[entity] Start work on a new entity library

The plan is to have a fully component based entity system. This adds
hierarchical transforms. Not particularly useful for quake itself at
this stage, but it will allow for much more flexibility later on,
especially when QuakeForge becomes more general-purpose.
This commit is contained in:
Bill Currie 2021-03-09 11:39:41 +09:00
parent 2c5742a076
commit 3230270ae3
7 changed files with 1623 additions and 0 deletions

122
include/QF/entity.h Normal file
View file

@ -0,0 +1,122 @@
/*
entity.h
Entity management
Copyright (C) 2021 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2021/02/26
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifndef __QF_entity_h
#define __QF_entity_h
#include "QF/darray.h"
#include "QF/mathlib.h"
#include "QF/simd/vec4f.h"
#include "QF/simd/mat4f.h"
/** \defgroup entity Entity management
\ingroup utils
*/
///@{
typedef struct mat4fset_s DARRAY_TYPE (mat4f_t) mat4fset_t;
typedef struct vec4fset_s DARRAY_TYPE (vec4f_t) vec4fset_t;
typedef struct uint32set_s DARRAY_TYPE (uint32_t) uint32set_t;
typedef struct byteset_s DARRAY_TYPE (byte) byteset_t;
typedef struct stringset_s DARRAY_TYPE (char *) stringset_t;
typedef struct xformset_s DARRAY_TYPE (struct transform_s *) xformset_t;
typedef struct entityset_s DARRAY_TYPE (struct entity_s *) entityset_t;
#define null_transform (~0u)
typedef struct hierarchy_s {
xformset_t transform;
entityset_t entity;
uint32set_t childCount;
uint32set_t childIndex;
uint32set_t parentIndex;
stringset_t name;
uint32set_t tag;
byteset_t modified;
mat4fset_t localMatrix;
mat4fset_t localInverse;
mat4fset_t worldMatrix;
mat4fset_t worldInverse;
vec4fset_t localRotation;
vec4fset_t localScale;
vec4fset_t worldRotation;
vec4fset_t worldScale;
} hierarchy_t;
typedef struct transform_s {
hierarchy_t *hierarchy;
uint32_t index;
} transform_t;
transform_t *Transform_New (transform_t *parent);
void Transform_Delete (transform_t *transform);
transform_t *Transform_NewNamed (transform_t *parent, const char *name);
uint32_t Transform_ChildCount (const transform_t *transform) __attribute__((pure));
transform_t *Transform_GetChild (const transform_t *transform,
uint32_t childIndex) __attribute__((pure));
void Transform_SetParent (transform_t *transform, transform_t *parent);
transform_t *Transform_GetParent (const transform_t *transform) __attribute__((pure));
void Transform_SetName (transform_t *transform, const char *name);
const char *Transform_GetName (const transform_t *transform) __attribute__((pure));
void Transform_SetTag (transform_t *transform, uint32_t tag);
uint32_t Transform_GetTag (const transform_t *transform) __attribute__((pure));
void Transform_GetLocalMatrix (const transform_t *transform, mat4f_t mat);
void Transform_GetLocalInverse (const transform_t *transform, mat4f_t mat);
void Transform_GetWorldMatrix (const transform_t *transform, mat4f_t mat);
void Transform_GetWorldInverse (const transform_t *transform, mat4f_t mat);
vec4f_t Transform_GetLocalPosition (const transform_t *transform) __attribute__((pure));
void Transform_SetLocalPosition (transform_t *transform_t, vec4f_t position);
vec4f_t Transform_GetLocalRotation (const transform_t *transform) __attribute__((pure));
void Transform_SetLocalRotation (transform_t *transform_t, vec4f_t rotation);
vec4f_t Transform_GetLocalScale (const transform_t *transform) __attribute__((pure));
void Transform_SetLocalScale (transform_t *transform_t, vec4f_t scale);
vec4f_t Transform_GetWorldPosition (const transform_t *transform) __attribute__((pure));
void Transform_SetWorldPosition (transform_t *transform_t, vec4f_t position);
vec4f_t Transform_GetWorldRotation (const transform_t *transform) __attribute__((pure));
void Transform_SetWorldRotation (transform_t *transform_t, vec4f_t rotation);
vec4f_t Transform_GetWorldScale (const transform_t *transform) __attribute__((pure));
// NOTE: these use X: right, Y: forward, Z:up
// aslo, not guaranteed to be normalized or even orthogonal
vec4f_t Transform_Forward (const transform_t *transform) __attribute__((pure));
vec4f_t Transform_Right (const transform_t *transform) __attribute__((pure));
vec4f_t Transform_Up (const transform_t *transform) __attribute__((pure));
// no SetWorldScale because after rotations, non uniform scale becomes shear
hierarchy_t *Hierarchy_New (size_t grow, int createRoot);
hierarchy_t *Hierarchy_Copy (hierarchy_t *src);
void Hierarchy_Delete (hierarchy_t *hierarchy);
void Hierarchy_UpdateMatrices (hierarchy_t *hierarchy);
uint32_t Hierarchy_InsertHierarchy (hierarchy_t *dst, const hierarchy_t *src,
uint32_t dstParent, uint32_t srcRoot);
void Hierarchy_RemoveHierarchy (hierarchy_t *hierarchy, uint32_t index);
///@}
#endif//__QF_entity_h

View file

@ -7,6 +7,7 @@ include libs/image/Makemodule.am
include libs/models/Makemodule.am include libs/models/Makemodule.am
include libs/video/Makemodule.am include libs/video/Makemodule.am
include libs/console/Makemodule.am include libs/console/Makemodule.am
include libs/entity/Makemodule.am
include libs/net/Makemodule.am include libs/net/Makemodule.am
include libs/client/Makemodule.am include libs/client/Makemodule.am

13
libs/entity/Makemodule.am Normal file
View file

@ -0,0 +1,13 @@
include libs/entity/test/Makemodule.am
entity_deps=libs/util/libQFutil.la
lib_LTLIBRARIES += libs/entity/libQFentity.la
libs_entity_libQFentity_la_LDFLAGS= $(lib_ldflags)
libs_entity_libQFentity_la_LIBADD= $(entity_deps)
libs_entity_libQFentity_la_DEPENDENCIES= $(entity_deps)
libs_entity_libQFentity_la_SOURCES= \
libs/entity/hierarchy.c \
libs/entity/transform.c \
$e

