quakeforge/libs/video/renderer/vulkan/vulkan_lighting.c

2886 lines
84 KiB
C
Raw Normal View History

/*
vulkan_lighting.c
Vulkan lighting pass pipeline
Copyright (C) 2021 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2021/2/23
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "qfalloca.h"
#include "QF/cvar.h"
#include "QF/dstring.h"
#include "QF/heapsort.h"
#include "QF/plist.h"
#include "QF/progs.h"
#include "QF/script.h"
#include "QF/set.h"
#include "QF/sys.h"
#include "QF/va.h"
#include "QF/scene/scene.h"
#include "QF/ui/imui.h"
#define IMUI_context imui_ctx
#include "QF/Vulkan/qf_bsp.h"
#include "QF/Vulkan/qf_draw.h"
#include "QF/Vulkan/qf_lighting.h"
#include "QF/Vulkan/qf_matrices.h"
#include "QF/Vulkan/qf_texture.h"
#include "QF/Vulkan/qf_translucent.h"
#include "QF/Vulkan/barrier.h"
#include "QF/Vulkan/buffer.h"
#include "QF/Vulkan/debug.h"
#include "QF/Vulkan/device.h"
#include "QF/Vulkan/dsmanager.h"
#include "QF/Vulkan/image.h"
#include "QF/Vulkan/instance.h"
#include "QF/Vulkan/projection.h"
#include "QF/Vulkan/render.h"
#include "QF/Vulkan/resource.h"
#include "QF/Vulkan/staging.h"
#include "compat.h"
#include "r_internal.h"
#include "vid_vulkan.h"
#include "vkparse.h"
#define shadow_quanta 128
#define lnearclip 4
#define num_cascade 4
#define max_views 29 // FIXME should be 32 (or really, maxMultiviewViewCount,
// but there are other problems there), but nvidia's
// drivers segfault for > 29
static vec4f_t ref_direction = { 1, 0, 0, 0 };
#define ico_verts 12
#define cone_verts 7
static int ico_inds[] = {
0, 4, 6, 9, 2, 8, 4, -1,
3, 1, 10, 5, 7, 11, 1, -1,
1, 11, 6, 4, 10, -1,
9, 6, 11, 7, 2, -1,
5, 10, 8, 2, 7, -1,
4, 8, 10,
};
#define num_ico_inds (sizeof (ico_inds) / sizeof (ico_inds[0]))
static int cone_inds[] = {
0, 1, 2, 3, 4, 5, 6, 1, -1,
1, 6, 5, 4, 3, 2,
};
#define num_cone_inds (sizeof (cone_inds) / sizeof (cone_inds[0]))
#define dynlight_max 32
static int dynlight_size;
static cvar_t dynlight_size_cvar = {
.name = "dynlight_size",
.description =
"Effective radius of dynamic light shadow maps. Needs map reload to "
"take effect",
.default_value = "256",
.flags = CVAR_NONE,
.value = { .type = &cexpr_int, .value = &dynlight_size },
};
static const light_t *
get_light (entity_t ent)
{
return Ent_GetComponent (ent.id, ent.base + scene_light, ent.reg);
}
static const dlight_t *
get_dynlight (entity_t ent)
{
return Ent_GetComponent (ent.id, ent.base + scene_dynlight, ent.reg);
}
static bool
has_dynlight (entity_t ent)
{
return Ent_HasComponent (ent.id, ent.base + scene_dynlight, ent.reg);
}
static uint32_t
get_lightstyle (entity_t ent)
{
return *(uint32_t *) Ent_GetComponent (ent.id, ent.base + scene_lightstyle, ent.reg);
}
static uint32_t
get_lightleaf (entity_t ent)
{
return *(uint32_t *) Ent_GetComponent (ent.id, ent.base + scene_lightleaf, ent.reg);
}
static uint32_t
get_lightid (entity_t ent)
{
return *(uint32_t *) Ent_GetComponent (ent.id, ent.base + scene_lightid, ent.reg);
}
static void
set_lightid (entity_t ent, uint32_t id)
{
Ent_SetComponent (ent.id, ent.base + scene_lightid, ent.reg, &id);
}
static void
lighting_setup_shadow (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto lctx = ctx->lighting_context;
auto lframe = &lctx->frames.a[ctx->curFrame];
if (!lctx->ldata) {
return;
}
auto pass = Vulkan_Bsp_GetPass (ctx, QFV_bspShadow);
auto brush = pass->brush;
if (brush->submodels) {
lctx->world_mins = loadvec3f (brush->submodels[0].mins);
lctx->world_maxs = loadvec3f (brush->submodels[0].maxs);
} else {
// FIXME better bounds
lctx->world_mins = (vec4f_t) { -512, -512, -512, 0 };
lctx->world_maxs = (vec4f_t) { 512, 512, 512, 0 };
}
set_t leafs = SET_STATIC_INIT (brush->modleafs, alloca);
set_empty (&leafs);
for (int i = 0; i < ST_COUNT; i++) {
auto q = lframe->light_queue[i];
for (uint32_t j = 0; j < q.count; j++) {
uint32_t leafnum = lframe->id_radius[q.start + j].leafnum;
if (leafnum != ~0u) {
set_add (&leafs, leafnum);
}
}
}
set_t pvs = SET_STATIC_INIT (brush->visleafs, alloca);
auto iter = set_first (&leafs);
if (!iter) {
return;
}
if (iter->element == 0) {
set_assign (&pvs, lctx->ldata->sun_pvs);
} else {
Mod_LeafPVS_set (brush->leafs + iter->element, brush, 0, &pvs);
}
for (iter = set_next (iter); iter; iter = set_next (iter)) {
Mod_LeafPVS_mix (brush->leafs + iter->element, brush, 0, &pvs);
}
visstate_t visstate = {
.node_visframes = pass->node_frames,
.leaf_visframes = pass->leaf_frames,
.face_visframes = pass->face_frames,
.visframecount = pass->vis_frame,
.brush = pass->brush,
};
R_MarkLeavesPVS (&visstate, &pvs);
pass->vis_frame = visstate.visframecount;
}
static VkFramebuffer
create_framebuffer (vulkan_ctx_t *ctx, int size,
VkImageView view, VkRenderPass renderpass)
{
auto device = ctx->device;
auto dfunc = device->funcs;
VkFramebuffer framebuffer;
dfunc->vkCreateFramebuffer (device->dev,
&(VkFramebufferCreateInfo) {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.renderPass = renderpass,
.attachmentCount = 1,
.pAttachments = &view,
.width = size,
.height = size,
.layers = 1,
}, 0, &framebuffer);
return framebuffer;
}
static void
copy_maps (uint32_t start, uint32_t count, int stage_id,
lightingframe_t *lframe, lightingctx_t *lctx, vulkan_ctx_t *ctx,
qfv_taskctx_t *taskctx)
{
qfZoneScoped (true);
auto device = ctx->device;
auto dfunc = device->funcs;
int num_regions = 0;
int num_copies = 0;
uint32_t last = ~0u;
for (uint32_t j = 0; j < count; j++) {
auto tgt = lframe->stage_targets[start + j];
// if the map id is different or if the layers aren't sequential
if (tgt != last + 0x20) {
num_regions++;
if ((tgt & 0x1f) != (last & 0x1f)) {
num_copies++;
}
}
last = tgt;
}
auto ib = imageBarriers[qfv_LT_TransferDst_to_ShaderReadOnly];
ib.barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = 0;
VkImageMemoryBarrier barriers[num_regions];
VkImageCopy2 regions[num_regions];
VkCopyImageInfo2 copies[num_copies];
num_regions = 0;
num_copies = 0;
last = ~0u;
for (uint32_t j = 0; j < count; j++) {
auto tgt = lframe->stage_targets[start + j];
int ind = num_regions - 1;
// if the map id is different or if the layers aren't sequential
if (tgt != last + 0x20) {
int cpind = num_copies - 1;
if ((tgt & 0x1f) != (last & 0x1f)) {
cpind = num_copies++;
copies[cpind] = (VkCopyImageInfo2) {
.sType = VK_STRUCTURE_TYPE_COPY_IMAGE_INFO_2,
.srcImage = lctx->stage_images[stage_id],
.srcImageLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.dstImage = lctx->map_images[tgt & 0x1f],
.dstImageLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.pRegions = &regions[num_regions],
};
}
copies[cpind].regionCount++;
ind = num_regions++;
barriers[ind] = ib.barrier;
barriers[ind].subresourceRange.baseArrayLayer = tgt >> 5;
barriers[ind].image = lctx->map_images[tgt & 0x1f];
regions[ind] = (VkImageCopy2) {
.sType = VK_STRUCTURE_TYPE_IMAGE_COPY_2,
.srcSubresource = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.baseArrayLayer = j,
},
.dstSubresource = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.baseArrayLayer = tgt >> 5,
},
.extent = {
.width = (stage_id + 1) * shadow_quanta,
.height = (stage_id + 1) * shadow_quanta,
.depth = 1,
},
};
}
barriers[ind].subresourceRange.layerCount++;
regions[ind].srcSubresource.layerCount++;
regions[ind].dstSubresource.layerCount++;
last = tgt;
}
auto cmd = QFV_GetCmdBuffer (ctx, false);
dfunc->vkBeginCommandBuffer (cmd, &(VkCommandBufferBeginInfo) {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
});
{
qftVkScopedZoneC (taskctx->frame->qftVkCtx, cmd, "copy stage",
0xa0c060);
for (int i = 0; i < num_copies; i++) {
dfunc->vkCmdCopyImage2 (cmd, &copies[i]);
}
dfunc->vkCmdPipelineBarrier (cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0, num_regions, barriers);
}
dfunc->vkEndCommandBuffer (cmd);
QFV_AppendCmdBuffer (ctx, cmd);
}
static void
lighting_draw_shadow_maps (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto lctx = ctx->lighting_context;
auto shadow = QFV_GetStep (params[0], ctx->render_context->job);
auto render = shadow->render;
auto lframe = &lctx->frames.a[ctx->curFrame];
if (!lctx->num_maps) {
return;
}
uint32_t id_base = 0;
for (int i = 0; i < LIGHTING_STAGES; i++) {
auto queue = &lframe->stage_queue[i];
int count;
for (int remaining = queue->count; remaining > 0; remaining -= count) {
count = min (remaining, max_views);
int rpind = count - 1;
auto renderpass = &render->renderpasses[rpind];
auto fbuffer = lctx->stage_framebuffers[rpind][i];
uint32_t size = (i + 1) * shadow_quanta;
auto bi = &renderpass->beginInfo;
if (!fbuffer) {
auto view = lctx->stage_views[i];
fbuffer = create_framebuffer (ctx, size, view, bi->renderPass);
lctx->stage_framebuffers[rpind][i] = fbuffer;
}
bi->framebuffer = fbuffer;
QFV_RunRenderPass (ctx, renderpass, size, size, &id_base);
bi->framebuffer = 0;
copy_maps (id_base, count, i, lframe, lctx, ctx, taskctx);
id_base += count;
}
}
}
typedef enum : uint32_t {
style_enable,
style_disable = 0x80000000,
} style_e;
static uint32_t
make_id (const light_control_t *cont, style_e style)
{
uint32_t matrix_index = cont->matrix_id;
uint32_t map_index = cont->map_index;
uint32_t layer = cont->layer;
uint32_t type = cont->mode;
if (type == ST_CUBE) {
// on the GPU, layer is the cube layer, and one cube layer is 6
// flat image layers
layer /= 6;
}
return ((matrix_index & 0x3fff) << 0)
| ((map_index & 0x1f) << 14)
| ((layer & 0x7ff) << 19)
| style;
}
static void
cube_mats (mat4f_t *mat, vec4f_t position)
{
mat4f_t view;
mat4fidentity (view);
view[3] = -position;
view[3][3] = 1;
mat4f_t proj;
QFV_PerspectiveTan (proj, 1, 1, lnearclip);
for (int j = 0; j < 6; j++) {
mat4f_t side_view;
mat4f_t rotinv;
mat4ftranspose (rotinv, qfv_box_rotations[j]);
mmulf (side_view, rotinv, view);
mmulf (side_view, qfv_z_up, side_view);
mmulf (mat[j], proj, side_view);
}
}
static void
frustum_corners (vec4f_t corners[8], float minz, float maxz,
const mat4f_t invproj)
{
for (int i = 0; i < 8; i++) {
vec4f_t p = {
(i & 1) ? 1 : -1,
(i & 2) ? 1 : -1,
(i & 4) ? maxz : minz,
1
};
p = mvmulf (invproj, p);
corners[i] = p / p[3];
}
}
static vec4f_t
vec_select (vec4i_t c, vec4f_t a, vec4f_t b)
{
return (vec4f_t) ((c & (vec4i_t) a) | (~c & (vec4i_t) b));
}
static void
transform_corners (vec4f_t *mins, vec4f_t *maxs, const vec4f_t corners[8],
const mat4f_t lightview)
{
*mins = (vec4f_t) { INFINITY, INFINITY, INFINITY, INFINITY };
*maxs = (vec4f_t) { -INFINITY, -INFINITY, -INFINITY, -INFINITY };
for (int i = 0; i < 8; i++) {
vec4f_t p = mvmulf (lightview, corners[i]);
vec4i_t tmin = p <= *mins;
vec4i_t tmax = p >= *maxs;
*mins = vec_select (tmin, p, *mins);
*maxs = vec_select (tmax, p, *maxs);
}
}
static void
cascade_mats (mat4f_t *mat, vec4f_t position, vulkan_ctx_t *ctx)
{
auto mctx = ctx->matrix_context;
auto lctx = ctx->lighting_context;
mat4f_t invproj;
QFV_InversePerspectiveTanFar (invproj, mctx->fov_x, mctx->fov_y,
r_nearclip, r_farclip);
mat4f_t inv_z_up;
mat4ftranspose (inv_z_up, qfv_z_up);
mmulf (invproj, inv_z_up, invproj);
mmulf (invproj, r_refdef.camera, invproj);
mat4f_t lightview;
// position points towards the light, but the view needs to be from the
// light.
