quakeforge/tools/qfcc/source/expr_compound.c

358 lines
8.9 KiB
C
Raw Normal View History

/*
expr_compound.c
compound intializer expression construction and manipulations
Copyright (C) 2020 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2020/03/11
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "QF/alloc.h"
#include "QF/dstring.h"
#include "QF/mathlib.h"
#include "QF/set.h"
#include "QF/sys.h"
#include "QF/va.h"
#include "tools/qfcc/include/algebra.h"
#include "tools/qfcc/include/diagnostic.h"
#include "tools/qfcc/include/expr.h"
#include "tools/qfcc/include/options.h"
#include "tools/qfcc/include/symtab.h"
#include "tools/qfcc/include/type.h"
ALLOC_STATE (element_t, elements);
ALLOC_STATE (designator_t, designators);
designator_t *
new_designator (expr_t *field, expr_t *index)
{
if ((!field && !index) || (field && index)) {
internal_error (0, "exactly one of field or index is required");
}
if (field && field->type != ex_symbol) {
internal_error (field, "invalid field designator");
}
designator_t *des;
ALLOC (256, designator_t, designators, des);
des->field = field;
des->index = index;
return des;
}
element_t *
new_element (expr_t *expr, designator_t *designator)
{
element_t *element;
ALLOC (256, element_t, elements, element);
element->expr = expr;
element->designator = designator;
return element;
}
static element_t *
append_init_element (element_chain_t *element_chain, element_t *element)
{
element->next = 0;
*element_chain->tail = element;
element_chain->tail = &element->next;
return element;
}
expr_t *
new_compound_init (void)
{
expr_t *c = new_expr ();
c->type = ex_compound;
c->e.compound.head = 0;
c->e.compound.tail = &c->e.compound.head;
return c;
}
static symbol_t *
designator_field (const designator_t *des, const type_t *type)
{
if (des->index) {
error (des->index, "designator index in non-array");
return 0;
}
symtab_t *symtab = type->t.symtab;
symbol_t *sym = des->field->e.symbol;
symbol_t *field = symtab_lookup (symtab, sym->name);;
if (!field) {
const char *name = type->name;
if (!strncmp (name, "tag ", 4)) {
name += 4;
}
error (des->field, "'%s' has no member named '%s'", name, sym->name);
return 0;
}
return field;
}
static int
designator_index (const designator_t *des, int ele_size, int array_size)
{
if (des->field) {
error (des->field, "field designator in array initializer");
return -1;
} else if (!is_constant (des->index)) {
error (des->index, "non-constant designator index");
return -1;
} else if (!is_integral (get_type (des->index))) {
error (des->index, "invalid designator index type");
return -1;
}
int index = expr_integral (des->index);
if (index <= 0 || index >= array_size) {
error (des->index, "designator index out of bounds");
return -1;
}
return index * ele_size;
}
typedef struct {
type_t *type;
symbol_t *field;
int offset;
} initstate_t;
static initstate_t
get_designated_offset (const type_t *type, const designator_t *des)
{
int offset = -1;
type_t *ele_type = 0;
symbol_t *field = 0;
if (is_struct (type) || is_union (type)) {
field = designator_field (des, type);
offset = field->s.offset;
ele_type = field->type;
} else if (is_array (type)) {
int array_size = type->t.array.size;
ele_type = type->t.array.type;
offset = designator_index (des, type_size (ele_type), array_size);
} else if (is_nonscalar (type)) {
ele_type = ev_types[type->type];
if (type->t.symtab && des->field) {
field = designator_field (des, type);
offset = field->s.offset;
} else {
int vec_width = type_width (type);
offset = designator_index (des, type_size (ele_type), vec_width);
}
} else {
error (0, "invalid initializer");
}
if (ele_type && des->next) {
__auto_type state = get_designated_offset (ele_type, des->next);
ele_type = state.type;
offset += state.offset;
}
return (initstate_t) { .type = ele_type, .field = field, .offset = offset};
}
static int
skip_field (symbol_t *field)
{
if (field->sy_type != sy_var) {
return 1;
}
if (field->no_auto_init) {