444
libs/entity/hierarchy.c Normal file
View file

@ -0,0 +1,444 @@
/*
hierarchy.c
General hierarchy handling
Copyright (C) 2021 Bill Currke
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include "QF/entity.h"
static void
hierarchy_UpdateTransformIndices (hierarchy_t *hierarchy, uint32_t start,
int offset)
{
for (size_t i = start; i < hierarchy->transform.size; i++) {
if (hierarchy->transform.a[i]) {
hierarchy->transform.a[i]->index += offset;
}
}
}
static void
hierarchy_UpdateChildIndices (hierarchy_t *hierarchy, uint32_t start,
int offset)
{
for (size_t i = start; i < hierarchy->childIndex.size; i++) {
hierarchy->childIndex.a[i] += offset;
}
}
static void
hierarchy_UpdateParentIndices (hierarchy_t *hierarchy, uint32_t start,
int offset)
{
for (size_t i = start; i < hierarchy->parentIndex.size; i++) {
hierarchy->parentIndex.a[i] += offset;
}
}
static void
hierarchy_calcLocalInverse (hierarchy_t *h, uint32_t index)
{
// This takes advantage of the fact that localMatrix is a simple
// homogenous scale/rotate/translate matrix with no shear
vec4f_t x = h->localMatrix.a[index][0];
vec4f_t y = h->localMatrix.a[index][1];
vec4f_t z = h->localMatrix.a[index][2];
vec4f_t t = h->localMatrix.a[index][3];
// "one" is to ensure both the scalar and translation have 1 in their
// forth components
vec4f_t one = { 0, 0, 0, 1 };
vec4f_t nx = { x[0], y[0], z[0], 0 };
vec4f_t ny = { x[1], y[1], z[1], 0 };
vec4f_t nz = { x[2], y[2], z[2], 0 };
vec4f_t nt = one - t[0] * nx - t[1] * ny - t[2] * nz;
// vertical dot product!!!
vec4f_t s = 1 / (nx * nx + ny * ny + nz * nz + one);
h->localInverse.a[index][0] = nx * s;
h->localInverse.a[index][1] = ny * s;
h->localInverse.a[index][2] = nz * s;
h->localInverse.a[index][3] = nt * s;
}
void
Hierarchy_UpdateMatrices (hierarchy_t *h)
{
for (size_t i = 0; i < h->localInverse.size; i++) {
if (h->modified.a[i]) {
hierarchy_calcLocalInverse (h, i);
}
}
if (h->modified.a[0]) {
memcpy (h->worldMatrix.a[0],
h->localMatrix.a[0], sizeof (mat4_t));
memcpy (h->worldInverse.a[0],
h->localInverse.a[0], sizeof (mat4_t));
h->worldRotation.a[0] = h->localRotation.a[0];
h->worldScale.a[0] = h->localScale.a[0];
}
for (size_t i = 1; i < h->worldMatrix.size; i++) {
uint32_t parent = h->parentIndex.a[i];
if (h->modified.a[i] || h->modified.a[parent]) {
mmulf (h->worldMatrix.a[i],
h->worldMatrix.a[parent], h->localMatrix.a[i]);
h->modified.a[i] = 1;
}
}
for (size_t i = 1; i < h->worldInverse.size; i++) {
uint32_t parent = h->parentIndex.a[i];
if (h->modified.a[i] || h->modified.a[parent]) {
mmulf (h->worldInverse.a[i],
h->localInverse.a[i], h->worldInverse.a[parent]);
}
}
for (size_t i = 1; i < h->worldRotation.size; i++) {
uint32_t parent = h->parentIndex.a[i];
if (h->modified.a[i] || h->modified.a[parent]) {
h->worldRotation.a[i] = qmulf (h->worldRotation.a[parent],
h->localRotation.a[i]);
}
}
for (size_t i = 1; i < h->worldScale.size; i++) {
uint32_t parent = h->parentIndex.a[i];
if (h->modified.a[i] || h->modified.a[parent]) {
h->worldScale.a[i] = m3vmulf (h->worldMatrix.a[parent],
h->localScale.a[i]);
}
}
memset (h->modified.a, 0, h->modified.size);
}
static void
hierarchy_open (hierarchy_t *hierarchy, uint32_t index, uint32_t count)
{
DARRAY_OPEN_AT (&hierarchy->transform, index, count);
DARRAY_OPEN_AT (&hierarchy->entity, index, count);
DARRAY_OPEN_AT (&hierarchy->childCount, index, count);
DARRAY_OPEN_AT (&hierarchy->childIndex, index, count);
DARRAY_OPEN_AT (&hierarchy->parentIndex, index, count);
DARRAY_OPEN_AT (&hierarchy->name, index, count);
DARRAY_OPEN_AT (&hierarchy->tag, index, count);
DARRAY_OPEN_AT (&hierarchy->modified, index, count);
DARRAY_OPEN_AT (&hierarchy->localMatrix, index, count);
DARRAY_OPEN_AT (&hierarchy->localInverse, index, count);
DARRAY_OPEN_AT (&hierarchy->worldMatrix, index, count);
DARRAY_OPEN_AT (&hierarchy->worldInverse, index, count);
DARRAY_OPEN_AT (&hierarchy->localRotation, index, count);
DARRAY_OPEN_AT (&hierarchy->localScale, index, count);
DARRAY_OPEN_AT (&hierarchy->worldRotation, index, count);
DARRAY_OPEN_AT (&hierarchy->worldScale, index, count);
}
static void
hierarchy_close (hierarchy_t *hierarchy, uint32_t index, uint32_t count)
{
if (count) {
DARRAY_CLOSE_AT (&hierarchy->transform, index, count);
DARRAY_CLOSE_AT (&hierarchy->entity, index, count);
DARRAY_CLOSE_AT (&hierarchy->childCount, index, count);
DARRAY_CLOSE_AT (&hierarchy->childIndex, index, count);
DARRAY_CLOSE_AT (&hierarchy->parentIndex, index, count);
DARRAY_CLOSE_AT (&hierarchy->name, index, count);
DARRAY_CLOSE_AT (&hierarchy->tag, index, count);
DARRAY_CLOSE_AT (&hierarchy->modified, index, count);
DARRAY_CLOSE_AT (&hierarchy->localMatrix, index, count);
DARRAY_CLOSE_AT (&hierarchy->localInverse, index, count);
DARRAY_CLOSE_AT (&hierarchy->worldMatrix, index, count);
DARRAY_CLOSE_AT (&hierarchy->worldInverse, index, count);
DARRAY_CLOSE_AT (&hierarchy->localRotation, index, count);
DARRAY_CLOSE_AT (&hierarchy->localScale, index, count);
DARRAY_CLOSE_AT (&hierarchy->worldRotation, index, count);
DARRAY_CLOSE_AT (&hierarchy->worldScale, index, count);
}
}
static void
hierarchy_move (hierarchy_t *dst, const hierarchy_t *src,
uint32_t dstIndex, uint32_t srcIndex, uint32_t count)
{
memcpy (&dst->transform.a[dstIndex], &src->transform.a[srcIndex],
count * sizeof(dst->transform.a[0]));
memset (&src->transform.a[srcIndex], 0,
count * sizeof(dst->transform.a[0]));
memcpy (&dst->entity.a[dstIndex], &src->entity.a[srcIndex],
count * sizeof(dst->entity.a[0]));
memcpy (&dst->name.a[dstIndex], &src->name.a[srcIndex],
count * sizeof(dst->name.a[0]));
memcpy (&dst->tag.a[dstIndex], &src->tag.a[srcIndex],
count * sizeof(dst->tag.a[0]));
memset (&dst->modified.a[dstIndex], 1, count * sizeof(dst->modified.a[0]));
memcpy (&dst->localMatrix.a[dstIndex], &src->localMatrix.a[srcIndex],
count * sizeof(dst->localMatrix.a[0]));
memcpy (&dst->localInverse.a[dstIndex], &src->localInverse.a[srcIndex],
count * sizeof(dst->localInverse.a[0]));
memcpy (&dst->localRotation.a[dstIndex], &src->localRotation.a[srcIndex],
count * sizeof(dst->localRotation.a[0]));
memcpy (&dst->localScale.a[dstIndex], &src->localScale.a[srcIndex],
count * sizeof(dst->localScale.a[0]));
for (uint32_t i = 0; i < count; i++) {
dst->transform.a[dstIndex + i]->hierarchy = dst;
dst->transform.a[dstIndex + i]->index = dstIndex + i;
}
}
static void
hierarchy_init (hierarchy_t *dst, uint32_t index,
uint32_t parentIndex, uint32_t childIndex, uint32_t count)
{
memset (&dst->transform.a[index], 0,
count * sizeof(dst->transform.a[0]));
memset (&dst->entity.a[index], 0, count * sizeof(dst->entity.a[0]));
memset (&dst->name.a[index], 0, count * sizeof(dst->name.a[0]));
memset (&dst->tag.a[index], 0, count * sizeof(dst->tag.a[0]));
memset (&dst->modified.a[index], 1, count * sizeof(dst->modified.a[0]));
for (uint32_t i = 0; i < count; i++) {
mat4fidentity (dst->localMatrix.a[index]);
mat4fidentity (dst->localInverse.a[index]);
dst->localRotation.a[index] = (vec4f_t) { 0, 0, 0, 1 };
