is_everything (const set_t *set)
|
||||
{
|
||||
if (!set->inverted)
|
||||
return 0;
|
||||
return _set_is_empty (set);
|
||||
}
|
||||
|
||||
typedef enum {
|
||||
set_equiv,
|
||||
set_intersecting,
|
||||
|
@ -208,7 +339,7 @@ typedef enum {
|
|||
} set_test_e;
|
||||
|
||||
static int
|
||||
set_test (const set_t *s1, const set_t *s2)
|
||||
set_test_intersect_n_n (const set_t *s1, const set_t *s2)
|
||||
{
|
||||
unsigned i, end;
|
||||
set_test_e rval = set_equiv;
|
||||
|
@ -222,11 +353,88 @@ set_test (const set_t *s1, const set_t *s2)
|
|||
rval = set_disjoint;
|
||||
}
|
||||
}
|
||||
return rval;
|
||||
}
|
||||
|
||||
static int
|
||||
set_test_intersect_n_i (const set_t *s1, const set_t *s2)
|
||||
{
|
||||
unsigned i, end;
|
||||
set_test_e rval = set_equiv;
|
||||
|
||||
end = min (s1->size, s2->size) / BITS;
|
||||
for (i = 0; i < end; i++) {
|
||||
if (s1->map[i] != ~s2->map[i]) {
|
||||
if (s1->map[i] & ~s2->map[i])
|
||||
return set_intersecting;
|
||||
else
|
||||
rval = set_disjoint;
|
||||
}
|
||||
}
|
||||
return rval;
|
||||
}
|
||||
|
||||
static int
|
||||
set_test_intersect_i_n (const set_t *s1, const set_t *s2)
|
||||
{
|
||||
unsigned i, end;
|
||||
set_test_e rval = set_equiv;
|
||||
|
||||
end = min (s1->size, s2->size) / BITS;
|
||||
for (i = 0; i < end; i++) {
|
||||
if (~s1->map[i] != s2->map[i]) {
|
||||
if (~s1->map[i] & s2->map[i])
|
||||
return set_intersecting;
|
||||
else
|
||||
rval = set_disjoint;
|
||||
}
|
||||
}
|
||||
return rval;
|
||||
}
|
||||
|
||||
static int
|
||||
set_test_intersect_i_i (const set_t *s1, const set_t *s2)
|
||||
{
|
||||
unsigned i, end;
|
||||
set_test_e rval = set_equiv;
|
||||
|
||||
end = min (s1->size, s2->size) / BITS;
|
||||
for (i = 0; i < end; i++) {
|
||||
if (~s1->map[i] != ~s2->map[i]) {
|
||||
if (~s1->map[i] & ~s2->map[i])
|
||||
return set_intersecting;
|
||||
else
|
||||
rval = set_disjoint;
|
||||
}
|
||||
}
|
||||
return rval;
|
||||
}
|
||||
|
||||
static int
|
||||
set_test (const set_t *s1, const set_t *s2)
|
||||
{
|
||||
unsigned i, end;
|
||||
set_test_e rval = set_equiv;
|
||||
|
||||
if (s1->inverted && s2->inverted) {
|
||||
rval = set_test_intersect_i_i (s1, s2);
|
||||
} else if (s2->inverted) {
|
||||
rval = set_test_intersect_n_i (s1, s2);
|
||||
if (rval == set_equiv)
|
||||
rval = set_disjoint;
|
||||
} else if (s1->inverted) {
|
||||
rval = set_test_intersect_i_n (s1, s2);
|
||||
if (rval == set_equiv)
|
||||
rval = set_disjoint;
|
||||
} else {
|
||||
rval = set_test_intersect_n_n (s1, s2);
|
||||
}
|
||||
if (rval == set_equiv) {
|
||||
for (; i < s1->size / BITS; i++)
|
||||
end = min (s1->size, s2->size) / BITS;
|
||||
for (i = end; i < s1->size / BITS; i++)
|
||||
if (s1->map[i])
|
||||
return set_disjoint;
|
||||
for (; i < s2->size / BITS; i++)
|
||||
for (i = end; i < s2->size / BITS; i++)