mat4fquat (lightview, qrotf (-position, ref_direction));
// Find the world corner closest to the light in order to ensure the
// entire world between the focal point and the light is included in the
// depth range
vec4i_t d = position >= (vec4f_t) {0, 0, 0, 0};
vec4f_t lightcorner = vec_select (d, lctx->world_maxs, lctx->world_mins);
// assumes position is a unit vector (which it will be for directional
// lights loaded from quake maps)
float corner_dist = dotf (lightcorner-r_refdef.camera[3], position)[0];
// Pre-swizzle the light view so it's done only once (and so the
// frustum bounds get swizzled correctly for creating the orthographic
// projection matrix).
// Also, no need (actually, undesirable) to include any translation in
// the light view matrix as the orthographic matrix setup includes
// translation based on the bounds.
mmulf (lightview, qfv_z_up, lightview);
vec2f_t z_range[] = {
{ r_nearclip / 32, 1 },
{ r_nearclip / 256, r_nearclip / 32 },
{ r_nearclip / 1024, r_nearclip / 256 },
{ 0, r_nearclip / 1024 },
};
for (int i = 0; i < num_cascade; i++) {
vec4f_t corners[8];
vec4f_t fmin, fmax;
frustum_corners (corners, z_range[i][0], z_range[i][1], invproj);
transform_corners (&fmin, &fmax, corners, lightview);
// ensure evertything between the light and the far frustum corner
// is in the depth range
fmin[2] = min(fmin[2], -corner_dist);
QFV_OrthographicV (mat[i], fmin, fmax);
mmulf (mat[i], mat[i], lightview);
}
}
static uint16_t
make_target (uint16_t map_index, uint16_t layer)
{
return (map_index & 0x1f) | ((layer & 0x7ff) << 5);
}
static void
enqueue_map (uint32_t *ids, lightingframe_t *lframe, light_control_t *r)
{
auto q = &lframe->stage_queue[r->stage_index];
auto tgt = lframe->stage_targets;
for (uint32_t i = 0; i < r->numLayers; i++) {
ids[q->start + q->count + i] = r->matrix_id + i;
tgt[q->start + q->count + i] = make_target (r->map_index, r->layer + i);
}
q->count += r->numLayers;
}
static void
transition_shadow_targets (lightingframe_t *lframe, vulkan_ctx_t *ctx)
{
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
int num_barriers = 0;
uint32_t last = ~0u;
for (int i = 0; i < LIGHTING_STAGES; i++) {
auto q = lframe->stage_queue[i];
for (uint32_t j = 0; j < q.count; j++) {
auto tgt = lframe->stage_targets[q.start + j];
// if the map id is different or if the layers aren't sequential
if (tgt != last + 0x20) {
num_barriers++;
}
last = tgt;
}
}
auto ib = imageBarriers[qfv_LT_ShaderReadOnly_to_TransferDst];
ib.barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = 0;
VkImageMemoryBarrier barriers[num_barriers];
num_barriers = 0;
last = ~0u;
for (int i = 0; i < LIGHTING_STAGES; i++) {
auto q = lframe->stage_queue[i];
for (uint32_t j = 0; j < q.count; j++) {
auto tgt = lframe->stage_targets[q.start + j];
int ind = num_barriers - 1;
// if the map id is different or if the layers aren't sequential
if (tgt != last + 0x20) {
barriers[num_barriers++] = ib.barrier;
ind = num_barriers - 1;
barriers[ind].subresourceRange.baseArrayLayer = tgt >> 5;
barriers[ind].image = lctx->map_images[tgt & 0x1f];
}
barriers[ind].subresourceRange.layerCount++;
last = tgt;
}
}
auto cmd = QFV_GetCmdBuffer (ctx, false);
dfunc->vkBeginCommandBuffer (cmd, &(VkCommandBufferBeginInfo) {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
});
dfunc->vkCmdPipelineBarrier (cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0, num_barriers, barriers);
dfunc->vkEndCommandBuffer (cmd);
QFV_AppendCmdBuffer (ctx, cmd);
}
static float
light_radius (const light_t *l)
{
return l->attenuation[3] > 0 ? 1 / l->attenuation[3]
: l->attenuation[0] > 0 ? sqrt(abs(l->color[3]/l->attenuation[0]))
: l->attenuation[1] > 0 ? abs(l->color[3]/l->attenuation[1])
// FIXME ambient lights. not right, but at least it will render
: sqrt(abs(l->color[3]));
}
static void
lighting_update_lights (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto lctx = ctx->lighting_context;
auto lframe = &lctx->frames.a[ctx->curFrame];
memset (lframe->light_queue, 0, sizeof (lframe->light_queue));
if (!lctx->scene || !lctx->scene->lights) {
return;
}
auto bb = &bufferBarriers[qfv_BB_TransferWrite_to_UniformRead];
uint32_t light_ids[ST_COUNT][MaxLights];
float light_radii[ST_COUNT][MaxLights];
uint32_t light_leafs[ST_COUNT][MaxLights];
vec4f_t light_positions[ST_COUNT][MaxLights];
entity_t entids[ST_COUNT][MaxLights];
uint32_t light_count = 0;
auto queue = lframe->light_queue;
entity_t dynamic_light_entities[MaxLights];
uint32_t dynamic_light_leafs[MaxLights];
const dlight_t *dynamic_lights[MaxLights];
int ndlight = 0;
auto entqueue = r_ent_queue; //FIXME fetch from scene
for (size_t i = 0; i < entqueue->ent_queues[mod_light].size; i++) {
entity_t ent = entqueue->ent_queues[mod_light].a[i];
if (has_dynlight (ent)) {
dynamic_light_entities[ndlight] = ent;
dynamic_light_leafs[ndlight] = get_lightleaf (ent);
dynamic_lights[ndlight] = get_dynlight (ent);
ndlight++;
continue;
}
auto ls = get_lightstyle (ent);
if (!d_lightstylevalue[ls]) {
continue;
}
light_count++;
uint32_t id = lctx->light_control.a[get_lightid (ent)].light_id;
auto r = &lctx->light_control.a[id];
int mode = r->mode;
auto light = get_light (ent);
uint32_t ind = queue[mode].count++;
light_ids[mode][ind] = id;
light_radii[mode][ind] = light_radius (light);
light_leafs[mode][ind] = get_lightleaf (ent);
light_positions[mode][ind] = light->position;
entids[mode][ind] = ent;
}
size_t packet_size = 0;
packet_size += sizeof (vec4f_t[NumStyles]);
if (queue[ST_CASCADE].count) {
uint32_t mat_count = queue[ST_CASCADE].count * num_cascade;
packet_size += sizeof (mat4f_t[mat_count]);
}
if (ndlight) {
packet_size += sizeof (mat4f_t[ndlight * 6]);
packet_size += sizeof (light_t[ndlight]);
packet_size += sizeof (qfv_light_render_t[ndlight]);
}
if (light_count) {
// light ids
packet_size += sizeof (uint32_t[light_count]);
// light radii
packet_size += sizeof (float[light_count]);
// ent ids
packet_size += sizeof (uint32_t[light_count]);
}
auto packet = QFV_PacketAcquire (ctx->staging);
byte *packet_start = QFV_PacketExtend (packet, packet_size);
byte *packet_data = packet_start;
qfv_scatter_t style_scatter = {
.srcOffset = 0,
.dstOffset = 0,
.length = sizeof (vec4f_t[NumStyles]),
};
auto styles = (vec4f_t *) packet_data;
packet_data += style_scatter.length;
for (int i = 0; i < NumStyles; i++) {
styles[i] = (vec4f_t) { 1, 1, 1, d_lightstylevalue[i] / 65536.0};
}
QFV_PacketScatterBuffer (packet, lframe->style_buffer,
1, &style_scatter, bb);
if (queue[ST_CASCADE].count) {
uint32_t mat_count = queue[ST_CASCADE].count * num_cascade;
auto mats = (mat4f_t *) packet_data;
auto base = packet_data - packet_start;
packet_data += sizeof (mat4f_t[mat_count]);
qfv_scatter_t scatter[queue[ST_CASCADE].count];
for (uint32_t i = 0; i < queue[ST_CASCADE].count; i++) {
auto r = &lctx->light_control.a[light_ids[ST_CASCADE][i]];
auto light = get_light (entids[ST_CASCADE][i]);
cascade_mats (&mats[i * num_cascade], light->position, ctx);
scatter[i] = (qfv_scatter_t) {
.srcOffset = base + sizeof (mat4f_t[i * num_cascade]),
.dstOffset = sizeof (mat4f_t[r->matrix_id]),
.length = sizeof (mat4f_t[num_cascade]),
};
}
QFV_PacketScatterBuffer (packet, lframe->shadowmat_buffer,
queue[ST_CASCADE].count, scatter, bb);
}
if (ndlight) {
light_count += ndlight;
auto mats = (mat4f_t *) packet_data;
qfv_scatter_t mat_scatter = {
.srcOffset = packet_data - packet_start,
.dstOffset = sizeof (mat4f_t[lctx->dynamic_matrix_base]),
.length = sizeof (mat4f_t[ndlight * 6]),
};
packet_data += mat_scatter.length;
for (int i = 0; i < ndlight; i++) {
cube_mats (&mats[i * 6], dynamic_lights[i]->origin);
}
QFV_PacketScatterBuffer (packet, lframe->shadowmat_buffer,
1, &mat_scatter, bb);
auto lights = (light_t *) packet_data;
qfv_scatter_t light_scatter = {
.srcOffset = packet_data - packet_start,
.dstOffset = sizeof (light_t[lctx->dynamic_base]),
.length = sizeof (light_t[ndlight]),
};
packet_data += light_scatter.length;
for (int i = 0; i < ndlight; i++) {
light_t light = {
.color = {
VectorExpand (dynamic_lights[i]->color),
// dynamic lights seem a tad faint, so 16x map lights
dynamic_lights[i]->radius / 16,
},
// dlights are local point sources
.position = { VectorExpand (dynamic_lights[i]->origin), 1 },
// full sphere, normal light (not ambient)
.direction = { 0, 0, 1, 1 },
.attenuation = { 0, 0, 1, 1/dynamic_lights[i]->radius },
};
uint32_t id = lctx->dynamic_base + i;
set_lightid (dynamic_light_entities[i], id);
uint32_t ind = queue[ST_CUBE].count++;
light_ids[ST_CUBE][ind] = id;
light_radii[ST_CUBE][ind] = light_radius (&light);
light_leafs[ST_CUBE][ind] = dynamic_light_leafs[i];
light_positions[ST_CUBE][ind] = light.position;
entids[ST_CUBE][ind] = dynamic_light_entities[i];
lights[i] = light;
}
QFV_PacketScatterBuffer (packet, lframe->light_buffer,
1, &light_scatter, bb);
auto render = (qfv_light_render_t *) packet_data;
qfv_scatter_t render_scatter = {
.srcOffset = packet_data - packet_start,
.dstOffset = sizeof (qfv_light_render_t[lctx->dynamic_base]),
.length = sizeof (qfv_light_render_t[ndlight]),
};
packet_data += render_scatter.length;
for (int i = 0; i < ndlight; i++) {
auto r = &lctx->light_control.a[lctx->dynamic_base + i];
render[i] = (qfv_light_render_t) {
.id_data = make_id(r, style_disable),
};
}
QFV_PacketScatterBuffer (packet, lframe->render_buffer,
1, &render_scatter, bb);
}
if (developer & SYS_lighting) {
Vulkan_Draw_String (vid.width - 32, 8,
va (ctx->va_ctx, "%3d", light_count),
ctx);
}
if (light_count) {
for (int i = 1; i < ST_COUNT; i++) {
queue[i].start = queue[i - 1].start + queue[i - 1].count;
}
auto lids = (uint32_t *) packet_data;
qfv_scatter_t lid_scatter = {
.srcOffset = packet_data - packet_start,
.dstOffset = 0,
.length = sizeof (uint32_t[light_count]),
};
packet_data += lid_scatter.length;
for (int i = 0; i < ST_COUNT; i++) {
memcpy (lids + queue[i].start, light_ids[i],
sizeof (uint32_t[queue[i].count]));
}
QFV_PacketScatterBuffer (packet, lframe->id_buffer,
1, &lid_scatter,
&bufferBarriers[qfv_BB_TransferWrite_to_IndexRead]);
auto lradii = (float *) packet_data;
qfv_scatter_t lradius_scatter = {
.srcOffset = packet_data - packet_start,
.dstOffset = 0,
.length = sizeof (float[light_count]),
};
packet_data += lradius_scatter.length;
for (int i = 0; i < ST_COUNT; i++) {
memcpy (lradii + queue[i].start, light_radii[i],
sizeof (float[queue[i].count]));
}
QFV_PacketScatterBuffer (packet, lframe->radius_buffer,
1, &lradius_scatter,
&bufferBarriers[qfv_BB_TransferWrite_to_IndexRead]);
auto eids = (uint32_t *) packet_data;
qfv_scatter_t eid_scatter = {
.srcOffset = packet_data - packet_start,
.dstOffset = 0,
.length = sizeof (uint32_t[light_count]),
};
packet_data += eid_scatter.length;
for (int i = 0; i < ST_COUNT; i++) {
memcpy (eids + queue[i].start, entids[i],
sizeof (uint32_t[queue[i].count]));
}
auto ir_barrier = &bufferBarriers[qfv_BB_TransferWrite_to_IndexRead];
QFV_PacketScatterBuffer (packet, lframe->entid_buffer, 1, &eid_scatter,
ir_barrier);
memset (lframe->id_radius, -1, MaxLights * sizeof (light_idrad_t));
for (int i = 0; i < ST_COUNT; i++) {
auto q = queue[i];
auto idr = &lframe->id_radius[q.start];
auto pos = &lframe->positions[q.start];
for (uint32_t j = 0; j < q.count; j++) {
idr[j] = (light_idrad_t) {
.id = light_ids[i][j],
.radius = light_radii[i][j],
.leafnum = light_leafs[i][j],
};
pos[j] = light_positions[i][j];
}
}
}
QFV_PacketSubmit (packet);
}
static void
lighting_update_descriptors (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto lframe = &lctx->frames.a[ctx->curFrame];
auto job = ctx->render_context->job;
auto step = QFV_GetStep (params[0], job);
auto render = step->render;
auto fb = &render->active->framebuffer;
VkDescriptorImageInfo attachInfo[] = {
{ .imageView = fb->views[QFV_attachColor],
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
{ .imageView = fb->views[QFV_attachEmission],
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
{ .imageView = fb->views[QFV_attachNormal],
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
{ .imageView = fb->views[QFV_attachPosition],
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
};
VkWriteDescriptorSet attachWrite[] = {
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->attach_set,
.dstBinding = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
.pImageInfo = &attachInfo[0], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->attach_set,
.dstBinding = 1,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
.pImageInfo = &attachInfo[1], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->attach_set,
.dstBinding = 2,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
.pImageInfo = &attachInfo[2], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->attach_set,
.dstBinding = 3,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
.pImageInfo = &attachInfo[3], },
};
dfunc->vkUpdateDescriptorSets (device->dev,
LIGHTING_ATTACH_INFOS, attachWrite,
0, 0);
}
static void
lighting_bind_descriptors (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
if (!lctx->num_maps) {
return;
}
auto cmd = taskctx->cmd;
auto layout = taskctx->pipeline->layout;
auto lframe = &lctx->frames.a[ctx->curFrame];
auto shadow_type = *(int *) params[0]->value;
auto stage = *(int *) params[1]->value;
if (stage == lighting_hull) {
bool planes = shadow_type == ST_PLANE;
VkDescriptorSet sets[] = {
Vulkan_Matrix_Descriptors (ctx, ctx->curFrame),
lframe->lights_set,
planes ? Vulkan_Translucent_Descriptors (ctx, ctx->curFrame) : 0,
};
dfunc->vkCmdBindDescriptorSets (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
layout, 0, 2 + planes, sets, 0, 0);
VkBuffer buffers[] = {
lframe->id_buffer,
lframe->radius_buffer,
lctx->splat_verts,
};
VkDeviceSize offsets[] = { 0, 0, 0 };
dfunc->vkCmdBindVertexBuffers (cmd, 0, 3, buffers, offsets);
dfunc->vkCmdBindIndexBuffer (cmd, lctx->splat_inds, 0,
VK_INDEX_TYPE_UINT32);
} else {
VkDescriptorSet sets[] = {
lframe->shadowmat_set,
lframe->lights_set,
lframe->attach_set,
(VkDescriptorSet[]) {
lctx->shadow_2d_set,
lctx->shadow_2d_set,
lctx->shadow_2d_set,
lctx->shadow_cube_set
}[shadow_type],
};
dfunc->vkCmdBindDescriptorSets (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
layout, 0, 4, sets, 0, 0);
}
}
static void
lighting_draw_splats (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto cmd = taskctx->cmd;
auto lframe = &lctx->frames.a[ctx->curFrame];
if (lframe->light_queue[ST_CUBE].count) {
auto q = lframe->light_queue[ST_CUBE];
dfunc->vkCmdDrawIndexed (cmd, num_ico_inds, q.count, 0, 0, q.start);
}
if (lframe->light_queue[ST_PLANE].count) {
auto q = lframe->light_queue[ST_PLANE];
dfunc->vkCmdDrawIndexed (cmd, num_cone_inds, q.count,
num_ico_inds, 12, q.start);
}
}
static void
lighting_rewrite_ids (lightingframe_t *lframe, vulkan_ctx_t *ctx)
{
uint32_t count = 0;
auto lctx = ctx->lighting_context;
for (int i = 0; i < ST_COUNT; i++) {
auto q = &lframe->light_queue[i];
count += q->count;
}
uint32_t light_ids[count];
float light_radii[count];
uint32_t light_leafs[count];
uint32_t light_count = 0;
light_queue_t queue[ST_COUNT] = {};
for (int i = 0; i < ST_COUNT; i++) {
auto q = &lframe->light_queue[i];
for (uint32_t j = 0; j < q[0].count; j++) {
uint32_t id = lframe->id_radius[q[0].start + j].id;
float radius = lframe->id_radius[q[0].start + j].radius;
uint32_t leaf = lframe->id_radius[q[0].start + j].leafnum;
if (id != ~0u) {
light_ids[queue[i].start + queue[i].count] = id;
light_radii[queue[i].start + queue[i].count] = radius;
light_leafs[queue[i].start + queue[i].count] = leaf;
queue[i].count++;
}
}
if (i < ST_COUNT - 1) {
queue[i + 1].start = queue[i].start + queue[i].count;
} else {
light_count = queue[i].start + queue[i].count;
}
}
for (int i = 0; i < ST_COUNT; i++) {
lframe->light_queue[i] = queue[i];
}
for (int i = 0; i < LIGHTING_STAGES; i++) {
lframe->stage_queue[i].count = 0;
}
int matrix_id_count = 0;
for (uint32_t i = 0; i < light_count; i++) {
auto r = &lctx->light_control.a[light_ids[i]];
if (r->light_id != light_ids[i]) {
Sys_Error ("%d != %d", r->light_id, light_ids[i]);
}
lframe->stage_queue[r->stage_index].count += r->numLayers;
matrix_id_count += r->numLayers;
lframe->id_radius[i] = (light_idrad_t) {
.id = light_ids[i],
.radius = light_radii[i],
.leafnum = light_leafs[i],
};
}
lframe->stage_queue[0].start = 0;
for (int i = 1; i < LIGHTING_STAGES; i++) {
auto q = &lframe->stage_queue[i];
q[0].start = q[-1].start + q[-1].count;
q[-1].count = 0;
}
lframe->stage_queue[LIGHTING_STAGES - 1].count = 0;
size_t packet_size = 0;
packet_size += sizeof (uint32_t[light_count]);
packet_size += sizeof (float[light_count]);
packet_size += sizeof (uint32_t[matrix_id_count]);
if (!packet_size) {
return;
}
auto bb = &bufferBarriers[qfv_BB_TransferWrite_to_UniformRead];
auto packet = QFV_PacketAcquire (ctx->staging);
byte *packet_start = QFV_PacketExtend (packet, packet_size);
byte *packet_data = packet_start;
qfv_scatter_t id_scatter = {
.srcOffset = packet_data - packet_start,
.dstOffset = 0,
.length = sizeof (uint32_t[light_count]),
};
auto id_data = (uint32_t *) packet_data;
packet_data += id_scatter.length;
qfv_scatter_t radius_scatter = {
.srcOffset = packet_data - packet_start,
.dstOffset = 0,
.length = sizeof (uint32_t[light_count]),
};
auto radius_data = (uint32_t *) packet_data;
packet_data += radius_scatter.length;
qfv_scatter_t matrix_id_scater = {
.srcOffset = packet_data - packet_start,
.dstOffset = 0,
.length = sizeof (uint32_t[matrix_id_count]),
};
auto matrix_ids = (uint32_t *) packet_data;
packet_data += matrix_id_scater.length;
memcpy (id_data, light_ids, packet_size);
memcpy (radius_data, light_radii, packet_size);
for (uint32_t i = 0; i < light_count; i++) {
auto r = &lctx->light_control.a[light_ids[i]];
enqueue_map (matrix_ids, lframe, r);
}
QFV_PacketScatterBuffer (packet, lframe->id_buffer, 1, &id_scatter, bb);
QFV_PacketScatterBuffer (packet, lframe->radius_buffer,
1, &radius_scatter, bb);
QFV_PacketScatterBuffer (packet, lframe->shadowmat_id_buffer,
1, &matrix_id_scater, bb);
QFV_PacketSubmit (packet);
transition_shadow_targets (lframe, ctx);
if (developer & SYS_lighting) {
Vulkan_Draw_String (vid.width - 32, 16,
va (ctx->va_ctx, "%3d", light_count),
ctx);
}
}
static void
lighting_cull_select_renderpass (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto light_cull = QFV_GetStep (params[0], ctx->render_context->job);
auto render = light_cull->render;
if (scr_fisheye) {
render->active = &render->renderpasses[1];
} else {
render->active = &render->renderpasses[0];
}
}
static void
lighting_cull_lights (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto lframe = &lctx->frames.a[ctx->curFrame];
auto queue = lframe->light_queue;
uint32_t count = queue[ST_CUBE].count + queue[ST_PLANE].count;
if (!count) {
return;
}
if (scr_fisheye) {
count *= 6;
}
auto light_cull = QFV_GetStep (params[0], ctx->render_context->job);
auto render = light_cull->render;
auto cmd = QFV_GetCmdBuffer (ctx, false);
dfunc->vkBeginCommandBuffer (cmd, &(VkCommandBufferBeginInfo) {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
});
qftCVkCollect (lframe->qftVkCtx, cmd);
dfunc->vkCmdResetQueryPool (cmd, lframe->query, 0, MaxLights * 6);
auto qftVkCtx = taskctx->frame->qftVkCtx;
taskctx->frame->qftVkCtx = lframe->qftVkCtx;
QFV_RunRenderPassCmd (cmd, ctx, render->active, 0);
taskctx->frame->qftVkCtx = qftVkCtx;
dfunc->vkEndCommandBuffer (cmd);
qfMessageL ("submit");
auto dev_queue = &device->queue;
VkSubmitInfo submitInfo = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.commandBufferCount = 1,
.pCommandBuffers = &cmd,
};
dfunc->vkResetFences (device->dev, 1, &lframe->fence);
dfunc->vkQueueSubmit (dev_queue->queue, 1, &submitInfo, lframe->fence);
dfunc->vkWaitForFences (device->dev, 1, &lframe->fence, VK_TRUE, 200000000);
uint32_t frag_counts[count];
VkDeviceSize size = sizeof (frag_counts);
dfunc->vkGetQueryPoolResults (device->dev, lframe->query, 0, count,
size, frag_counts, sizeof (uint32_t),
VK_QUERY_RESULT_WAIT_BIT);
if (scr_fisheye) {
uint32_t *p = frag_counts;
for (uint32_t i = 0; i < count; i += 6) {
uint32_t sum = 0;
for (int j = 0; j < 6; j++) {
// care only about non-zero, not actual count
sum |= frag_counts[i + j];
}
*p++ = sum;
}
}
uint32_t c = 0;
uint32_t ci = 0;
vec4f_t cam = r_refdef.camera[3];
uint32_t id = 0;
if (lframe->light_queue[ST_CUBE].count) {
auto q = lframe->light_queue[ST_CUBE];
for (uint32_t i = 0; i < q.count; i++) {
uint32_t fc = frag_counts[id++];
c += fc != 0;
if (!fc) {
uint32_t hull = q.start + i;
vec4f_t dist = cam - lframe->positions[hull];
dist[3] = 0;
float rad = lframe->id_radius[hull].radius;
constexpr float s = 1.5835921350012616f;
bool inside = dotf(dist, dist)[0] < rad * rad * s;
ci += inside;
if (!inside) {
lframe->id_radius[hull].id = ~0u;
}
}
}
}
if (lframe->light_queue[ST_PLANE].count) {
auto q = lframe->light_queue[ST_PLANE];
for (uint32_t i = 0; i < q.count; i++) {
uint32_t fc = frag_counts[id++];
c += fc != 0;
if (!fc) {
uint32_t hull = q.start + i;
vec4f_t dist = cam - lframe->positions[hull];
dist[3] = 0;
float rad = lframe->id_radius[hull].radius;
bool inside = dotf(dist, dist)[0] < rad * rad;
ci += inside;
if (!inside) {
lframe->id_radius[hull].id = ~0u;
}
}
}
}
lighting_rewrite_ids (lframe, ctx);
}
static void
draw_hull (uint32_t indexCount, uint32_t firstIndex, int32_t vertOffset,
uint32_t hull, uint32_t id, VkCommandBuffer cmd, VkQueryPool query,
qfv_devfuncs_t *dfunc, qftVkCtx_t *vk)
{
qfZoneNamed (zone, true);
// qftVkScopedZoneC (vk, cmd, "draw_hull", 0xc0a000);
dfunc->vkCmdBeginQuery (cmd, query, id, 0);
dfunc->vkCmdDrawIndexed (cmd, indexCount, 1, firstIndex, vertOffset, hull);
dfunc->vkCmdEndQuery (cmd, query, id);
}
static void
lighting_draw_hulls (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto cmd = taskctx->cmd;
auto lframe = &lctx->frames.a[ctx->curFrame];
uint32_t id = 0;
uint32_t id_step = scr_fisheye ? 6 : 1;
if (lframe->light_queue[ST_CUBE].count) {
auto q = lframe->light_queue[ST_CUBE];
for (uint32_t i = 0; i < q.count; i++, id += id_step) {
uint32_t hull = q.start + i;
draw_hull (num_ico_inds, 0, 0, hull, id,
cmd, lframe->query, dfunc, taskctx->frame->qftVkCtx);
}
}
if (lframe->light_queue[ST_PLANE].count) {
auto q = lframe->light_queue[ST_PLANE];
for (uint32_t i = 0; i < q.count; i++, id += id_step) {
uint32_t hull = q.start + i;
draw_hull (num_cone_inds, num_ico_inds, 12, hull, id,
cmd, lframe->query, dfunc, taskctx->frame->qftVkCtx);
}
}
}
typedef struct {
vec4f_t fog;
vec4f_t CascadeDepths;
uint32_t queue;
} light_push_constants_t;
static void
lighting_draw_lights (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto layout = taskctx->pipeline->layout;
auto cmd = taskctx->cmd;
auto lframe = &lctx->frames.a[ctx->curFrame];
auto shadow_type = *(int *) params[0]->value;
auto queue = lframe->light_queue[shadow_type];
if (!queue.count) {
return;
}
vec4f_t fog = Fog_Get ();
// convert scatter to transmission (FIXME ignoring absorbtion)
fog = (vec4f_t) { 1, 1, 1, 0 } - fog;
fog[3] = -fog[3];
//FIXME dup of z_range (sort of)
vec4f_t depths = {
r_nearclip / 32, r_nearclip / 256, r_nearclip / 1024, 0,
};
qfv_push_constants_t push_constants[] = {
{ VK_SHADER_STAGE_FRAGMENT_BIT,
field_offset (light_push_constants_t, fog),
sizeof (fog), &fog },
{ VK_SHADER_STAGE_FRAGMENT_BIT,
field_offset (light_push_constants_t, CascadeDepths),
sizeof (depths), &depths },
{ VK_SHADER_STAGE_FRAGMENT_BIT,
field_offset (light_push_constants_t, queue),
sizeof (queue), &queue },
};
QFV_PushConstants (device, cmd, layout, 3, push_constants);
dfunc->vkCmdDraw (cmd, 3, 1, 0, 0);
}
static void
lighting_load_lights (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto scene = (scene_t *) taskctx->data;
Vulkan_LoadLights (scene, ctx);
}
static exprenum_t lighting_stage_enum;
static exprtype_t lighting_stage_type = {
.name = "lighting_stage",
.size = sizeof (int),
.get_string = cexpr_enum_get_string,
.data = &lighting_stage_enum,
};
static int lighting_stage_values[] = {
lighting_main,
lighting_shadow,
lighting_hull,
};
static exprsym_t lighting_stage_symbols[] = {
{"main", &lighting_stage_type, lighting_stage_values + 0},
{"shadow", &lighting_stage_type, lighting_stage_values + 1},
{"hull", &lighting_stage_type, lighting_stage_values + 2},
{}
};
static exprtab_t lighting_stage_symtab = { .symbols = lighting_stage_symbols };
static exprenum_t lighting_stage_enum = {
&lighting_stage_type,
&lighting_stage_symtab,
};
static exprenum_t shadow_type_enum;
static exprtype_t shadow_type_type = {
.name = "shadow_type",
.size = sizeof (int),
.get_string = cexpr_enum_get_string,
.data = &shadow_type_enum,
};
static int shadow_type_values[] = { ST_NONE, ST_PLANE, ST_CASCADE, ST_CUBE };
static exprsym_t shadow_type_symbols[] = {
{"none", &shadow_type_type, shadow_type_values + 0},
{"plane", &shadow_type_type, shadow_type_values + 1},
{"cascade", &shadow_type_type, shadow_type_values + 2},
{"cube", &shadow_type_type, shadow_type_values + 3},
{}
};
static exprtab_t shadow_type_symtab = { .symbols = shadow_type_symbols };
static exprenum_t shadow_type_enum = {
&shadow_type_type,
&shadow_type_symtab,
};
static exprtype_t *shadow_type_param[] = {
&shadow_type_type,
&lighting_stage_type,
};
static exprtype_t *stepref_param[] = {
&cexpr_string,
};
static exprfunc_t lighting_update_lights_func[] = {
{ .func = lighting_update_lights },
{}
};
static exprfunc_t lighting_update_descriptors_func[] = {
{ .func = lighting_update_descriptors, .num_params = 1,
.param_types = stepref_param },
{}
};
static exprfunc_t lighting_bind_descriptors_func[] = {
{ .func = lighting_bind_descriptors, .num_params = 2,
.param_types = shadow_type_param },
{}
};
static exprfunc_t lighting_draw_splats_func[] = {
{ .func = lighting_draw_splats },
{}
};
static exprfunc_t lighting_cull_select_renderpass_func[] = {
{ .func = lighting_cull_select_renderpass, .num_params = 1,
.param_types = stepref_param },
{}
};
static exprfunc_t lighting_cull_lights_func[] = {
{ .func = lighting_cull_lights, .num_params = 1,
.param_types = stepref_param },
{}
};
static exprfunc_t lighting_draw_hulls_func[] = {
{ .func = lighting_draw_hulls },
{}
};
static exprfunc_t lighting_draw_lights_func[] = {
{ .func = lighting_draw_lights, .num_params = 2,
.param_types = shadow_type_param },
{}
};
static exprfunc_t lighting_setup_shadow_func[] = {
{ .func = lighting_setup_shadow },
{}
};
static exprfunc_t lighting_draw_shadow_maps_func[] = {
{ .func = lighting_draw_shadow_maps, .num_params = 1,
.param_types = stepref_param },
{}
};
static exprfunc_t lighting_load_lights_func[] = {
{ .func = lighting_load_lights },
{}
};
static exprsym_t lighting_task_syms[] = {
{ "lighting_update_lights", &cexpr_function, lighting_update_lights_func },
{ "lighting_update_descriptors", &cexpr_function,
lighting_update_descriptors_func },
{ "lighting_bind_descriptors", &cexpr_function,
lighting_bind_descriptors_func },
{ "lighting_draw_splats", &cexpr_function, lighting_draw_splats_func },
{ "lighting_cull_select_renderpass", &cexpr_function,
lighting_cull_select_renderpass_func },
{ "lighting_cull_lights", &cexpr_function, lighting_cull_lights_func },
{ "lighting_draw_hulls", &cexpr_function, lighting_draw_hulls_func },
{ "lighting_draw_lights", &cexpr_function, lighting_draw_lights_func },
{ "lighting_setup_shadow", &cexpr_function, lighting_setup_shadow_func },
{ "lighting_draw_shadow_maps", &cexpr_function,
lighting_draw_shadow_maps_func },
{ "lighting_load_lights", &cexpr_function, lighting_load_lights_func },
{}
};
static int
round_light_size (int size)
{
size = ((size + shadow_quanta - 1) / shadow_quanta) * shadow_quanta;
return min (size, 1024);
}
static void
dynlight_size_listener (void *data, const cvar_t *cvar)
{
dynlight_size = round_light_size (dynlight_size);
}
void
Vulkan_Lighting_Init (vulkan_ctx_t *ctx)
{
qfZoneScoped (true);
lightingctx_t *lctx = calloc (1, sizeof (lightingctx_t));
ctx->lighting_context = lctx;
Cvar_Register (&dynlight_size_cvar, dynlight_size_listener, 0);
QFV_Render_AddTasks (ctx, lighting_task_syms);
lctx->shadow_info = (qfv_attachmentinfo_t) {
.name = "$shadow",
.format = VK_FORMAT_D32_SFLOAT,
.samples = 1,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.finalLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,//FIXME plist
};
qfv_attachmentinfo_t *attachments[] = {
&lctx->shadow_info,
};
QFV_Render_AddAttachments (ctx, 1, attachments);
}
static void
make_default_map (int size, VkImage default_map, vulkan_ctx_t *ctx)
{
qfZoneScoped (true);
auto device = ctx->device;
auto dfunc = device->funcs;
auto packet = QFV_PacketAcquire (ctx->staging);
size_t imgsize = size * size * sizeof (uint32_t);
uint32_t *img = QFV_PacketExtend (packet, imgsize);
for (int i = 0; i < 64; i++) {
for (int j = 0; j < 64; j++) {
img[i * 64 + j] = ((j ^ i) & 1) ? 0x00ffffff : 0;
}
}
auto ib = imageBarriers[qfv_LT_Undefined_to_TransferDst];
ib.barrier.image = default_map;
ib.barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS;
dfunc->vkCmdPipelineBarrier (packet->cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0, 1, &ib.barrier);
VkBufferImageCopy copy_region[6];
for (int i = 0; i < 6; i++) {
copy_region[i] = (VkBufferImageCopy) {
.bufferOffset = packet->offset,
.bufferRowLength = 0,
.bufferImageHeight = 0,
.imageSubresource = {VK_IMAGE_ASPECT_DEPTH_BIT, 0, i, 1},
{0, 0, 0}, {size, size, 1},
};
}
dfunc->vkCmdCopyBufferToImage (packet->cmd, packet->stage->buffer,
default_map,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
6, copy_region);
ib = imageBarriers[qfv_LT_TransferDst_to_ShaderReadOnly];
ib.barrier.image = default_map;
ib.barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS;
dfunc->vkCmdPipelineBarrier (packet->cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0, 1, &ib.barrier);
QFV_PacketSubmit (packet);
}
static void
make_ico (qfv_packet_t *packet)
{
vec3_t *verts = QFV_PacketExtend (packet, sizeof (vec3_t[ico_verts]));
float p = (sqrt(5) + 1) / 2;
float a = sqrt (3) / p;
float b = a / p;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 4; j++) {
float my = j & 1 ? a : -a;
float mz = j & 2 ? b : -b;
int vind = i * 4 + j;
int ix = i;
int iy = (i + 1) % 3;
int iz = (i + 2) % 3;
verts[vind][ix] = 0;
verts[vind][iy] = my;
verts[vind][iz] = mz;
}
}
}
static void
make_cone (qfv_packet_t *packet)
{
vec3_t *verts = QFV_PacketExtend (packet, sizeof (vec3_t[cone_verts]));
float a = 2 / sqrt (3);
float b = 1 / sqrt (3);
VectorSet ( 0, 0, 0, verts[0]);
VectorSet ( a, 0, -1, verts[1]);
VectorSet ( b, 1, -1, verts[2]);
VectorSet (-b, 1, -1, verts[3]);
VectorSet (-a, 0, -1, verts[4]);
VectorSet (-b, -1, -1, verts[5]);
VectorSet ( b, -1, -1, verts[6]);
}
static void
write_inds (qfv_packet_t *packet)
{
uint32_t *inds = QFV_PacketExtend (packet, sizeof (ico_inds)
+ sizeof (cone_inds));
memcpy (inds, ico_inds, sizeof (ico_inds));
inds += num_ico_inds;
memcpy (inds, cone_inds, sizeof (cone_inds));
}
void
Vulkan_Lighting_Setup (vulkan_ctx_t *ctx)
{
qfZoneScoped (true);
qfvPushDebug (ctx, "lighting init");
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
lctx->sampler = QFV_Render_Sampler (ctx, "shadow_sampler");
Vulkan_Script_SetOutput (ctx,
&(qfv_output_t) { .format = VK_FORMAT_D32_SFLOAT });
DARRAY_INIT (&lctx->light_mats, 16);
DARRAY_INIT (&lctx->light_control, 16);
auto rctx = ctx->render_context;
size_t frames = rctx->frames.size;
DARRAY_INIT (&lctx->frames, frames);
DARRAY_RESIZE (&lctx->frames, frames);
lctx->frames.grow = 0;
lctx->light_resources = malloc (sizeof (qfv_resource_t)
// splat vertices
+ sizeof (qfv_resobj_t)
// splat indices
+ sizeof (qfv_resobj_t)
// default shadow map and views
+ 3 * sizeof (qfv_resobj_t)
// light matrices
+ sizeof (qfv_resobj_t[frames])
// light matrix ids
+ sizeof (qfv_resobj_t[frames])
// light ids
+ sizeof (qfv_resobj_t[frames])
// light radii
+ sizeof (qfv_resobj_t[frames])
// light data
+ sizeof (qfv_resobj_t[frames])
// light render
+ sizeof (qfv_resobj_t[frames])
// light styles
+ sizeof (qfv_resobj_t[frames])
// light entids
+ sizeof (qfv_resobj_t[frames]));
lctx->light_resources[0] = (qfv_resource_t) {
.name = "lights",
.va_ctx = ctx->va_ctx,
.memory_properties = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.num_objects = 2 + 3 + 8 * frames,
.objects = (qfv_resobj_t *) &lctx->light_resources[1],
};
auto splat_verts = lctx->light_resources->objects;
auto splat_inds = &splat_verts[1];
auto default_map = &splat_inds[1];
auto default_view_cube = &default_map[1];
auto default_view_2d = &default_view_cube[1];
auto light_mats = &default_view_2d[1];
auto light_mat_ids = &light_mats[frames];
auto light_ids = &light_mat_ids[frames];
auto light_radii = &light_ids[frames];
auto light_data = &light_radii[frames];
auto light_render = &light_data[frames];
auto light_styles = &light_render[frames];
auto light_entids = &light_styles[frames];
splat_verts[0] = (qfv_resobj_t) {
.name = "splat:vertices",
.type = qfv_res_buffer,
.buffer = {
.size = (20 + 7) * sizeof (vec3_t),
.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
},
};
splat_inds[0] = (qfv_resobj_t) {
.name = "splat:indices",
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (ico_inds) + sizeof (cone_inds),
.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
},
};
default_map[0] = (qfv_resobj_t) {
.name = "default_map",
.type = qfv_res_image,
.image = {
.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT,
.type = VK_IMAGE_TYPE_2D,
.format = VK_FORMAT_D32_SFLOAT,
.extent = { 64, 64, 1 },
.num_mipmaps = 1,
.num_layers = 6,
.samples = VK_SAMPLE_COUNT_1_BIT,
.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT
| VK_IMAGE_USAGE_SAMPLED_BIT,
},
};
default_view_cube[0] = (qfv_resobj_t) {
.name = "default_map:view_cube",
.type = qfv_res_image_view,
.image_view = {
.image = default_map - lctx->light_resources->objects,
.type = VK_IMAGE_VIEW_TYPE_CUBE_ARRAY,
.format = VK_FORMAT_D32_SFLOAT,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.levelCount = VK_REMAINING_MIP_LEVELS,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
},
};
default_view_2d[0] = (qfv_resobj_t) {
.name = "default_map:view_2d",
.type = qfv_res_image_view,
.image_view = {
.image = default_map - lctx->light_resources->objects,
.type = VK_IMAGE_VIEW_TYPE_2D_ARRAY,
.format = VK_FORMAT_D32_SFLOAT,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.levelCount = VK_REMAINING_MIP_LEVELS,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
},
};
for (size_t i = 0; i < frames; i++) {
light_entids[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "entids:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = MaxLights * sizeof (uint32_t),
.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT
| VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_ids[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "ids:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = MaxLights * sizeof (uint32_t),
.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT
| VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_radii[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "radii:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = MaxLights * sizeof (float),
.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_data[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "lights:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (light_t[MaxLights]),
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_render[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "render:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (qfv_light_render_t[MaxLights]),
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_styles[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "styles:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (vec4f_t[NumStyles]),
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_mats[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "matrices:%zd", i),
.type = qfv_res_buffer,
.buffer = {
// never need more than 6 matrices per light
.size = sizeof (mat4f_t[MaxLights * 6]),
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_mat_ids[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "matrix ids:%zd", i),
.type = qfv_res_buffer,
.buffer = {
// never need more than 6 matrices per light
.size = sizeof (uint32_t[MaxLights * 6]),
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
}
QFV_CreateResource (device, lctx->light_resources);
lctx->splat_verts = splat_verts[0].buffer.buffer;
lctx->splat_inds = splat_inds[0].buffer.buffer;
lctx->default_map = default_map[0].image.image;
lctx->default_view_cube = default_view_cube[0].image_view.view;
lctx->default_view_2d = default_view_2d[0].image_view.view;
auto shadow_mgr = QFV_Render_DSManager (ctx, "lighting_shadow");
lctx->shadow_cube_set = QFV_DSManager_AllocSet (shadow_mgr);
lctx->shadow_2d_set = QFV_DSManager_AllocSet (shadow_mgr);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
lctx->shadow_cube_set, "lighting:shadow_cube_set");
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
lctx->shadow_2d_set, "lighting:shadow_2d_set");
lctx->shadow_sampler = QFV_Render_Sampler (ctx, "shadow_sampler");
auto attach_mgr = QFV_Render_DSManager (ctx, "lighting_attach");
auto lights_mgr = QFV_Render_DSManager (ctx, "lighting_lights");
auto shadowmat_mgr = QFV_Render_DSManager (ctx, "shadowmat_set");
for (size_t i = 0; i < frames; i++) {
auto lframe = &lctx->frames.a[i];
*lframe = (lightingframe_t) {
.shadowmat_set = QFV_DSManager_AllocSet (shadowmat_mgr),
.lights_set = QFV_DSManager_AllocSet (lights_mgr),
.attach_set = QFV_DSManager_AllocSet (attach_mgr),
.shadowmat_buffer = light_mats[i].buffer.buffer,
.shadowmat_id_buffer = light_mat_ids[i].buffer.buffer,
.light_buffer = light_data[i].buffer.buffer,
.render_buffer = light_render[i].buffer.buffer,
.style_buffer = light_styles[i].buffer.buffer,
.id_buffer = light_ids[i].buffer.buffer,
.radius_buffer = light_radii[i].buffer.buffer,
.entid_buffer = light_entids[i].buffer.buffer,
};
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
lframe->attach_set,
va (ctx->va_ctx, "lighting:attach_set:%zd", i));
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
lframe->lights_set,
va (ctx->va_ctx, "lighting:lights_set:%zd", i));
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
lframe->shadowmat_set,
va (ctx->va_ctx, "lighting:shadowmat_set:%zd", i));
VkDescriptorBufferInfo bufferInfo[] = {
{ .buffer = lframe->shadowmat_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->shadowmat_id_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->id_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->light_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->render_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->style_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->entid_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
};
VkWriteDescriptorSet bufferWrite[] = {
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->shadowmat_set,
.dstBinding = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[0], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->shadowmat_set,
.dstBinding = 1,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[1], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->lights_set,
.dstBinding = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[2], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->lights_set,
.dstBinding = 1,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[3], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->lights_set,
.dstBinding = 2,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[4], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->lights_set,
.dstBinding = 3,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[5], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->lights_set,
.dstBinding = 4,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[6], },
};
dfunc->vkUpdateDescriptorSets (device->dev, 7, bufferWrite, 0, 0);
dfunc->vkCreateQueryPool (device->dev, &(VkQueryPoolCreateInfo) {
.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO,
.queryType = VK_QUERY_TYPE_OCCLUSION,
.queryCount = MaxLights * 6, // 6 for cube maps
}, 0, &lframe->query);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_QUERY_POOL, lframe->query,
va (ctx->va_ctx, "light_cull:%zd", i));
lframe->fence = QFV_CreateFence (device, 1);
#ifdef TRACY_ENABLE
auto instance = ctx->instance->instance;
auto physdev = ctx->device->physDev->dev;
auto gipa = ctx->vkGetInstanceProcAddr;
auto gdpa = ctx->instance->funcs->vkGetDeviceProcAddr;
lframe->qftVkCtx = qftCVkContextHostCalibrated (instance, physdev,
device->dev,
gipa, gdpa);
#endif
}
size_t target_count = MaxLights * 6;
size_t target_size = frames * sizeof (uint16_t[target_count]);
size_t idr_size = frames * sizeof (light_idrad_t[MaxLights]);
size_t position_size = frames * sizeof (vec4f_t[MaxLights]);
lctx->frames.a[0].stage_targets = malloc (target_size);
lctx->frames.a[0].id_radius = malloc (idr_size);
lctx->frames.a[0].positions = malloc (position_size);
for (size_t i = 1; i < frames; i++) {
auto lframe = &lctx->frames.a[i];
lframe[0].stage_targets = lframe[-1].stage_targets + target_count;
lframe[0].id_radius = lframe[-1].id_radius + MaxLights;
lframe[0].positions = lframe[-1].positions + MaxLights;
}
make_default_map (64, lctx->default_map, ctx);
auto packet = QFV_PacketAcquire (ctx->staging);
make_ico (packet);
make_cone (packet);
QFV_PacketCopyBuffer (packet, splat_verts[0].buffer.buffer, 0,
&bufferBarriers[qfv_BB_TransferWrite_to_UniformRead]);
QFV_PacketSubmit (packet);
packet = QFV_PacketAcquire (ctx->staging);
write_inds (packet);
QFV_PacketCopyBuffer (packet, splat_inds[0].buffer.buffer, 0,
&bufferBarriers[qfv_BB_TransferWrite_to_IndexRead]);
QFV_PacketSubmit (packet);
qfvPopDebug (ctx);
}
static void
clear_shadows (vulkan_ctx_t *ctx)
{
qfZoneScoped (true);
qfv_device_t *device = ctx->device;
auto dfunc = device->funcs;
lightingctx_t *lctx = ctx->lighting_context;
if (lctx->shadow_resources) {
QFV_DestroyResource (device, lctx->shadow_resources);
free (lctx->shadow_resources);
lctx->shadow_resources = 0;
}
for (int i = 0; i < LIGHTING_STAGES; i++) {
for (int j = 0; j < 32; j++) {
auto framebuffer = lctx->stage_framebuffers[j][i];
if (framebuffer) {
dfunc->vkDestroyFramebuffer (device->dev, framebuffer, 0);
}
lctx->stage_framebuffers[j][i] = 0;
}
// images and views freed via shadow_resources
lctx->stage_images[i] = 0;
lctx->stage_views[i] = 0;
}
free (lctx->map_images);
free (lctx->map_views);
free (lctx->map_cube);
lctx->map_images = 0;
lctx->map_views = 0;
lctx->map_cube = 0;
lctx->num_maps = 0;
lctx->light_control.size = 0;
}
void
Vulkan_Lighting_Shutdown (vulkan_ctx_t *ctx)
{
qfZoneScoped (true);
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
clear_shadows (ctx);
QFV_DestroyResource (device, lctx->light_resources);
free (lctx->light_resources);
for (size_t i = 0; i < lctx->frames.size; i++) {
auto lframe = &lctx->frames.a[i];
dfunc->vkDestroyQueryPool (device->dev, lframe->query, 0);
dfunc->vkDestroyFence (device->dev, lframe->fence, 0);
qftCVkContextDestroy (lframe->qftVkCtx);
}
free (lctx->frames.a[0].stage_targets);
free (lctx->frames.a[0].id_radius);
free (lctx->frames.a[0].positions);
DARRAY_CLEAR (&lctx->light_mats);
DARRAY_CLEAR (&lctx->light_control);
free (lctx->map_images);
free (lctx->map_views);
free (lctx->map_cube);
free (lctx->frames.a);
free (lctx);
}
static void
create_light_matrices (lightingctx_t *lctx)
{
auto reg = lctx->scene->reg;
auto light_pool = &reg->comp_pools[lctx->scene->base + scene_light];
auto light_data = (light_t *) light_pool->data;
uint16_t mat_count = 0;
for (uint32_t i = 0; i < light_pool->count; i++) {
entity_t ent = { .reg = reg, .id = light_pool->dense[i],
.base = lctx->scene->base };
uint32_t id = get_lightid (ent);
auto r = &lctx->light_control.a[id];
r->matrix_id = mat_count;
mat_count += r->numLayers;
}
DARRAY_RESIZE (&lctx->light_mats, mat_count);
lctx->dynamic_matrix_base = mat_count;
for (uint32_t i = 0; i < dynlight_max; i++) {
auto r = &lctx->light_control.a[lctx->dynamic_base + i];
r->matrix_id = lctx->dynamic_matrix_base + i * 6;
}
for (uint32_t i = 0; i < light_pool->count; i++) {
light_t *light = &light_data[i];
entity_t ent = { .reg = reg, .id = light_pool->dense[i],
.base = lctx->scene->base };
uint32_t id = get_lightid (ent);
auto r = &lctx->light_control.a[id];
auto lm = &lctx->light_mats.a[r->matrix_id];
mat4f_t view;
mat4f_t proj;
vec4f_t dir;
switch (r->mode) {
default:
case ST_NONE:
continue;
case ST_CUBE:
mat4fidentity (view);
break;
case ST_CASCADE:
case ST_PLANE:
dir = light->direction;
dir[3] = 0;
vec4f_t q = dir[0] == -1 ? (vec4f_t) { 0, 0, 1, 0 }
: qrotf (dir, ref_direction);
mat4fquat (view, q);
break;
}
vec4f_t pos = -light->position;
pos[3] = 1;
view[3] = mvmulf (view, pos);
switch (r->mode) {
case ST_NONE:
continue;
case ST_CUBE:
QFV_PerspectiveTan (proj, 1, 1, lnearclip);
for (int j = 0; j < 6; j++) {
mat4f_t side_view;
mat4f_t rotinv;
mat4ftranspose (rotinv, qfv_box_rotations[j]);
mmulf (side_view, rotinv, view);
mmulf (side_view, qfv_z_up, side_view);
mmulf (lm[j], proj, side_view);
}
break;
case ST_CASCADE:
// dependent on view fustrum and cascade level
mat4fidentity (proj);
mmulf (view, qfv_z_up, view);
for (int j = 0; j < num_cascade; j++) {
mmulf (lm[j], proj, view);
}
break;
case ST_PLANE:
QFV_PerspectiveCos (proj, -light->direction[3], lnearclip);
mmulf (view, qfv_z_up, view);
mmulf (lm[0], proj, view);
break;
}
}
}
static void
upload_light_matrices (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
auto packet = QFV_PacketAcquire (ctx->staging);
size_t mat_size = sizeof (mat4f_t[lctx->light_mats.size]);
void *mat_data = QFV_PacketExtend (packet, mat_size);
memcpy (mat_data, lctx->light_mats.a, mat_size);
auto bb = &bufferBarriers[qfv_BB_TransferWrite_to_UniformRead];
for (size_t i = 0; i < lctx->frames.size; i++) {
auto lframe = &lctx->frames.a[i];
QFV_PacketCopyBuffer (packet, lframe->shadowmat_buffer, 0, bb);
}
QFV_PacketSubmit (packet);
packet = QFV_PacketAcquire (ctx->staging);
size_t id_size = sizeof (uint32_t[MaxLights * 6]);
uint32_t *id_data = QFV_PacketExtend (packet, id_size);
memset (id_data, -1, id_size);
for (size_t i = 0; i < lctx->frames.size; i++) {
auto lframe = &lctx->frames.a[i];
QFV_PacketCopyBuffer (packet, lframe->shadowmat_id_buffer, 0, bb);
}
QFV_PacketSubmit (packet);
}
static void
upload_light_data (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
auto reg = lctx->scene->reg;
auto light_pool = &reg->comp_pools[lctx->scene->base + scene_light];
auto lights = (light_t *) light_pool->data;
uint32_t count = light_pool->count;
auto packet = QFV_PacketAcquire (ctx->staging);
auto light_data = QFV_PacketExtend (packet, sizeof (light_t[count]));
memcpy (light_data, lights, sizeof (light_t[count]));
auto bb = &bufferBarriers[qfv_BB_TransferWrite_to_UniformRead];
for (size_t i = 0; i < lctx->frames.size; i++) {
auto lframe = &lctx->frames.a[i];
QFV_PacketCopyBuffer (packet, lframe->light_buffer, 0, bb);
}
QFV_PacketSubmit (packet);
packet = QFV_PacketAcquire (ctx->staging);
uint32_t r_size = sizeof (qfv_light_render_t[count]);
qfv_light_render_t *render = QFV_PacketExtend (packet, r_size);
for (uint32_t i = 0; i < count; i++) {
entity_t ent = { .reg = reg, .id = light_pool->dense[i],
.base = lctx->scene->base };
uint32_t id = get_lightid (ent);
if (id >= lctx->light_control.size) {
continue;
}
auto r = &lctx->light_control.a[id];
render[i] = (qfv_light_render_t) {
.id_data = make_id(r, style_enable),
.style = get_lightstyle (ent),
};
}
for (size_t i = 0; i < lctx->frames.size; i++) {
auto lframe = &lctx->frames.a[i];
QFV_PacketCopyBuffer (packet, lframe->render_buffer, 0, bb);
}
QFV_PacketSubmit (packet);
}
static int
light_shadow_type (const light_t *light)
{
if (!light->position[3]) {
if (!VectorIsZero (light->direction)) {
return ST_CASCADE;
}
} else {
if (light->direction[3] > -0.5) {
return ST_CUBE;
} else {
return ST_PLANE;
}
}
return ST_NONE;
}
static int
light_compare (const void *_li2, const void *_li1, void *_lights)
{
const int *li1 = _li1;
const int *li2 = _li2;
const light_t *lights = _lights;
const light_t *l1 = &lights[*li1];
const light_t *l2 = &lights[*li2];
int s1 = abs ((int) l1->color[3]);
int s2 = abs ((int) l2->color[3]);
if (s1 == s2) {
// same size
if (l1->position[3] == l2->position[3]) {
// same "type" (point/spot vs directional)
// sort by spot size (1 for point/directional)
return (l2->direction[3] > -0.5) - (l1->direction[3] > -0.5);
}
// sort by "type" (point/spot vs directional)
return l2->position[3] - l1->position[3];
}
// sort by size
return s1 - s2;
}
typedef struct {
int size;
int layers;
int cube;
} mapdesc_t;
typedef struct {
mapdesc_t *maps;
int numMaps;
int numLights;
const light_t *lights;
int *imageMap;
const int *lightMap;
light_control_t *control;
int maxLayers;
} mapctx_t;
static int
allocate_map (mapctx_t *mctx, int type, int (*getsize) (const light_t *light))
{
int size = -1;
int numLayers = 0;
int totalLayers = 0;
int layers = ((int[ST_COUNT]) { 0, 1, num_cascade, 6 })[type];
int cube = type == ST_CUBE;
for (int i = 0; i < mctx->numLights; i++) {
auto li = mctx->lightMap[i];
auto lr = &mctx->control[li];
if (lr->mode != type) {
continue;
}
int light_size = getsize (&mctx->lights[li]);
light_size = round_light_size (light_size);
if (size != light_size || numLayers + layers > mctx->maxLayers) {
if (numLayers) {
mctx->maps[mctx->numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = cube,
};
numLayers = 0;
}
size = light_size;
}
mctx->imageMap[li] = mctx->numMaps;
lr->size = size;
lr->layer = numLayers;
lr->numLayers = layers;
numLayers += layers;
totalLayers += layers;
}
if (numLayers) {
mctx->maps[mctx->numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = cube,
};
}
return totalLayers;
}
static int
allocate_dynlight_map (mapctx_t *mctx)
{
int size = -1;
int numLayers = 0;
int totalLayers = 0;
int layers = 6;
int cube = 1;
for (int i = 0; i < dynlight_max; i++) {
if (size != dynlight_size || numLayers + layers > mctx->maxLayers) {
if (numLayers) {
mctx->maps[mctx->numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = cube,
};
numLayers = 0;
}
size = dynlight_size;
}
auto li = mctx->numLights + i;
auto lr = &mctx->control[li];
*lr = (light_control_t) {
.stage_index = (size / shadow_quanta) - 1,
.map_index = mctx->numMaps,
.size = size,
.layer = numLayers,
.numLayers = layers,
.mode = ST_CUBE,
.light_id = li,
};
numLayers += layers;
totalLayers += layers;
}
if (numLayers) {
mctx->maps[mctx->numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = cube,
};
}
return totalLayers;
}
static int
get_point_size (const light_t *light)
{
return abs ((int) light->color[3]);
}
static int
get_spot_size (const light_t *light)
{
float c = light->direction[3];
float s = sqrt (1 - c * c);
return abs ((int) (s * light->color[3]));
}
static int
get_direct_size (const light_t *light)
{
return 1024;
}
static void
build_shadow_maps (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_physdev_t *physDev = device->physDev;
int maxLayers = physDev->p.properties.limits.maxImageArrayLayers;
if (maxLayers > 2048) {
maxLayers = 2048;
}
auto reg = lctx->scene->reg;
auto light_pool = &reg->comp_pools[lctx->scene->base + scene_light];
auto lights = (light_t *) light_pool->data;
int numLights = light_pool->count;
int totalLayers = 0;
int imageMap[numLights];
int lightMap[numLights];
mapdesc_t maps[numLights + dynlight_max];
for (int i = 0; i < numLights; i++) {
lightMap[i] = i;
}
// sort lights by size, type, spot-size
heapsort_r (lightMap, numLights, sizeof (int), light_compare, lights);
DARRAY_RESIZE (&lctx->light_control, numLights + dynlight_max);
for (int i = 0; i < numLights; i++) {
auto li = lightMap[i];
auto lr = &lctx->light_control.a[li];
*lr = (light_control_t) {
.mode = light_shadow_type (&lights[li]),
.light_id = li,
};
entity_t ent = { .reg = reg, .id = light_pool->dense[li],
.base = lctx->scene->base };
set_lightid (ent, li);
// assume all lights have no shadows
imageMap[li] = -1;
}
mapctx_t mctx = {
.maps = maps,
.numLights = numLights,
.lights = lights,
.imageMap = imageMap,
.lightMap = lightMap,
.control = lctx->light_control.a,
.maxLayers = maxLayers,
};
totalLayers += allocate_map (&mctx, ST_CUBE, get_point_size);
totalLayers += allocate_map (&mctx, ST_PLANE, get_spot_size);
totalLayers += allocate_map (&mctx, ST_CASCADE, get_direct_size);
totalLayers += allocate_dynlight_map (&mctx);
lctx->num_maps = mctx.numMaps;
int stage_layers[LIGHTING_STAGES] = {};
if (mctx.numMaps) {
for (int i = 0; i < mctx.numMaps; i++) {
int ind = (maps[i].size / shadow_quanta) - 1;
stage_layers[ind] += maps[i].layers;
}
int stage_maps = 0;
for (int i = 0; i < LIGHTING_STAGES; i++) {
stage_layers[i] = min (stage_layers[i], max_views);
if (stage_layers[i]) {
stage_maps++;
}
}
qfv_resource_t *shad = calloc (1, sizeof (qfv_resource_t)
+ sizeof (qfv_resobj_t[mctx.numMaps])
+ sizeof (qfv_resobj_t[mctx.numMaps])
+ sizeof (qfv_resobj_t[stage_maps])
+ sizeof (qfv_resobj_t[stage_maps]));
lctx->shadow_resources = shad;
*shad = (qfv_resource_t) {
.name = "shadow",
.va_ctx = ctx->va_ctx,
.memory_properties = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.num_objects = 2 * (mctx.numMaps + stage_maps),
.objects = (qfv_resobj_t *) &shad[1],
};
lctx->map_images = malloc (sizeof (VkImage[mctx.numMaps]));
lctx->map_views = malloc (sizeof (VkImageView[mctx.numMaps]));
lctx->map_cube = malloc (sizeof (bool[mctx.numMaps]));
auto images = shad->objects;
auto stage_images = &images[mctx.numMaps];
auto views = &stage_images[stage_maps];
auto stage_views = &views[mctx.numMaps];
for (int i = 0; i < mctx.numMaps; i++) {
int cube = maps[i].cube;
lctx->map_cube[i] = cube;
images[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "map:image:%02d:%d", i, maps[i].size),
.type = qfv_res_image,
.image = {
.flags = cube ? VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT : 0,
.type = VK_IMAGE_TYPE_2D,
.format = VK_FORMAT_D32_SFLOAT,
.extent = { maps[i].size, maps[i].size, 1 },
.num_mipmaps = 1,
.num_layers = maps[i].layers,
.samples = VK_SAMPLE_COUNT_1_BIT,
.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
| VK_IMAGE_USAGE_TRANSFER_DST_BIT
| VK_IMAGE_USAGE_SAMPLED_BIT,
},
};
views[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "map:view:%02d:%d", i, maps[i].size),
.type = qfv_res_image_view,
.image_view = {
.image = i,
.type = cube ? VK_IMAGE_VIEW_TYPE_CUBE_ARRAY
: VK_IMAGE_VIEW_TYPE_2D_ARRAY,
.format = VK_FORMAT_D32_SFLOAT,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.levelCount = VK_REMAINING_MIP_LEVELS,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
},
};
}
for (int i = 0, ind = 0; i < LIGHTING_STAGES; i++) {
if (!stage_layers[i]) {
continue;
}
int size = (i + 1) * shadow_quanta;
stage_images[ind] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "stage_map:image:%02d:%d", ind, size),
.type = qfv_res_image,
.image = {
.type = VK_IMAGE_TYPE_2D,
.format = VK_FORMAT_D32_SFLOAT,
.extent = { size, size, 1 },
.num_mipmaps = 1,
.num_layers = stage_layers[i],
.samples = VK_SAMPLE_COUNT_1_BIT,
.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