dst->localScale.a[index] = (vec4f_t) { 1, 1, 1, 1 };
dst->parentIndex.a[index + i] = parentIndex;
dst->childCount.a[index + i] = 0;
dst->childIndex.a[index + i] = childIndex;
}
}
static uint32_t
hierarchy_insert (hierarchy_t *dst, const hierarchy_t *src,
uint32_t dstParent, uint32_t srcRoot, uint32_t count)
{
uint32_t insertIndex; // where the transforms will be inserted
uint32_t childIndex; // where the transforms' children will inserted
// The newly added transforms are always last children of the parent
// transform
insertIndex = dst->childIndex.a[dstParent] + dst->childCount.a[dstParent];
// By design, all of a transform's children are in one contiguous block,
// and the blocks of children for each transform are ordered by their
// parents. Thus the child index of each transform increases monotonically
// for each child index in the array, regardless of the level of the owning
// transform (higher levels always come before lower levels).
uint32_t neighbor = insertIndex - 1; // insertIndex never zero
childIndex = dst->childIndex.a[neighbor] + dst->childCount.a[neighbor];
// Any transforms that come after the inserted transforms need to have
// thier indices adjusted.
hierarchy_UpdateTransformIndices (dst, insertIndex, count);
// The parent transform's child index is not affected, but the child
// indices of all transforms immediately after the parent transform are.
hierarchy_UpdateChildIndices (dst, dstParent + 1, count);
hierarchy_UpdateParentIndices (dst, childIndex, count);
// The beginning of the block of children for the new transforms was
// computed from the pre-insert indices of the related transforms, thus
// the index must be updated by the number of transforms being inserted
// (it would have been updated thusly if the insert was done before
// updating the indices of the other transforms).
childIndex += count;
hierarchy_open (dst, insertIndex, count);
if (src) {
hierarchy_move (dst, src, insertIndex, srcRoot, count);
} else {
hierarchy_init (dst, insertIndex, dstParent, childIndex, count);
}
for (uint32_t i = 0; i < count; i++) {
dst->parentIndex.a[insertIndex + i] = dstParent;
dst->childIndex.a[insertIndex + i] = childIndex;
dst->childCount.a[insertIndex + i] = 0;
}
dst->childCount.a[dstParent] += count;
return insertIndex;
}
static void
hierarchy_insert_children (hierarchy_t *dst, const hierarchy_t *src,
uint32_t dstParent, uint32_t srcRoot)
{
uint32_t insertIndex;
uint32_t childIndex = src->childIndex.a[srcRoot];
uint32_t childCount = src->childCount.a[srcRoot];
if (childCount) {
insertIndex = hierarchy_insert (dst, src, dstParent,
childIndex, childCount);
for (uint32_t i = 0; i < childCount; i++) {
hierarchy_insert_children (dst, src, insertIndex + i,
childIndex + i);
}
}
}
uint32_t
Hierarchy_InsertHierarchy (hierarchy_t *dst, const hierarchy_t *src,
uint32_t dstParent, uint32_t srcRoot)
{
uint32_t insertIndex;
if (dstParent == null_transform) {
if (dst->transform.size) {
Sys_Error ("attempt to insert root in non-empty hierarchy");
}
hierarchy_open (dst, 0, 1);
hierarchy_move (dst, src, 0, srcRoot, 1);
dst->parentIndex.a[0] = null_transform;
dst->childIndex.a[0] = 1;
dst->childCount.a[0] = 0;
insertIndex = 0;
} else {
if (!dst->transform.size) {
Sys_Error ("attempt to insert non-root in empty hierarchy");
}
insertIndex = hierarchy_insert (dst, src, dstParent, srcRoot, 1);
}
// if src is null, then inserting a new transform which has no children
if (src) {
hierarchy_insert_children (dst, src, insertIndex, srcRoot);
}
Hierarchy_UpdateMatrices (dst);
return insertIndex;
}
static void
hierarchy_remove_children (hierarchy_t *hierarchy, uint32_t index)
{
uint32_t childIndex = hierarchy->childIndex.a[index];
uint32_t childCount = hierarchy->childCount.a[index];
uint32_t parentIndex = hierarchy->parentIndex.a[index];
uint32_t nieceIndex = null_transform;
if (parentIndex != null_transform) {
uint32_t siblingIndex = hierarchy->childIndex.a[parentIndex];
siblingIndex += hierarchy->childCount.a[parentIndex] - 1;
nieceIndex = hierarchy->childIndex.a[siblingIndex];
}
for (uint32_t i = childCount; i-- > 0; ) {
hierarchy_remove_children (hierarchy, childIndex + i);
}
hierarchy_close (hierarchy, childIndex, childCount);
hierarchy->childCount.a[index] = 0;
if (childCount) {
hierarchy_UpdateTransformIndices (hierarchy, childIndex, -childCount);
hierarchy_UpdateChildIndices (hierarchy, index, -childCount);
if (nieceIndex != null_transform) {
hierarchy_UpdateParentIndices (hierarchy, nieceIndex, -childCount);
}
}
}
void
Hierarchy_RemoveHierarchy (hierarchy_t *hierarchy, uint32_t index)
{
uint32_t parentIndex = hierarchy->parentIndex.a[index];
uint32_t childIndex = hierarchy->childIndex.a[index];
uint32_t siblingIndex = null_transform;
if (parentIndex != null_transform) {
siblingIndex = hierarchy->childIndex.a[parentIndex];
}
hierarchy_remove_children (hierarchy, index);
hierarchy_close (hierarchy, index, 1);
if (siblingIndex != null_transform) {
hierarchy_UpdateTransformIndices (hierarchy, index, -1);
hierarchy_UpdateChildIndices (hierarchy, siblingIndex, -1);
hierarchy_UpdateParentIndices (hierarchy, childIndex - 1, -1);
}
}
hierarchy_t *
Hierarchy_New (size_t grow, int createRoot)
{
if (!grow) {
grow = 16;
}
hierarchy_t *hierarchy = malloc (sizeof (hierarchy_t));
DARRAY_INIT (&hierarchy->transform, grow);
DARRAY_INIT (&hierarchy->entity, grow);
DARRAY_INIT (&hierarchy->childCount, grow);
DARRAY_INIT (&hierarchy->childIndex, grow);
DARRAY_INIT (&hierarchy->parentIndex, grow);
DARRAY_INIT (&hierarchy->name, grow);
DARRAY_INIT (&hierarchy->tag, grow);
DARRAY_INIT (&hierarchy->modified, grow);
DARRAY_INIT (&hierarchy->localMatrix, grow);
DARRAY_INIT (&hierarchy->localInverse, grow);
DARRAY_INIT (&hierarchy->worldMatrix, grow);
DARRAY_INIT (&hierarchy->worldInverse, grow);
DARRAY_INIT (&hierarchy->localRotation, grow);
DARRAY_INIT (&hierarchy->localScale, grow);
DARRAY_INIT (&hierarchy->worldRotation, grow);
DARRAY_INIT (&hierarchy->worldScale, grow);
if (createRoot) {
hierarchy_open (hierarchy, 0, 1);
hierarchy_init (hierarchy, 0, null_transform, 1, 1);
}
return hierarchy;
}
void
Hierarchy_Delete (hierarchy_t *hierarchy)
{
for (size_t i = 0; i < hierarchy->transform.size; i++) {
free (hierarchy->transform.a[i]);
}
for (size_t i = 0; i < hierarchy->name.size; i++) {
free (hierarchy->name.a[i]);
}
DARRAY_CLEAR (&hierarchy->transform);
DARRAY_CLEAR (&hierarchy->entity);
DARRAY_CLEAR (&hierarchy->childCount);
DARRAY_CLEAR (&hierarchy->childIndex);
DARRAY_CLEAR (&hierarchy->parentIndex);
DARRAY_CLEAR (&hierarchy->name);
DARRAY_CLEAR (&hierarchy->tag);
DARRAY_CLEAR (&hierarchy->modified);
DARRAY_CLEAR (&hierarchy->localMatrix);
DARRAY_CLEAR (&hierarchy->localInverse);
DARRAY_CLEAR (&hierarchy->worldMatrix);
DARRAY_CLEAR (&hierarchy->worldInverse);
DARRAY_CLEAR (&hierarchy->localRotation);
DARRAY_CLEAR (&hierarchy->localScale);
DARRAY_CLEAR (&hierarchy->worldRotation);
DARRAY_CLEAR (&hierarchy->worldScale);
free (hierarchy);
}