return 1;
}
return 0;
}
void
build_element_chain (element_chain_t *element_chain, const type_t *type,
expr_t *eles, int base_offset)
{
element_t *ele = eles->e.compound.head;
type = unalias_type (type);
initstate_t state = {};
if (is_algebra (type)) {
error (eles, "block initializer of multi-vector type");
return;
} else if (is_struct (type) || is_union (type)
|| (is_nonscalar (type) && type->t.symtab)) {
state.field = type->t.symtab->symbols;
while (state.field && skip_field (state.field)) {
state.field = state.field->next;
}
if (state.field) {
state.type = state.field->type;
state.offset = state.field->s.offset;
}
} else if (is_array (type)) {
state.type = type->t.array.type;
} else {
internal_error (eles, "invalid initialization");
}
while (ele) {
if (ele->designator) {
state = get_designated_offset (type, ele->designator);
}
if (!state.type) {
break;
}
if (state.offset >= type_size (type)) {
if (options.warnings.initializer) {
warning (eles, "excessive elements in initializer");
}
break;
}
if (ele->expr && ele->expr->type == ex_compound) {
build_element_chain (element_chain, state.type, ele->expr,
state.offset);
} else {
element_t *element = new_element (0, 0);
element->type = state.type;
element->offset = base_offset + state.offset;
element->expr = ele->expr; // null -> nil
append_init_element (element_chain, element);
}
state.offset += type_size (state.type);
if (state.field) {
state.field = state.field->next;
while (state.field && skip_field (state.field)) {
state.field = state.field->next;
}
if (state.field) {
state.type = state.field->type;
state.offset = state.field->s.offset;
}
}
ele = ele->next;
}
}
void
free_element_chain (element_chain_t *element_chain)
{
*element_chain->tail = elements_freelist;
elements_freelist = element_chain->head;
element_chain->head = 0;
element_chain->tail = &element_chain->head;
}
expr_t *
append_element (expr_t *compound, element_t *element)
{
if (compound->type != ex_compound) {
internal_error (compound, "not a compound expression");
}
if (!element || (element->expr && element->expr->type == ex_error)) {
return compound;
}
if (element->next) {
internal_error (compound, "append_element: element loop detected");
}
append_init_element (&compound->e.compound, element);
return compound;
}
void
assign_elements (expr_t *local_expr, expr_t *init,
element_chain_t *element_chain)
{
element_t *element;
type_t *init_type = get_type (init);
set_t *initialized = set_new_size (type_size (init_type));
for (element = element_chain->head; element; element = element->next) {
int offset = element->offset;
type_t *type = element->type;
expr_t *alias = new_offset_alias_expr (type, init, offset);
expr_t *c;
if (type_size (type) == 0)
internal_error (init, "wtf");
if (element->expr) {
c = constant_expr (element->expr);
} else {
c = new_nil_expr ();
}
if (c->type == ex_nil) {
c = convert_nil (c, type);
}
append_expr (local_expr, assign_expr (alias, c));
set_add_range (initialized, offset, type_size (type));
}
unsigned start = 0;
for (set_iter_t *in = set_first (initialized); in; in = set_next (in)) {
unsigned end = in->element;
if (end > start) {
expr_t *dst = new_offset_alias_expr (&type_int, init, start);
expr_t *zero = new_int_expr (0);
expr_t *count = new_int_expr (end - start);
append_expr (local_expr, new_memset_expr (dst, zero, count));
}
// skip over all the initialized locations
in = set_while (in);
if (in) {
start = in->element;
}
}
set_delete (initialized);
}
expr_t *
initialized_temp_expr (const type_t *type, expr_t *compound)
{
type = unalias_type (type);
element_chain_t element_chain;
expr_t *temp = new_temp_def_expr (type);
expr_t *block = new_block_expr ();
element_chain.head = 0;
element_chain.tail = &element_chain.head;
build_element_chain (&element_chain, type, compound, 0);
assign_elements (block, temp, &element_chain);
block->e.block.result = temp;
free_element_chain (&element_chain);
return block;
}