quakeforge/libs/models/trace.c

320 lines
8.2 KiB
C
Raw Normal View History

/*
trace.c
BSP line tracing
Copyright (C) 2004 Bill Currie
Author: Bill Currie <bill@taniwha.org>
Date: 2004/9/25
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
static __attribute__ ((used)) const char rcsid[] =
"$Id$";
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include "QF/model.h"
#include "QF/sys.h"
#include "QF/winding.h"
#include "compat.h"
#include "world.h"
/* LINE TESTING IN HULLS */
// 1/32 epsilon to keep floating point happy
#ifndef DIST_EPSILON
#define DIST_EPSILON (0.03125)
#endif
typedef struct {
vec3_t start;
vec3_t end;
vec_t start_frac;
int side;
int num;
plane_t *plane;
} tracestack_t;
static inline float
calc_offset (trace_t *trace, plane_t *plane)
{
vec_t d = 0;
vec3_t Rn;
switch (trace->type) {
case tr_point:
break;
case tr_box:
if (plane->type < 3)
d = trace->extents[plane->type];
else
d = (fabs (trace->extents[0] * plane->normal[0])
+ fabs (trace->extents[1] * plane->normal[1])
+ fabs (trace->extents[2] * plane->normal[2]));
break;
case tr_ellipsoid:
VectorSet (trace->extents[0] * plane->normal[0],
trace->extents[1] * plane->normal[1],
trace->extents[2] * plane->normal[2], Rn);
d = sqrt(DotProduct (Rn, Rn)); //FIXME no sqrt
break;
}
return d;
}
static int
check_in_leaf (hull_t *hull, trace_t *trace, clipleaf_t *leaf, plane_t *plane,
const vec3_t vel, const vec3_t org)
{
clipport_t *portal;
int side;
int miss = 0;
int i;
int planenum;
plane_t cutplane;
vec_t offset, dist, v_n;
vec_t *point, *edge;
planenum = plane - hull->planes;
cutplane.type = 3; // generic plane
v_n = DotProduct (vel, plane->normal);
for (portal = leaf->portals; portal; portal = portal->next[side]) {
side = portal->leafs[1] == leaf;
if (portal->planenum != planenum)
continue;
for (i = 0; !miss && i < portal->winding->numpoints; i++) {
point = portal->winding->points[i];
edge = portal->edges->points[i];
// so long as the plane distance and offset are calculated using
// the same normal vector, the normal vector length does not
// matter.
CrossProduct (vel, edge, cutplane.normal);
cutplane.dist = DotProduct (vel, point);
dist = PlaneDiff (org, &cutplane);
offset = calc_offset (trace, &cutplane);
if (v_n >= 0)
miss = dist >= offset;
else
miss = dist <= -offset;
}
if (!miss)
return 1;
}
return 0;
}
static inline void
calc_impact (trace_t *trace, const vec3_t start, const vec3_t end,
plane_t *plane)
{
vec_t t1, t2, frac, offset;
vec3_t dist;
t1 = PlaneDiff (start, plane);
t2 = PlaneDiff (end, plane);
offset = calc_offset (trace, plane);
if (t1 < 0) {
frac = (t1 + offset + DIST_EPSILON) / (t1 - t2);
// invert plane paramterers
} else {
frac = (t1 - offset - DIST_EPSILON) / (t1 - t2);
}
frac = bound (0, frac, 1);
if (frac < trace->fraction) {
trace->fraction = frac;
VectorSubtract (end, start, dist);
VectorMultAdd (start, frac, dist, trace->endpos);
if (t1 < 0) {
// invert plane paramterers
VectorNegate (plane->normal, trace->plane.normal);
trace->plane.dist = -plane->dist;
} else {
VectorCopy (plane->normal, trace->plane.normal);
trace->plane.dist = plane->dist;
}
}
}
VISIBLE void
MOD_TraceLine (hull_t *hull, int num,
const vec3_t start_point, const vec3_t end_point,
trace_t *trace)
{
vec_t start_dist, end_dist, frac[2], offset;
vec3_t start, end, dist, vel;
int side;
qboolean seen_empty, seen_solid;
tracestack_t *tstack;
tracestack_t tracestack[256];
mclipnode_t *node;
plane_t *plane, *split_plane;
clipleaf_t *leaf;
VectorCopy (start_point, start);
VectorCopy (end_point, end);
VectorSubtract (end, start, vel);
VectorNormalize (vel);
tstack = tracestack;
seen_empty = 0;
seen_solid = 0;
split_plane = 0;
leaf = 0;
plane = 0;
trace->allsolid = true;
trace->startsolid = false;
trace->inopen = false;
trace->inwater = false;
trace->fraction = 1.0;
while (1) {
while (num < 0) {
// it's not possible to not be in the leaf when doing a point trace
// if leaf is null, assume we're in the leaf
// if plane is null, the trace did not cross the last node plane
int in_leaf = (trace->type == tr_point || !leaf || !plane
|| check_in_leaf (hull, trace, leaf,
plane,
vel, start));
if (in_leaf && num == CONTENTS_SOLID) {
if (!seen_empty && !seen_solid) {
// this is the first leaf visited, thus the start leaf
trace->startsolid = seen_solid = true;
} else if (!seen_empty && seen_solid) {
// If crossing from one solid leaf to another, treat the
// whole trace as solid (this is what id does).
// However, since allsolid is initialized to true, no need
// to do anything.
return;
} else {
// crossing from an empty leaf to a solid leaf: the trace
// has collided.
calc_impact (trace, start_point, end_point, split_plane);
if (trace->type == tr_point)
return;
}
} else if (in_leaf) {
seen_empty = true;
trace->allsolid = false;
2007-05-14 11:16:41 +00:00
if (num == CONTENTS_EMPTY)
trace->inopen = true;
else
trace->inwater = true;
}
2006-12-24 08:01:39 +00:00
// pop up the stack for a back side
do {
if (tstack-- == tracestack) {
// we've finished.
return;
}
} while (tstack->start_frac > trace->fraction);
// set the hit point for this plane
VectorCopy (end, tstack->start);
2006-12-24 08:01:39 +00:00
// go down the back side
VectorCopy (tstack->end, end);
side = tstack->side;
split_plane = tstack->plane;
leaf = hull->nodeleafs[tstack->num].leafs[side ^ 1];
num = hull->clipnodes[tstack->num].children[side ^ 1];
}
node = hull->clipnodes + num;
plane = hull->planes + node->planenum;
start_dist = PlaneDiff (start, plane);
end_dist = PlaneDiff (end, plane);
offset = calc_offset (trace, plane);
if (start_dist >= offset && end_dist >= offset) {
2006-12-24 08:01:39 +00:00
// entirely in front of the plane
plane = 0;
leaf = hull->nodeleafs[num].leafs[0];
num = node->children[0];
continue;
}
//FIXME non-zero offset lets the object touch the plane but still be
//behind the plane
if (start_dist < -offset && end_dist < -offset) {
2006-12-24 08:01:39 +00:00
// entirely behind the plane
plane = 0;
leaf = hull->nodeleafs[num].leafs[1];
num = node->children[1];
continue;
}
// cross the plane
if (start_dist == end_dist) {
// avoid division by zero (non-point clip only)
// since neither side is forward and we need to check both sides
// anyway, it doesn't matter which side we start with, so long as
// the fractions are correct.
side = 0;
frac[0] = 1;
frac[1] = 0;
} else {
// choose the side such that we are always moving forward through
// the map
side = start_dist < end_dist;
// if either start or end have the box straddling the plane, then
// frac will be appropriately clipped to 0 and 1, otherwise, frac
// will be inside that range
frac[0] = (start_dist + offset) / (start_dist - end_dist);
frac[1] = (start_dist - offset) / (start_dist - end_dist);
frac[0] = bound (0, frac[0], 1);
frac[1] = bound (0, frac[1], 1);
}
VectorSubtract (end, start, dist);
tstack->num = num;
tstack->side = side;
tstack->plane = plane;
VectorCopy (end, tstack->end);
VectorMultAdd (start, frac[side ^ 1], dist, tstack->start);
tstack->start_frac = frac[side ^ 1];
tstack++;
VectorMultAdd (start, frac[side], dist, end);
leaf = hull->nodeleafs[num].leafs[side];
num = node->children[side];
}
}