View file

@ -0,0 +1,19 @@
libs_entity_tests = \
libs/entity/test/test-hierarchy \
$e
TESTS += $(libs_entity_tests)
check_PROGRAMS += $(libs_entity_tests)
libs_entity_test_libs= \
libs/entity/libQFentity.la \
libs/util/libQFutil.la
libs_entity_test_test_hierarchy_SOURCES= \
libs/entity/test/test-hierarchy.c \
$e
libs_entity_test_test_hierarchy_LDADD= \
$(libs_entity_test_libs)
libs_entity_test_test_hierarchy_DEPENDENCIES= \
$(libs_entity_test_libs)

View file

@ -0,0 +1,707 @@
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "QF/entity.h"
// NOTE: these are the columns of the matrix! (not that it matters for a
// symmetrical matrix, but...)
mat4f_t identity = {
{ 1, 0, 0, 0 },
{ 0, 1, 0, 0 },
{ 0, 0, 1, 0 },
{ 0, 0, 0, 1 },
};
vec4f_t one = { 1, 1, 1, 1 };
static int
vec4_equal (vec4f_t a, vec4f_t b)
{
vec4i_t res = a != b;
return !(res[0] || res[1] || res[2] || res[3]);
}
static int
mat4_equal (const mat4f_t a, const mat4f_t b)
{
vec4i_t res = {};
for (int i = 0; i < 4; i++) {
res |= a[i] != b[i];
}
return !(res[0] || res[1] || res[2] || res[3]);
}
static int
check_hierarchy_size (hierarchy_t *h, uint32_t size)
{
if (h->transform.size != size
|| h->entity.size != size
|| h->childCount.size != size
|| h->childIndex.size != size
|| h->parentIndex.size != size
|| h->name.size != size
|| h->tag.size != size
|| h->modified.size != size
|| h->localMatrix.size != size
|| h->localInverse.size != size
|| h->worldMatrix.size != size
|| h->worldInverse.size != size
|| h->localRotation.size != size
|| h->localScale.size != size
|| h->worldRotation.size != size
|| h->worldScale.size != size) {
printf ("hierarchy does not have exactly %u"
" transform or array sizes are inconsistent\n", size);
return 0;
}
for (size_t i = 0; i < h->transform.size; i++) {
if (h->transform.a[i]->hierarchy != h) {
printf ("transform %zd (%s) does not point to hierarchy\n",
i, h->name.a[i]);
}
}
return 1;
}
static void
dump_hierarchy (hierarchy_t *h)
{
for (size_t i = 0; i < h->transform.size; i++) {
printf ("%2zd: %5s %2u %2u %2u %2u\n", i, h->name.a[i],
h->transform.a[i]->index, h->parentIndex.a[i],
h->childIndex.a[i], h->childCount.a[i]);
}
puts ("");
}
static int
check_indices (transform_t *transform, uint32_t index, uint32_t parentIndex,
uint32_t childIndex, uint32_t childCount)
{
hierarchy_t *h = transform->hierarchy;
if (transform->index != index) {
printf ("%s/%s index incorrect: expect %u got %u\n",
h->name.a[transform->index], h->name.a[index],
index, transform->index);
return 0;
}
if (h->parentIndex.a[index] != parentIndex) {
printf ("%s parent index incorrect: expect %u got %u\n",
h->name.a[index], parentIndex, h->parentIndex.a[index]);
return 0;
}
if (h->childIndex.a[index] != childIndex) {
printf ("%s child index incorrect: expect %u got %u\n",
h->name.a[index], childIndex, h->childIndex.a[index]);
return 0;
}
if (h->childCount.a[index] != childCount) {
printf ("%s child count incorrect: expect %u got %u\n",
h->name.a[index], childCount, h->childCount.a[index]);
return 0;
}
return 1;
}
static int
test_single_transform (void)
{
transform_t *transform = Transform_New (0);
hierarchy_t *h;
if (!transform) {
printf ("Transform_New returned null\n");
return 1;
}
if (!(h = transform->hierarchy)) {
printf ("New transform has no hierarchy\n");
return 1;
}
if (!check_hierarchy_size (h, 1)) { return 1; }
if (!check_indices (transform, 0, null_transform, 1, 0)) { return 1; }
if (!mat4_equal (h->localMatrix.a[0], identity)
|| !mat4_equal (h->localInverse.a[0], identity)
|| !mat4_equal (h->worldMatrix.a[0], identity)
|| !mat4_equal (h->worldInverse.a[0], identity)) {
printf ("New transform matrices not identity\n");
return 1;
}
if (!vec4_equal (h->localRotation.a[0], identity[3])
|| !vec4_equal (h->localScale.a[0], one)) {
printf ("New transform rotation or scale not identity\n");
return 1;
}
// Delete the hierarchy directly as setparent isn't fully tested
Hierarchy_Delete (transform->hierarchy);
return 0;
}
static int
test_parent_child_init (void)
{
transform_t *parent = Transform_New (0);
transform_t *child = Transform_New (parent);
if (parent->hierarchy != child->hierarchy) {
printf ("parent and child transforms have separate hierarchies\n");
return 1;
}
if (!check_hierarchy_size (parent->hierarchy, 2)) { return 1; }
if (!check_indices (parent, 0, null_transform, 1, 1)) { return 1; }
if (!check_indices (child, 1, 0, 2, 0)) { return 1; }
hierarchy_t *h = parent->hierarchy;
if (!mat4_equal (h->localMatrix.a[0], identity)
|| !mat4_equal (h->localInverse.a[0], identity)
|| !mat4_equal (h->worldMatrix.a[0], identity)
|| !mat4_equal (h->worldInverse.a[0], identity)) {
printf ("Parent transform matrices not identity\n");
return 1;
}
if (!vec4_equal (h->localRotation.a[0], identity[3])
|| !vec4_equal (h->localScale.a[0], one)) {
printf ("Parent transform rotation or scale not identity\n");
return 1;
}
if (!mat4_equal (h->localMatrix.a[1], identity)
|| !mat4_equal (h->localInverse.a[1], identity)
|| !mat4_equal (h->worldMatrix.a[1], identity)
|| !mat4_equal (h->worldInverse.a[1], identity)) {
printf ("Child transform matrices not identity\n");
return 1;
}
if (!vec4_equal (h->localRotation.a[1], identity[3])
|| !vec4_equal (h->localScale.a[1], one)) {
printf ("Child transform rotation or scale not identity\n");
return 1;
}
// Delete the hierarchy directly as setparent isn't fully tested
Hierarchy_Delete (parent->hierarchy);
return 0;
}
static int
test_parent_child_setparent (void)
{
transform_t *parent = Transform_New (0);
transform_t *child = Transform_New (0);
Transform_SetName (parent, "parent");
Transform_SetName (child, "child");
if (!check_indices (parent, 0, null_transform, 1, 0)) { return 1; }
if (!check_indices (child, 0, null_transform, 1, 0)) { return 1; }
if (parent->hierarchy == child->hierarchy) {
printf ("parent and child transforms have same hierarchy before"
" set paret\n");
return 1;
}
Transform_SetParent (child, parent);
if (parent->hierarchy != child->hierarchy) {
printf ("parent and child transforms have separate hierarchies\n");
return 1;
}
if (!check_hierarchy_size (parent->hierarchy, 2)) { return 1; }
if (!check_indices (parent, 0, null_transform, 1, 1)) { return 1; }
if (!check_indices (child, 1, 0, 2, 0)) { return 1; }
hierarchy_t *h = parent->hierarchy;
if (!mat4_equal (h->localMatrix.a[0], identity)
|| !mat4_equal (h->localInverse.a[0], identity)
|| !mat4_equal (h->worldMatrix.a[0], identity)
|| !mat4_equal (h->worldInverse.a[0], identity)) {
printf ("Parent transform matrices not identity\n");
return 1;
}
if (!vec4_equal (h->localRotation.a[0], identity[3])
|| !vec4_equal (h->localScale.a[0], one)) {
printf ("Parent transform rotation or scale not identity\n");
return 1;
}
if (!mat4_equal (h->localMatrix.a[1], identity)
|| !mat4_equal (h->localInverse.a[1], identity)
|| !mat4_equal (h->worldMatrix.a[1], identity)
|| !mat4_equal (h->worldInverse.a[1], identity)) {
printf ("Child transform matrices not identity\n");
return 1;
}
if (!vec4_equal (h->localRotation.a[1], identity[3])
|| !vec4_equal (h->localScale.a[1], one)) {
printf ("Child transform rotation or scale not identity\n");
return 1;
}
// Delete the hierarchy directly as setparent isn't fully tested
Hierarchy_Delete (parent->hierarchy);
return 0;
}
static int
test_build_hierarchy (void)
{
printf ("test_build_hierarchy\n");
transform_t *root = Transform_NewNamed (0, "root");
transform_t *A = Transform_NewNamed (root, "A");
transform_t *B = Transform_NewNamed (root, "B");
transform_t *C = Transform_NewNamed (root, "C");
if (!check_indices (root, 0, null_transform, 1, 3)) { return 1; }
if (!check_indices (A, 1, 0, 4, 0)) { return 1; }
if (!check_indices (B, 2, 0, 4, 0)) { return 1; }
if (!check_indices (C, 3, 0, 4, 0)) { return 1; }
transform_t *B1 = Transform_NewNamed (B, "B1");
if (!check_indices (root, 0, null_transform, 1, 3)) { return 1; }
if (!check_indices ( A, 1, 0, 4, 0)) { return 1; }
if (!check_indices ( B, 2, 0, 4, 1)) { return 1; }
if (!check_indices ( C, 3, 0, 5, 0)) { return 1; }
if (!check_indices (B1, 4, 2, 5, 0)) { return 1; }
transform_t *A1 = Transform_NewNamed (A, "A1");
if (!check_indices (root, 0, null_transform, 1, 3)) { return 1; }
if (!check_indices ( A, 1, 0, 4, 1)) { return 1; }
if (!check_indices ( B, 2, 0, 5, 1)) { return 1; }
if (!check_indices ( C, 3, 0, 6, 0)) { return 1; }
if (!check_indices (A1, 4, 1, 6, 0)) { return 1; }
if (!check_indices (B1, 5, 2, 6, 0)) { return 1; }
transform_t *A1a = Transform_NewNamed (A1, "A1a");
transform_t *B2 = Transform_NewNamed (B, "B2");
transform_t *A2 = Transform_NewNamed (A, "A2");
transform_t *B3 = Transform_NewNamed (B, "B3");
transform_t *B2a = Transform_NewNamed (B2, "B2a");
if (!check_hierarchy_size (root->hierarchy, 11)) { return 1; }
if (!check_indices (root, 0, null_transform, 1, 3)) { return 1; }
if (!check_indices ( A, 1, 0, 4, 2)) { return 1; }
if (!check_indices ( B, 2, 0, 6, 3)) { return 1; }
if (!check_indices ( C, 3, 0, 9, 0)) { return 1; }
if (!check_indices ( A1, 4, 1, 9, 1)) { return 1; }
if (!check_indices ( A2, 5, 1, 10, 0)) { return 1; }
if (!check_indices ( B1, 6, 2, 10, 0)) { return 1; }
if (!check_indices ( B2, 7, 2, 10, 1)) { return 1; }
if (!check_indices ( B3, 8, 2, 11, 0)) { return 1; }
if (!check_indices (A1a, 9, 4, 11, 0)) { return 1; }
if (!check_indices (B2a, 10, 7, 11, 0)) { return 1; }
transform_t *D = Transform_NewNamed (root, "D");
if (!check_hierarchy_size (root->hierarchy, 12)) { return 1; }
if (!check_indices (root, 0, null_transform, 1, 4)) { return 1; }
if (!check_indices ( A, 1, 0, 5, 2)) { return 1; }
if (!check_indices ( B, 2, 0, 7, 3)) { return 1; }
if (!check_indices ( C, 3, 0, 10, 0)) { return 1; }
if (!check_indices ( D, 4, 0, 10, 0)) { return 1; }
if (!check_indices ( A1, 5, 1, 10, 1)) { return 1; }
if (!check_indices ( A2, 6, 1, 11, 0)) { return 1; }
if (!check_indices ( B1, 7, 2, 11, 0)) { return 1; }
if (!check_indices ( B2, 8, 2, 11, 1)) { return 1; }
if (!check_indices ( B3, 9, 2, 12, 0)) { return 1; }
if (!check_indices (A1a, 10, 5, 12, 0)) { return 1; }
if (!check_indices (B2a, 11, 8, 12, 0)) { return 1; }
dump_hierarchy (root->hierarchy);
transform_t *C1 = Transform_NewNamed (C, "C1");
dump_hierarchy (root->hierarchy);
if (!check_hierarchy_size (root->hierarchy, 13)) { return 1; }
if (!check_indices (root, 0, null_transform, 1, 4)) { return 1; }
if (!check_indices ( A, 1, 0, 5, 2)) { return 1; }
if (!check_indices ( B, 2, 0, 7, 3)) { return 1; }
if (!check_indices ( C, 3, 0, 10, 1)) { return 1; }
if (!check_indices ( D, 4, 0, 11, 0)) { return 1; }
if (!check_indices ( A1, 5, 1, 11, 1)) { return 1; }
if (!check_indices ( A2, 6, 1, 12, 0)) { return 1; }
if (!check_indices ( B1, 7, 2, 12, 0)) { return 1; }
if (!check_indices ( B2, 8, 2, 12, 1)) { return 1; }
if (!check_indices ( B3, 9, 2, 13, 0)) { return 1; }
if (!check_indices ( C1, 10, 3, 13, 0)) { return 1; }
if (!check_indices (A1a, 11, 5, 13, 0)) { return 1; }
if (!check_indices (B2a, 12, 8, 13, 0)) { return 1; }
// Delete the hierarchy directly as setparent isn't fully tested
Hierarchy_Delete (root->hierarchy);
return 0;
}
static int
test_build_hierarchy2 (void)
{
printf ("test_build_hierarchy2\n");
transform_t *root = Transform_NewNamed (0, "root");
transform_t *A = Transform_NewNamed (root, "A");
transform_t *B = Transform_NewNamed (root, "B");
transform_t *C = Transform_NewNamed (root, "C");
transform_t *B1 = Transform_NewNamed (B, "B1");
transform_t *A1 = Transform_NewNamed (A, "A1");
transform_t *A1a = Transform_NewNamed (A1, "A1a");
transform_t *B2 = Transform_NewNamed (B, "B2");
transform_t *A2 = Transform_NewNamed (A, "A2");
transform_t *B3 = Transform_NewNamed (B, "B3");
transform_t *B2a = Transform_NewNamed (B2, "B2a");
transform_t *D = Transform_NewNamed (root, "D");
transform_t *C1 = Transform_NewNamed (C, "C1");
if (!check_hierarchy_size (root->hierarchy, 13)) { return 1; }
if (!check_indices (root, 0, null_transform, 1, 4)) { return 1; }
if (!check_indices ( A, 1, 0, 5, 2)) { return 1; }
if (!check_indices ( B, 2, 0, 7, 3)) { return 1; }
if (!check_indices ( C, 3, 0, 10, 1)) { return 1; }
if (!check_indices ( D, 4, 0, 11, 0)) { return 1; }
if (!check_indices ( A1, 5, 1, 11, 1)) { return 1; }
if (!check_indices ( A2, 6, 1, 12, 0)) { return 1; }
if (!check_indices ( B1, 7, 2, 12, 0)) { return 1; }
if (!check_indices ( B2, 8, 2, 12, 1)) { return 1; }
if (!check_indices ( B3, 9, 2, 13, 0)) { return 1; }
if (!check_indices ( C1, 10, 3, 13, 0)) { return 1; }
if (!check_indices (A1a, 11, 5, 13, 0)) { return 1; }
if (!check_indices (B2a, 12, 8, 13, 0)) { return 1; }
transform_t *T = Transform_NewNamed (0, "T");
transform_t *X = Transform_NewNamed (T, "X");
transform_t *Y = Transform_NewNamed (T, "Y");
transform_t *Z = Transform_NewNamed (T, "Z");
transform_t *Y1 = Transform_NewNamed (Y, "Y1");
transform_t *X1 = Transform_NewNamed (X, "X1");
transform_t *X1a = Transform_NewNamed (X1, "X1a");
transform_t *Y2 = Transform_NewNamed (Y, "Y2");
transform_t *X2 = Transform_NewNamed (X, "X2");
transform_t *Y3 = Transform_NewNamed (Y, "Y3");
transform_t *Y2a = Transform_NewNamed (Y2, "Y2a");
transform_t *Z1 = Transform_NewNamed (Z, "Z1");
dump_hierarchy (T->hierarchy);
if (!check_hierarchy_size (T->hierarchy, 12)) { return 1; }
if (!check_indices ( T, 0, null_transform, 1, 3)) { return 1; }
if (!check_indices ( X, 1, 0, 4, 2)) { return 1; }
if (!check_indices ( Y, 2, 0, 6, 3)) { return 1; }
if (!check_indices ( Z, 3, 0, 9, 1)) { return 1; }
if (!check_indices ( X1, 4, 1, 10, 1)) { return 1; }
if (!check_indices ( X2, 5, 1, 11, 0)) { return 1; }
if (!check_indices ( Y1, 6, 2, 11, 0)) { return 1; }
if (!check_indices ( Y2, 7, 2, 11, 1)) { return 1; }
if (!check_indices ( Y3, 8, 2, 12, 0)) { return 1; }
if (!check_indices ( Z1, 9, 3, 12, 0)) { return 1; }
if (!check_indices (X1a, 10, 4, 12, 0)) { return 1; }
if (!check_indices (Y2a, 11, 7, 12, 0)) { return 1; }
Transform_SetParent (T, B);
dump_hierarchy (root->hierarchy);
if (!check_hierarchy_size (root->hierarchy, 25)) { return 1; }
if (!check_indices (root, 0, null_transform, 1, 4)) { return 1; }
if (!check_indices ( A, 1, 0, 5, 2)) { return 1; }
if (!check_indices ( B, 2, 0, 7, 4)) { return 1; }
if (!check_indices ( C, 3, 0, 11, 1)) { return 1; }
if (!check_indices ( D, 4, 0, 12, 0)) { return 1; }
if (!check_indices ( A1, 5, 1, 12, 1)) { return 1; }
if (!check_indices ( A2, 6, 1, 13, 0)) { return 1; }
if (!check_indices ( B1, 7, 2, 13, 0)) { return 1; }
if (!check_indices ( B2, 8, 2, 13, 1)) { return 1; }
if (!check_indices ( B3, 9, 2, 14, 0)) { return 1; }
if (!check_indices ( T, 10, 2, 14, 3)) { return 1; }
if (!check_indices ( C1, 11, 3, 17, 0)) { return 1; }
if (!check_indices (A1a, 12, 5, 17, 0)) { return 1; }
if (!check_indices (B2a, 13, 8, 17, 0)) { return 1; }
if (!check_indices ( X, 14, 10, 17, 2)) { return 1; }
if (!check_indices ( Y, 15, 10, 19, 3)) { return 1; }
if (!check_indices ( Z, 16, 10, 22, 1)) { return 1; }
if (!check_indices ( X1, 17, 14, 23, 1)) { return 1; }
if (!check_indices ( X2, 18, 14, 24, 0)) { return 1; }
if (!check_indices ( Y1, 19, 15, 24, 0)) { return 1; }
if (!check_indices ( Y2, 20, 15, 24, 1)) { return 1; }
if (!check_indices ( Y3, 21, 15, 25, 0)) { return 1; }
if (!check_indices ( Z1, 22, 16, 25, 0)) { return 1; }
if (!check_indices (X1a, 23, 17, 25, 0)) { return 1; }
if (!check_indices (Y2a, 24, 20, 25, 0)) { return 1; }
Transform_SetParent (Y, 0);
dump_hierarchy (root->hierarchy);
dump_hierarchy (Y->hierarchy);
if (!check_hierarchy_size (root->hierarchy, 20)) { return 1; }
if (!check_hierarchy_size (Y->hierarchy, 5)) { return 1; }
if (!check_indices (root, 0, null_transform, 1, 4)) { return 1; }
if (!check_indices ( A, 1, 0, 5, 2)) { return 1; }
if (!check_indices ( B, 2, 0, 7, 4)) { return 1; }
if (!check_indices ( C, 3, 0, 11, 1)) { return 1; }
if (!check_indices ( D, 4, 0, 12, 0)) { return 1; }
if (!check_indices ( A1, 5, 1, 12, 1)) { return 1; }
if (!check_indices ( A2, 6, 1, 13, 0)) { return 1; }
if (!check_indices ( B1, 7, 2, 13, 0)) { return 1; }
if (!check_indices ( B2, 8, 2, 13, 1)) { return 1; }
if (!check_indices ( B3, 9, 2, 14, 0)) { return 1; }
if (!check_indices ( T, 10, 2, 14, 3)) { return 1; }
if (!check_indices ( C1, 11, 3, 17, 0)) { return 1; }
if (!check_indices (A1a, 12, 5, 17, 0)) { return 1; }
if (!check_indices (B2a, 13, 8, 17, 0)) { return 1; }
if (!check_indices ( X, 14, 10, 16, 2)) { return 1; }
if (!check_indices ( Z, 15, 10, 18, 1)) { return 1; }
if (!check_indices ( X1, 16, 14, 19, 1)) { return 1; }
if (!check_indices ( X2, 17, 14, 20, 0)) { return 1; }
if (!check_indices ( Z1, 18, 15, 20, 0)) { return 1; }
if (!check_indices (X1a, 19, 16, 20, 0)) { return 1; }
if (!check_indices ( Y, 0, null_transform, 1, 3)) { return 1; }
if (!check_indices ( Y1, 1, 0, 4, 0)) { return 1; }
if (!check_indices ( Y2, 2, 0, 4, 1)) { return 1; }
if (!check_indices ( Y3, 3, 0, 5, 0)) { return 1; }
if (!check_indices (Y2a, 4, 2, 5, 0)) { return 1; }
// Delete the hierarchy directly as setparent isn't fully tested
Hierarchy_Delete (root->hierarchy);
Hierarchy_Delete (Y->hierarchy);
return 0;
}
static int
check_vector (const transform_t *transform,
vec4f_t (*func) (const transform_t *t),
vec4f_t expect, const char *msg)
{
vec4f_t res = func(transform);
if (!vec4_equal (res, expect)) {
printf ("%s %s: expected "VEC4F_FMT" got "VEC4F_FMT"\n",
Transform_GetName (transform), msg,
VEC4_EXP (expect), VEC4_EXP (res));
return 0;
}
return 1;
}
static int
test_frames (void)
{
transform_t *root = Transform_NewNamed (0, "root");
transform_t *A = Transform_NewNamed (root, "A");
transform_t *B = Transform_NewNamed (root, "B");
transform_t *A1 = Transform_NewNamed (A, "A1");
transform_t *B1 = Transform_NewNamed (B, "B1");
Transform_SetLocalPosition (root, (vec4f_t) { 0, 0, 1, 1 });
Transform_SetLocalPosition (A, (vec4f_t) { 1, 0, 0, 1 });
Transform_SetLocalRotation (A, (vec4f_t) { 0.5, 0.5, 0.5, 0.5 });
Transform_SetLocalPosition (B, (vec4f_t) { 0, 1, 0, 1 });
Transform_SetLocalRotation (B, (vec4f_t) { 0.5, -0.5, 0.5, 0.5 });
Transform_SetLocalPosition (A1, (vec4f_t) { 1, 0, 0, 1 });
Transform_SetLocalRotation (A1, (vec4f_t) { -0.5, -0.5, -0.5, 0.5 });
Transform_SetLocalPosition (B1, (vec4f_t) { 0, 1, 0, 1 });
Transform_SetLocalRotation (B1, (vec4f_t) { -0.5, 0.5, -0.5, 0.5 });
hierarchy_t *h = root->hierarchy;
for (size_t i = 0; i < h->transform.size; i++) {
mat4f_t res;
mmulf (res, h->localMatrix.a[i], h->localInverse.a[i]);
if (!mat4_equal (res, identity)) {
printf ("%s: localInverse not inverse of localMatrix\n",
h->name.a[i]);
printf ("l: " VEC4F_FMT "\n", MAT4_ROW(h->localMatrix.a[i], 0));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->localMatrix.a[i], 1));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->localMatrix.a[i], 2));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->localMatrix.a[i], 3));
printf ("i: " VEC4F_FMT "\n", MAT4_ROW(h->localInverse.a[i], 0));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->localInverse.a[i], 1));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->localInverse.a[i], 2));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->localInverse.a[i], 3));
printf ("r: " VEC4F_FMT "\n", MAT4_ROW(res, 0));
printf (" " VEC4F_FMT "\n", MAT4_ROW(res, 1));
printf (" " VEC4F_FMT "\n", MAT4_ROW(res, 2));
printf (" " VEC4F_FMT "\n", MAT4_ROW(res, 3));
return 1;
}
puts (h->name.a[i]);
printf ("l: " VEC4F_FMT "\n", MAT4_ROW(h->localMatrix.a[i], 0));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->localMatrix.a[i], 1));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->localMatrix.a[i], 2));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->localMatrix.a[i], 3));
printf ("i: " VEC4F_FMT "\n", MAT4_ROW(h->localInverse.a[i], 0));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->localInverse.a[i], 1));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->localInverse.a[i], 2));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->localInverse.a[i], 3));
}
for (size_t i = 0; i < h->transform.size; i++) {
mat4f_t res;
mmulf (res, h->worldMatrix.a[i], h->worldInverse.a[i]);
if (!mat4_equal (res, identity)) {
printf ("%s: worldInverse not inverse of worldMatrix\n",
h->name.a[i]);
printf ("l: " VEC4F_FMT "\n", MAT4_ROW(h->worldMatrix.a[i], 0));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->worldMatrix.a[i], 1));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->worldMatrix.a[i], 2));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->worldMatrix.a[i], 3));
printf ("i: " VEC4F_FMT "\n", MAT4_ROW(h->worldInverse.a[i], 0));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->worldInverse.a[i], 1));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->worldInverse.a[i], 2));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->worldInverse.a[i], 3));
printf ("r: " VEC4F_FMT "\n", MAT4_ROW(res, 0));
printf (" " VEC4F_FMT "\n", MAT4_ROW(res, 1));
printf (" " VEC4F_FMT "\n", MAT4_ROW(res, 2));
printf (" " VEC4F_FMT "\n", MAT4_ROW(res, 3));
return 1;
}
puts (h->name.a[i]);
printf ("l: " VEC4F_FMT "\n", MAT4_ROW(h->worldMatrix.a[i], 0));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->worldMatrix.a[i], 1));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->worldMatrix.a[i], 2));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->worldMatrix.a[i], 3));
printf ("i: " VEC4F_FMT "\n", MAT4_ROW(h->worldInverse.a[i], 0));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->worldInverse.a[i], 1));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->worldInverse.a[i], 2));
printf (" " VEC4F_FMT "\n", MAT4_ROW(h->worldInverse.a[i], 3));
}
if (!check_vector (root, Transform_GetLocalPosition,
(vec4f_t) { 0, 0, 1, 1 }, "local position")) {
return 1;
}
if (!check_vector (root, Transform_GetWorldPosition,
(vec4f_t) { 0, 0, 1, 1 }, "world position")) {
return 1;
}
if (!check_vector (root, Transform_Right, (vec4f_t) { 1, 0, 0, 0 },
"right")) {
return 1;
}
if (!check_vector (root, Transform_Forward, (vec4f_t) { 0, 1, 0, 0 },
"right")) {
return 1;
}
if (!check_vector (root, Transform_Up, (vec4f_t) { 0, 0, 1, 0 },
"up")) {
return 1;
}
if (!check_vector (A, Transform_GetLocalPosition, (vec4f_t) { 1, 0, 0, 1 },
"local position")) {
return 1;
}
if (!check_vector (A, Transform_GetWorldPosition, (vec4f_t) { 1, 0, 1, 1 },
"world position")) {
return 1;
}
if (!check_vector (A, Transform_Right, (vec4f_t) { 0, 1, 0, 0 },
"right")) {
return 1;
}
if (!check_vector (A, Transform_Forward, (vec4f_t) { 0, 0, 1, 0 },
"forward")) {
return 1;
}
if (!check_vector (A, Transform_Up, (vec4f_t) { 1, 0, 0, 0 },
"up")) {
return 1;
}
if (!check_vector (A1, Transform_GetLocalPosition, (vec4f_t) { 1, 0, 0, 1 },
"local position")) {
return 1;
}
if (!check_vector (A1, Transform_GetWorldPosition, (vec4f_t) { 1, 1, 1, 1 },
"world position")) {
return 1;
}
if (!check_vector (A1, Transform_Right, (vec4f_t) { 1, 0, 0, 0 },
"right")) {
return 1;
}
if (!check_vector (A1, Transform_Forward, (vec4f_t) { 0, 1, 0, 0 },
"forward")) {
return 1;
}
if (!check_vector (A1, Transform_Up, (vec4f_t) { 0, 0, 1, 0 },
"up")) {
return 1;
}
if (!check_vector (B, Transform_GetLocalPosition, (vec4f_t) { 0, 1, 0, 1 },
"local position")) {
return 1;
}
if (!check_vector (B, Transform_GetWorldPosition, (vec4f_t) { 0, 1, 1, 1 },
"world position")) {
return 1;
}
if (!check_vector (B, Transform_Right, (vec4f_t) { 0, 0, 1, 0 },
"right")) {
return 1;
}
if (!check_vector (B, Transform_Forward, (vec4f_t) {-1, 0, 0, 0 },
"forward")) {
return 1;
}
if (!check_vector (B, Transform_Up, (vec4f_t) { 0,-1, 0, 0 },
"up")) {
return 1;
}
if (!check_vector (B1, Transform_GetLocalPosition, (vec4f_t) { 0, 1, 0, 1 },
"local position")) {
return 1;
}
if (!check_vector (B1, Transform_GetWorldPosition, (vec4f_t) {-1, 1, 1, 1 },
"world position")) {
return 1;
}
if (!check_vector (B1, Transform_Right, (vec4f_t) { 1, 0, 0, 0 },
"right")) {
return 1;
}
if (!check_vector (B1, Transform_Forward, (vec4f_t) { 0, 1, 0, 0 },
"forward")) {
return 1;
}
if (!check_vector (B1, Transform_Up, (vec4f_t) { 0, 0, 1, 0 },
"up")) {
return 1;
}
return 0;
}
int
main (void)
{
if (test_single_transform ()) { return 1; }
if (test_parent_child_init ()) { return 1; }
if (test_parent_child_setparent ()) { return 1; }
if (test_build_hierarchy ()) { return 1; }
if (test_build_hierarchy2 ()) { return 1; }
if (test_frames ()) { return 1; }
return 0;
}

317
libs/entity/transform.c Normal file
View file

@ -0,0 +1,317 @@
/*
transform.c
General transform handling
Copyright (C) 2021 Bill Currke
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include "QF/entity.h"
#include "QF/render.h"
transform_t *
Transform_New (transform_t *parent)
{
transform_t *transform = malloc (sizeof (transform_t));
if (parent) {
transform->hierarchy = parent->hierarchy;
transform->index = Hierarchy_InsertHierarchy (parent->hierarchy, 0,
parent->index, 0);
} else {
transform->hierarchy = Hierarchy_New (16, 1);//FIXME should be config
transform->index = 0;
}
transform->hierarchy->transform.a[transform->index] = transform;
Hierarchy_UpdateMatrices (transform->hierarchy);
return transform;
}
void
Transform_Delete (transform_t *transform)
{
if (transform->index != 0) {
// The transform is not the root, so pull it out of its current
// hierarchy so deleting it is easier
Transform_SetParent (transform, 0);
}
Hierarchy_Delete (transform->hierarchy);
}
transform_t *
Transform_NewNamed (transform_t *parent, const char *name)
{
transform_t *transform = Transform_New (parent);
Transform_SetName (transform, name);
return transform;
}
uint32_t
Transform_ChildCount (const transform_t *transform)
{
hierarchy_t *h = transform->hierarchy;
return h->childCount.a[transform->index];
}
transform_t *
Transform_GetChild (const transform_t *transform, uint32_t childIndex)
{
hierarchy_t *h = transform->hierarchy;
if (childIndex >= h->childCount.a[transform->index]) {
return 0;
}
return h->transform.a[h->childIndex.a[transform->index] + childIndex];
}
void
Transform_SetParent (transform_t *transform, transform_t *parent)
{
if (parent) {
hierarchy_t *hierarchy = transform->hierarchy;
uint32_t index = transform->index;
Hierarchy_InsertHierarchy (parent->hierarchy, hierarchy,
parent->index, index);
Hierarchy_RemoveHierarchy (hierarchy, index);
if (!hierarchy->name.size) {
Hierarchy_Delete (hierarchy);
}
} else {
// null parent -> make transform root
if (!transform->index) {
// already root
return;
}
hierarchy_t *hierarchy = transform->hierarchy;
uint32_t index = transform->index;
hierarchy_t *new_hierarchy = Hierarchy_New (16, 0);
Hierarchy_InsertHierarchy (new_hierarchy, hierarchy, null_transform,
index);
Hierarchy_RemoveHierarchy (hierarchy, index);
}
}
transform_t *
Transform_GetParent (const transform_t *transform)
{
if (transform->index == 0) {
return 0;
}
hierarchy_t *h = transform->hierarchy;
return h->transform.a[h->parentIndex.a[transform->index]];
}
void
Transform_SetName (transform_t *transform, const char *name)
{
hierarchy_t *h = transform->hierarchy;
//FIXME create a string pool (similar to qfcc's, or even move that to util)
if (h->name.a[transform->index]) {
free (h->name.a[transform->index]);
}
h->name.a[transform->index] = strdup (name);
}
const char *
Transform_GetName (const transform_t *transform)
{
hierarchy_t *h = transform->hierarchy;
return h->name.a[transform->index];
}
void
Transform_SetTag (transform_t *transform, uint32_t tag)
{
hierarchy_t *h = transform->hierarchy;
h->tag.a[transform->index] = tag;
}
uint32_t
Transform_GetTag (const transform_t *transform)
{
hierarchy_t *h = transform->hierarchy;
return h->tag.a[transform->index];
}
void
Transform_GetLocalMatrix (const transform_t *transform, mat4f_t mat)
{
hierarchy_t *h = transform->hierarchy;
memcpy (mat, h->localMatrix.a[transform->index], sizeof (mat4f_t));
}
void
Transform_GetLocalInverse (const transform_t *transform, mat4f_t mat)
{
hierarchy_t *h = transform->hierarchy;
memcpy (mat, h->localInverse.a[transform->index], sizeof (mat4f_t));
}
void
Transform_GetWorldMatrix (const transform_t *transform, mat4f_t mat)
{
hierarchy_t *h = transform->hierarchy;
memcpy (mat, h->worldMatrix.a[transform->index], sizeof (mat4f_t));
}
void
Transform_GetWorldInverse (const transform_t *transform, mat4f_t mat)
{
hierarchy_t *h = transform->hierarchy;
memcpy (mat, h->worldInverse.a[transform->index], sizeof (mat4f_t));
}
vec4f_t
Transform_GetLocalPosition (const transform_t *transform)
{
hierarchy_t *h = transform->hierarchy;
return h->localMatrix.a[transform->index][3];
}
void
Transform_SetLocalPosition (transform_t *transform, vec4f_t position)
{
hierarchy_t *h = transform->hierarchy;
h->localMatrix.a[transform->index][3] = position;
h->modified.a[transform->index] = 1;
Hierarchy_UpdateMatrices (h);
}
vec4f_t
Transform_GetLocalRotation (const transform_t *transform)
{
hierarchy_t *h = transform->hierarchy;
return h->localRotation.a[transform->index];
}
void
Transform_SetLocalRotation (transform_t *transform, vec4f_t rotation)
{
hierarchy_t *h = transform->hierarchy;
vec4f_t scale = h->localScale.a[transform->index];
mat4f_t mat;
mat4fquat (mat, rotation);
h->localMatrix.a[transform->index][0] = mat[0] * scale[0];
h->localMatrix.a[transform->index][1] = mat[1] * scale[1];
h->localMatrix.a[transform->index][2] = mat[2] * scale[2];
h->modified.a[transform->index] = 1;
Hierarchy_UpdateMatrices (h);
}
vec4f_t
Transform_GetLocalScale (const transform_t *transform)
{
hierarchy_t *h = transform->hierarchy;
return h->localScale.a[transform->index];
}
void
Transform_SetLocalScale (transform_t *transform, vec4f_t scale)
{
hierarchy_t *h = transform->hierarchy;
vec4f_t rotation = h->localRotation.a[transform->index];
mat4f_t mat;
mat4fquat (mat, rotation);
h->localMatrix.a[transform->index][0] = mat[0] * scale[0];
h->localMatrix.a[transform->index][1] = mat[1] * scale[1];
h->localMatrix.a[transform->index][2] = mat[2] * scale[2];
h->modified.a[transform->index] = 1;
Hierarchy_UpdateMatrices (h);
}
vec4f_t
Transform_GetWorldPosition (const transform_t *transform)
{
hierarchy_t *h = transform->hierarchy;
return h->worldMatrix.a[transform->index][3];
}
void
Transform_SetWorldPosition (transform_t *transform, vec4f_t position)
{
if (transform->index) {
hierarchy_t *h = transform->hierarchy;
uint32_t parent = h->parentIndex.a[transform->index];
position = mvmulf (h->worldInverse.a[parent], position);
}
Transform_SetLocalPosition (transform, position);
}
vec4f_t
Transform_GetWorldRotation (const transform_t *transform)
{
hierarchy_t *h = transform->hierarchy;
return h->worldRotation.a[transform->index];
}
void
Transform_SetWorldRotation (transform_t *transform, vec4f_t rotation)
{
if (transform->index) {
hierarchy_t *h = transform->hierarchy;
uint32_t parent = h->parentIndex.a[transform->index];
rotation = qmulf (qconjf (h->worldRotation.a[parent]), rotation);
}
Transform_SetLocalRotation (transform, rotation);
}
vec4f_t
Transform_GetWorldScale (const transform_t *transform)
{
hierarchy_t *h = transform->hierarchy;
return h->worldScale.a[transform->index];
}
vec4f_t
Transform_Forward (const transform_t *transform)
{
hierarchy_t *h = transform->hierarchy;
return h->worldMatrix.a[transform->index][1];
}
vec4f_t
Transform_Right (const transform_t *transform)
{
hierarchy_t *h = transform->hierarchy;
return h->worldMatrix.a[transform->index][0];
}
vec4f_t
Transform_Up (const transform_t *transform)
{
hierarchy_t *h = transform->hierarchy;
return h->worldMatrix.a[transform->index][2];
}