},
};
stage_views[ind] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "stage_map:view:%02d:%d", ind, size),
.type = qfv_res_image_view,
.image_view = {
.image = mctx.numMaps + ind,
.type = VK_IMAGE_VIEW_TYPE_2D_ARRAY,
.format = VK_FORMAT_D32_SFLOAT,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.levelCount = VK_REMAINING_MIP_LEVELS,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
},
};
ind++;
}
QFV_CreateResource (device, shad);
for (int i = 0; i < mctx.numMaps; i++) {
lctx->map_images[i] = images[i].image.image;
lctx->map_views[i] = views[i].image_view.view;
}
for (int i = 0, ind = 0; i < LIGHTING_STAGES; i++) {
if (!stage_layers[i]) {
continue;
}
lctx->stage_images[i] = stage_images[ind].image.image;
lctx->stage_views[i] = stage_views[ind].image_view.view;
ind++;
}
}
for (int i = 0; i < numLights; i++) {
int li = lightMap[i];
auto lr = &lctx->light_control.a[li];
if (imageMap[li] == -1) {
continue;
}
lr->stage_index = -1;
if (lr->numLayers) {
lr->stage_index = (lr->size / shadow_quanta) - 1;
}
lr->map_index = imageMap[li];
}
Sys_MaskPrintf (SYS_lighting,
"shadow maps: %d layers in %d images: %"PRId64"\n",
totalLayers, lctx->num_maps,
lctx->shadow_resources ? lctx->shadow_resources->size
: (VkDeviceSize) 0);
if (developer & SYS_lighting) {
auto images = lctx->shadow_resources->objects;
for (int i = 0; i < lctx->num_maps; i++) {
Sys_Printf ("map id:%d width:%d layers:%d\n", i,
images[i].image.extent.width,
images[i].image.num_layers);
}
for (int i = 0; i < LIGHTING_STAGES; i++) {
Sys_Printf ("stage:%d width:%d layers:%d\n", i,
(i + 1) * shadow_quanta, stage_layers[i]);
}
}
}
static void
transition_shadow_maps (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
auto device = ctx->device;
auto dfunc = device->funcs;
VkCommandBufferAllocateInfo aInfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.commandPool = ctx->cmdpool,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = 1,
};
VkCommandBuffer cmd;
dfunc->vkAllocateCommandBuffers (device->dev, &aInfo, &cmd);
VkCommandBufferBeginInfo bInfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
};
dfunc->vkBeginCommandBuffer (cmd, &bInfo);
auto ib = imageBarriers[qfv_LT_Undefined_to_ShaderReadOnly];
ib.barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS;
VkImageMemoryBarrier barriers[lctx->num_maps];
for (int i = 0; i < lctx->num_maps; i++) {
barriers[i] = ib.barrier;
barriers[i].image = lctx->map_images[i];
}
dfunc->vkCmdPipelineBarrier (cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0, lctx->num_maps, barriers);
dfunc->vkEndCommandBuffer (cmd);
VkSubmitInfo submitInfo = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.commandBufferCount = 1,
.pCommandBuffers = &cmd,
};
dfunc->vkQueueSubmit (device->queue.queue, 1, &submitInfo, 0);
}
static void
update_shadow_descriptors (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
auto device = ctx->device;
auto dfunc = device->funcs;
VkDescriptorImageInfo imageInfoCube[32];
VkDescriptorImageInfo imageInfo2d[32];
for (int i = 0; i < 32; i++) {
VkImageView viewCube = lctx->default_view_cube;
VkImageView view2d = lctx->default_view_2d;
if (i < lctx->num_maps) {
if (lctx->map_cube[i]) {
viewCube = lctx->map_views[i];
} else {
view2d = lctx->map_views[i];
}
}
imageInfoCube[i] = (VkDescriptorImageInfo) {
.sampler = lctx->shadow_sampler,
.imageView = viewCube,
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
};
imageInfo2d[i] = (VkDescriptorImageInfo) {
.sampler = lctx->shadow_sampler,
.imageView = view2d,
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
};
}
VkWriteDescriptorSet imageWrite[2] = {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lctx->shadow_cube_set,
.dstBinding = 0,
.descriptorCount = 32,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = imageInfoCube,
},
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lctx->shadow_2d_set,
.dstBinding = 0,
.descriptorCount = 32,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = imageInfo2d,
},
};
dfunc->vkUpdateDescriptorSets (device->dev, 2, imageWrite, 0, 0);
}
static void
mark_leaves (bsp_pass_t *pass, set_t *pvs)
{
visstate_t visstate = {
.node_visframes = pass->node_frames,
.leaf_visframes = pass->leaf_frames,
.face_visframes = pass->face_frames,
.visframecount = pass->vis_frame,
.brush = pass->brush,
};
R_MarkLeavesPVS (&visstate, pvs);
pass->vis_frame = visstate.visframecount;
}
static void
show_leaves (vulkan_ctx_t *ctx, uint32_t leafnum, efrag_t *efrags)
{
auto pass = Vulkan_Bsp_GetPass (ctx, QFV_bspDebug);
auto brush = pass->brush;
set_t pvs = SET_STATIC_INIT (brush->visleafs, alloca);
set_empty (&pvs);
if (leafnum) {
set_add (&pvs, leafnum - 1);
} else {
for (auto e = efrags; e; e = e->entnext) {
set_add (&pvs, e->leaf - brush->leafs - 1);
}
}
mark_leaves (pass, &pvs);
}
static void
light_dyn_light_ui (void *comp, imui_ctx_t *imui_ctx,
ecs_registry_t *reg, uint32_t ent, void *data)
{
dlight_t *dlight = comp;
UI_Horizontal {
UI_Labelf ("Origin: ");
UI_FlexibleSpace ();
UI_Labelf ("%6.1f %6.1f %6.1f %6g", VEC4_EXP (dlight->origin));
}
UI_Horizontal {
UI_Label ("Color: ");
UI_FlexibleSpace ();
UI_Labelf ("%5.3f %5.3f %5.3f %5.3f", VEC4_EXP (dlight->color));
}
UI_Horizontal {
UI_Labelf ("Radius: ");
UI_FlexibleSpace ();
UI_Labelf ("%6g", dlight->radius);
}
UI_Horizontal {
UI_Labelf ("Die: ");
UI_FlexibleSpace ();
UI_Labelf ("%6.2f", dlight->die);
}
UI_Horizontal {
UI_Labelf ("Decay: ");
UI_FlexibleSpace ();
UI_Labelf ("%6.2f", dlight->decay);
}
UI_Horizontal {
UI_Labelf ("Min Light: ");
UI_FlexibleSpace ();
UI_Labelf ("%6g", dlight->minlight);
}
}
static void
light_light_ui (void *comp, imui_ctx_t *imui_ctx,
ecs_registry_t *reg, uint32_t ent, void *data)
{
light_t *light = comp;
UI_Horizontal {
UI_Label ("Color: ");
UI_FlexibleSpace ();
UI_Labelf ("%5.3f %5.3f %5.3f %3g", VEC4_EXP (light->color));
}
UI_Horizontal {
UI_Labelf ("Position: ");
UI_FlexibleSpace ();
UI_Labelf ("%6.1f %6.1f %6.1f %6g", VEC4_EXP (light->position));
}
UI_Horizontal {
UI_Labelf ("Direction: ");
UI_FlexibleSpace ();
UI_Labelf ("%6.3f %6.3f %6.3f %6.3g", VEC4_EXP (light->direction));
}
UI_Horizontal {
UI_Labelf ("Attenuation: ");
UI_FlexibleSpace ();
UI_Labelf ("%g %g %g %g", VEC4_EXP (light->attenuation));
}
}
static void
scene_efrags_ui (void *comp, imui_ctx_t *imui_ctx,
ecs_registry_t *reg, uint32_t ent, void *data)
{
vulkan_ctx_t *ctx = data;
auto efrags = *(efrag_t **) comp;
uint32_t len = 0;
bool valid = true;
for (auto e = efrags; e; e = e->entnext, len++) {
valid &= e->entity.id == ent;
}
UI_Horizontal {
if (UI_Button (va (ctx->va_ctx, "Show##lightefrags_ui.%08x", ent))) {
show_leaves (ctx, 0, efrags);
}
UI_FlexibleSpace ();
UI_Labelf ("%4s %5u", valid ? "good" : "bad", len);
}
}
static void
scene_lightleaf_ui (void *comp, imui_ctx_t *imui_ctx,
ecs_registry_t *reg, uint32_t ent, void *data)
{
vulkan_ctx_t *ctx = data;
auto leaf = *(uint32_t *) comp;
UI_Horizontal {
if (UI_Button (va (ctx->va_ctx, "Show##lightleaf_ui.%08x", ent))) {
show_leaves (ctx, leaf, 0);
}
UI_FlexibleSpace ();
UI_Labelf ("%5u", leaf);
auto pass = Vulkan_Bsp_GetPass (ctx, QFV_bspDebug);
auto brush = pass->brush;
set_t pvs = SET_STATIC_INIT (brush->visleafs, alloca);
Mod_LeafPVS_set (brush->leafs + leaf, brush, 0, &pvs);
UI_FlexibleSpace ();
if (UI_Button (va (ctx->va_ctx, "Vis##lightleaf_ui.%08x", ent))) {
mark_leaves (pass, &pvs);
}
UI_FlexibleSpace ();
UI_Labelf ("%5u", set_count (&pvs));
}
}
static void
scene_lightstyle_ui (void *comp, imui_ctx_t *imui_ctx,
ecs_registry_t *reg, uint32_t ent, void *data)
{
auto style = *(uint32_t *) comp;
UI_Horizontal {
UI_Labelf ("%5u", style);
UI_FlexibleSpace ();
auto val = d_lightstylevalue[style];
UI_Labelf ("%3f", val / 65536.0);
}
}
static void
scene_lightid_ui (void *comp, imui_ctx_t *imui_ctx,
ecs_registry_t *reg, uint32_t ent, void *data)
{
auto id = *(uint32_t *) comp;
UI_Horizontal {
UI_Labelf ("%5u", id);
UI_FlexibleSpace ();
}
}
void
Vulkan_LoadLights (scene_t *scene, vulkan_ctx_t *ctx)
{
qfZoneScoped (true);
lightingctx_t *lctx = ctx->lighting_context;
lctx->scene = scene;
clear_shadows (ctx);
lctx->ldata = 0;
if (lctx->scene) {
auto reg = lctx->scene->reg;
reg->components.a[lctx->scene->base + scene_dynlight].ui = light_dyn_light_ui;
reg->components.a[lctx->scene->base + scene_light].ui = light_light_ui;
reg->components.a[lctx->scene->base + scene_efrags].ui = scene_efrags_ui;
reg->components.a[lctx->scene->base + scene_lightstyle].ui = scene_lightstyle_ui;
reg->components.a[lctx->scene->base + scene_lightleaf].ui = scene_lightleaf_ui;
reg->components.a[lctx->scene->base + scene_lightid].ui = scene_lightid_ui;
auto light_pool = &reg->comp_pools[lctx->scene->base + scene_light];
if (light_pool->count) {
lctx->dynamic_base = light_pool->count;
lctx->dynamic_count = 0;
build_shadow_maps (lctx, ctx);
transition_shadow_maps (lctx, ctx);
update_shadow_descriptors (lctx, ctx);
create_light_matrices (lctx);
upload_light_matrices (lctx, ctx);
upload_light_data (lctx, ctx);
}
lctx->ldata = scene->lights;
}
}
VkDescriptorSet
Vulkan_Lighting_Descriptors (vulkan_ctx_t *ctx, int frame)
{
auto lctx = ctx->lighting_context;
return lctx->frames.a[frame].shadowmat_set;
}