|
||||
if (s2->map[i])
|
||||
return set_disjoint;
|
||||
}
|
||||
|
@ -257,13 +465,31 @@ set_is_subset (const set_t *set, const set_t *sub)
|
|||
unsigned i, end;
|
||||
|
||||
end = min (set->size, sub->size) / BITS;
|
||||
if (set->inverted && sub->inverted) {
|
||||
for (i = 0; i < end; i++) {
|
||||
if (~sub->map[i] & set->map[i])
|
||||
return 0;
|
||||
}
|
||||
for ( ; i < set->size / BITS; i++)
|
||||
if (set->map[i])
|
||||
return 0;
|
||||
} else if (set->inverted) {
|
||||
for (i = 0; i < end; i++) {
|
||||
if (sub->map[i] & set->map[i])
|
||||
return 0;
|
||||
}
|
||||
} else if (sub->inverted) {
|
||||
// an inverted set cannot be a subset of a set that is not inverted
|
||||
return 0;
|
||||
} else {
|
||||
for (i = 0; i < end; i++) {
|
||||
if (sub->map[i] & ~set->map[i])
|
||||
return 0;
|
||||
}
|
||||
for (i = 0; i < sub->size / BITS; i++)
|
||||
for ( ; i < sub->size / BITS; i++)
|
||||
if (sub->map[i])
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -278,6 +504,8 @@ _set_is_member (const set_t *set, unsigned x)
|
|||
int
|
||||
set_is_member (const set_t *set, unsigned x)
|
||||
{
|
||||
if (set->inverted)
|
||||
return !_set_is_member (set, x);
|
||||
return _set_is_member (set, x);
|
||||
}
|
||||
|
||||
|
@ -288,7 +516,7 @@ set_size (const set_t *set)
|
|||
unsigned i;
|
||||
|
||||
for (i = 0; i < set->size; i++)
|
||||
if (set_is_member (set, i))
|
||||
if (_set_is_member (set, i))
|
||||
count++;
|
||||
return count;
|
||||
}
|
||||
|
@ -300,7 +528,7 @@ set_first (const set_t *set)
|
|||
set_iter_t *set_iter;
|
||||
|
||||
for (x = 0; x < set->size; x++) {
|
||||
if (set_is_member (set, x)) {
|
||||
if (_set_is_member (set, x)) {
|
||||
set_iter = new_setiter ();
|
||||
set_iter->set = set;
|
||||
set_iter->member = x;
|
||||
|
@ -316,7 +544,7 @@ set_next (set_iter_t *set_iter)
|
|||
unsigned x;
|
||||
|
||||
for (x = set_iter->member + 1; x < set_iter->set->size; x++) {
|
||||
if (set_is_member (set_iter->set, x)) {
|
||||
if (_set_is_member (set_iter->set, x)) {
|
||||
set_iter->member = x;
|
||||
return set_iter;
|
||||
}
|
||||
|
@ -334,6 +562,14 @@ set_as_string (const set_t *set)
|
|||
if (!str)
|
||||
str = dstring_new ();
|
||||
dstring_clearstr (str);
|
||||
if (set_is_empty (set)) {
|
||||
dstring_copystr (str, "[empty]");
|
||||
return str->str;
|
||||
}
|
||||
if (set_is_everything (set)) {
|
||||
dstring_copystr (str, "[everythign]");
|
||||
return str->str;
|
||||
}
|
||||
for (i = 0; i < set->size; i++) {
|
||||
if (set_is_member (set, i)) {
|
||||
if (str->str[0])
|
||||
|
@ -342,5 +578,7 @@ set_as_string (const set_t *set)
|
|||
dsprintf (str, "%d", i);
|
||||
}
|
||||
}
|
||||
if (set->inverted)
|
||||
dasprintf (str, "%s%d ...", str->str[0] ? " " : "", i);
|
||||
return str->str;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue