quakeforge/libs/video/renderer/glsl/sgustavson.glsl

609 lines
17 KiB
Text
Raw Normal View History

Note that the GPL covers only the arrangement in this file. The actual code
is covered by the MIT licence (see LICENCE.txt below).
This file is just all the shader code presented by Stefan Gustavson
collected into one file and split into useable sections with redundant
code removed.
--
sgustavson.glsl
GLSL noise functions
Copyright (C) 2014 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2014/01/29
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
-- LICENCE.txt
Copyright (C) 2011 by Stefan Gustavson
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-- Math.permute
vec4 permute(vec4 x)
{
return mod(((x*34.0)+1.0)*x, 289.0);
}
-- Math.InvSqrt
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
-- Noise.simplex
// Description : Array and textureless GLSL 3D simplex noise function.
// Author : Ian McEwan, Ashima Arts.
// Maintainer : ijm
// Lastmod : 20110409 (stegu)
// License : Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
#version 120
float snoise(vec3 v)
{
const vec2 C = vec2(1.0/6.0, 1.0/3.0) ;
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy) );
vec3 x0 = v - i + dot(i, C.xxx) ;
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min( g.xyz, l.zxy );
vec3 i2 = max( g.xyz, l.zxy );
// x0 = x0 - 0. + 0.0 * C
vec3 x1 = x0 - i1 + 1.0 * C.xxx;
vec3 x2 = x0 - i2 + 2.0 * C.xxx;
vec3 x3 = x0 - 1. + 3.0 * C.xxx;
// Permutations
i = mod(i, 289.0 );
vec4 p = permute( permute( permute(
i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
+ i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
+ i.x + vec4(0.0, i1.x, i2.x, 1.0 ));
// Gradients
// ( N*N points uniformly over a square, mapped onto an octahedron.)
float n_ = 1.0/7.0; // N=7
vec3 ns = n_ * D.wyz - D.xzx;
vec4 j = p - 49.0 * floor(p * ns.z *ns.z); // mod(p,N*N)
vec4 x_ = floor(j * ns.z);
vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)
vec4 x = x_ *ns.x + ns.yyyy;
vec4 y = y_ *ns.x + ns.yyyy;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4( x.xy, y.xy );
vec4 b1 = vec4( x.zw, y.zw );
//vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
//vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
vec4 s0 = floor(b0)*2.0 + 1.0;
vec4 s1 = floor(b1)*2.0 + 1.0;
vec4 sh = -step(h, vec4(0.0));
vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;
vec3 p0 = vec3(a0.xy,h.x);
vec3 p1 = vec3(a0.zw,h.y);
vec3 p2 = vec3(a1.xy,h.z);
vec3 p3 = vec3(a1.zw,h.w);
//Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
m = m * m;
return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
dot(p2,x2), dot(p3,x3) ) );
}
-- Vertex.simplex
#version 120
uniform float time;
varying vec3 vTexCoord3D;
void main(void) {
vTexCoord3D = gl_Vertex.xyz * 4.0 + vec3(0.0, 0.0, time);
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}
-- Fragment.simplex
varying vec3 vTexCoord3D;
void main( void )
{
float n = snoise(vTexCoord3D);
gl_FragColor = vec4(0.5 + 0.6 * vec3(n, n, n), 1.0);
}
-- Vertex.flame
#version 120
uniform float time;
varying vec3 vTexCoord3D;
void main(void) {
vTexCoord3D = gl_Vertex.xyz * 2.0 + vec3(0.0, 0.0, -time);
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}
-- Fragement.flame
varying vec3 vTexCoord3D;
void main( void )
{
float n = abs(snoise(vTexCoord3D));
n += 0.5 * abs(snoise(vTexCoord3D * 2.0));
n += 0.25 * abs(snoise(vTexCoord3D * 4.0));
n += 0.125 * abs(snoise(vTexCoord3D * 8.0));
gl_FragColor = vec4(vec3(1.5-n, 1.0-n, 0.5-n), 1.0);
}
-- Noise.flow
// GLSL implementation of 2D "flow noise" as presented
// by Ken Perlin and Fabrice Neyret at Siggraph 2001.
// (2D simplex noise with analytic derivatives and
// in-plane rotation of generating gradients,
// in a fractal sum where higher frequencies are
// displaced (advected) by lower frequencies in the
// direction of their gradient. For details, please
// refer to the 2001 paper "Flow Noise" by Perlin and Neyret.)
//
// Author: Stefan Gustavson (stefan.gustavson@liu.se)
// Distributed under the terms of the MIT license.
// See LICENSE file for details.
//
// Helper constants
#define F2 0.366025403
#define G2 0.211324865
#define K 0.0243902439 // 1/41
// Gradient mapping with an extra rotation.
vec2 grad2(vec2 p, float rot) {
#if 1
// Map from a line to a diamond such that a shift maps to a rotation.
float u = permute(permute(p.x) + p.y) * K + rot; // Rotate by shift
u = 4.0 * fract(u) - 2.0;
return vec2(abs(u)-1.0, abs(abs(u+1.0)-2.0)-1.0);
#else
#define TWOPI 6.28318530718
// For more isotropic gradients, sin/cos can be used instead.
float u = permute(permute(p.x) + p.y) * K + rot; // Rotate by shift
u = fract(u) * TWOPI;
return vec2(cos(u), sin(u));
#endif
}
float srdnoise(in vec2 P, in float rot, out vec2 grad) {
// Transform input point to the skewed simplex grid
vec2 Ps = P + dot(P, vec2(F2));
// Round down to simplex origin
vec2 Pi = floor(Ps);
// Transform simplex origin back to (x,y) system
vec2 P0 = Pi - dot(Pi, vec2(G2));
// Find (x,y) offsets from simplex origin to first corner
vec2 v0 = P - P0;
// Pick (+x, +y) or (+y, +x) increment sequence
vec2 i1 = (v0.x > v0.y) ? vec2(1.0, 0.0) : vec2 (0.0, 1.0);
// Determine the offsets for the other two corners
vec2 v1 = v0 - i1 + G2;
vec2 v2 = v0 - 1.0 + 2.0 * G2;
// Wrap coordinates at 289 to avoid float precision problems
Pi = mod(Pi, 289.0);
// Calculate the circularly symmetric part of each noise wiggle
vec3 t = max(0.5 - vec3(dot(v0,v0), dot(v1,v1), dot(v2,v2)), 0.0);
vec3 t2 = t*t;
vec3 t4 = t2*t2;
// Calculate the gradients for the three corners
vec2 g0 = grad2(Pi, rot);
vec2 g1 = grad2(Pi + i1, rot);
vec2 g2 = grad2(Pi + 1.0, rot);
// Compute noise contributions from each corner
vec3 gv = vec3(dot(g0,v0), dot(g1,v1), dot(g2,v2)); // ramp: g dot v
vec3 n = t4 * gv; // Circular kernel times linear ramp
// Compute partial derivatives in x and y
vec3 temp = t2 * t * gv;
vec3 gradx = temp * vec3(v0.x, v1.x, v2.x);
vec3 grady = temp * vec3(v0.y, v1.y, v2.y);
grad.x = -8.0 * (gradx.x + gradx.y + gradx.z);
grad.y = -8.0 * (grady.x + grady.y + grady.z);
grad.x += dot(t4, vec3(g0.x, g1.x, g2.x));
grad.y += dot(t4, vec3(g0.y, g1.y, g2.y));
grad *= 40.0;
// Add contributions from the three corners and return
return 40.0 * (n.x + n.y + n.z);
}
-- Vertex.flow
#version 120
varying vec2 vTexCoord2D;
void main(void) {
vTexCoord2D = gl_Vertex.xy * 8.0;
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}
-- Fragment.flow
varying vec3 vTexCoord3D;
uniform float time;
void main(void) {
vec2 g1, g2;
vec2 p = vTexCoord2D;
float n1 = srdnoise(p*0.5, 0.2*time, g1);
float n2 = srdnoise(p*2.0 + g1*0.5, 0.51*time, g2);
float n3 = srdnoise(p*4.0 + g1*0.5 + g2*0.25, 0.77*time, g2);
gl_FragColor = vec4(vec3(0.4, 0.5, 0.6) + vec3(n1+0.75*n2+0.5*n3), 1.0);
}
-- Noise.spots
#version 120
// Cellular noise ("Worley noise") in 3D in GLSL.
// Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved.
// This code is released under the conditions of the MIT license.
// See LICENSE file for details.
// Cellular noise, returning F1 and F2 in a vec2.
// Speeded up by using 2x2x2 search window instead of 3x3x3,
// at the expense of some pattern artifacts.
// F2 is often wrong and has sharp discontinuities.
// If you need a good F2, use the slower 3x3x3 version.
vec2 cellular2x2x2(vec3 P)
{
#define K 0.142857142857 // 1/7
#define Ko 0.428571428571 // 1/2-K/2
#define K2 0.020408163265306 // 1/(7*7)
#define Kz 0.166666666667 // 1/6
#define Kzo 0.416666666667 // 1/2-1/6*2
#define jitter 0.8 // smaller jitter gives less errors in F2
vec3 Pi = mod(floor(P), 289.0);
vec3 Pf = fract(P);
vec4 Pfx = Pf.x + vec4(0.0, -1.0, 0.0, -1.0);
vec4 Pfy = Pf.y + vec4(0.0, 0.0, -1.0, -1.0);
vec4 p = permute(Pi.x + vec4(0.0, 1.0, 0.0, 1.0));
p = permute(p + Pi.y + vec4(0.0, 0.0, 1.0, 1.0));
vec4 p1 = permute(p + Pi.z); // z+0
vec4 p2 = permute(p + Pi.z + vec4(1.0)); // z+1
vec4 ox1 = fract(p1*K) - Ko;
vec4 oy1 = mod(floor(p1*K), 7.0)*K - Ko;
vec4 oz1 = floor(p1*K2)*Kz - Kzo; // p1 < 289 guaranteed
vec4 ox2 = fract(p2*K) - Ko;
vec4 oy2 = mod(floor(p2*K), 7.0)*K - Ko;
vec4 oz2 = floor(p2*K2)*Kz - Kzo;
vec4 dx1 = Pfx + jitter*ox1;
vec4 dy1 = Pfy + jitter*oy1;
vec4 dz1 = Pf.z + jitter*oz1;
vec4 dx2 = Pfx + jitter*ox2;
vec4 dy2 = Pfy + jitter*oy2;
vec4 dz2 = Pf.z - 1.0 + jitter*oz2;
vec4 d1 = dx1 * dx1 + dy1 * dy1 + dz1 * dz1; // z+0
vec4 d2 = dx2 * dx2 + dy2 * dy2 + dz2 * dz2; // z+1
// Sort out the two smallest distances (F1, F2)
#if 1
// Cheat and sort out only F1
d1 = min(d1, d2);
d1.xy = min(d1.xy, d1.wz);
d1.x = min(d1.x, d1.y);
return sqrt(d1.xx);
#else
// Do it right and sort out both F1 and F2
vec4 d = min(d1,d2); // F1 is now in d
d2 = max(d1,d2); // Make sure we keep all candidates for F2
d.xy = (d.x < d.y) ? d.xy : d.yx; // Swap smallest to d.x
d.xz = (d.x < d.z) ? d.xz : d.zx;
d.xw = (d.x < d.w) ? d.xw : d.wx; // F1 is now in d.x
d.yzw = min(d.yzw, d2.yzw); // F2 now not in d2.yzw
d.y = min(d.y, d.z); // nor in d.z
d.y = min(d.y, d.w); // nor in d.w
d.y = min(d.y, d2.x); // F2 is now in d.y
return sqrt(d.xy); // F1 and F2
#endif
}
-- Vertex.spots
#version 120
uniform float time;
varying vec3 vTexCoord3D;
void main(void) {
vTexCoord3D = gl_Vertex.xyz * 4.0 - vec3(0.0, 0.0, time);
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}
-- Fragement.spots
varying vec3 vTexCoord3D;
void main(void) {
vec2 F = cellular2x2x2(vTexCoord3D);
float s = fwidth(F.x);
float n1 = smoothstep(0.4-s, 0.4+s, F.x);
float n2 = smoothstep(0.5-s, 0.5+s, F.x);
gl_FragColor = vec4(n1, n2, n2, 1.0);
}
-- Noise.tile
// Cellular noise ("Worley noise") in 3D in GLSL.
// Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved.
// This code is released under the conditions of the MIT license.
// See LICENSE file for details.
// Cellular noise, returning F1 and F2 in a vec2.
// 3x3x3 search region for good F2 everywhere, but a lot
// slower than the 2x2x2 version.
// The code below is a bit scary even to its author,
// but it has at least half decent performance on a
// modern GPU. In any case, it beats any software
// implementation of Worley noise hands down.
vec2 cellular(vec3 P)
{
#define K 0.142857142857 // 1/7
#define Ko 0.428571428571 // 1/2-K/2
#define K2 0.020408163265306 // 1/(7*7)
#define Kz 0.166666666667 // 1/6
#define Kzo 0.416666666667 // 1/2-1/6*2
#define jitter 1.0 // smaller jitter gives more regular pattern
vec3 Pi = mod(floor(P), 289.0);
vec3 Pf = fract(P) - 0.5;
vec3 Pfx = Pf.x + vec3(1.0, 0.0, -1.0);
vec3 Pfy = Pf.y + vec3(1.0, 0.0, -1.0);
vec3 Pfz = Pf.z + vec3(1.0, 0.0, -1.0);
vec3 p = permute(Pi.x + vec3(-1.0, 0.0, 1.0));
vec3 p1 = permute(p + Pi.y - 1.0);
vec3 p2 = permute(p + Pi.y);
vec3 p3 = permute(p + Pi.y + 1.0);
vec3 p11 = permute(p1 + Pi.z - 1.0);
vec3 p12 = permute(p1 + Pi.z);
vec3 p13 = permute(p1 + Pi.z + 1.0);
vec3 p21 = permute(p2 + Pi.z - 1.0);
vec3 p22 = permute(p2 + Pi.z);
vec3 p23 = permute(p2 + Pi.z + 1.0);
vec3 p31 = permute(p3 + Pi.z - 1.0);
vec3 p32 = permute(p3 + Pi.z);
vec3 p33 = permute(p3 + Pi.z + 1.0);
vec3 ox11 = fract(p11*K) - Ko;
vec3 oy11 = mod(floor(p11*K), 7.0)*K - Ko;
vec3 oz11 = floor(p11*K2)*Kz - Kzo; // p11 < 289 guaranteed
vec3 ox12 = fract(p12*K) - Ko;
vec3 oy12 = mod(floor(p12*K), 7.0)*K - Ko;
vec3 oz12 = floor(p12*K2)*Kz - Kzo;
vec3 ox13 = fract(p13*K) - Ko;
vec3 oy13 = mod(floor(p13*K), 7.0)*K - Ko;
vec3 oz13 = floor(p13*K2)*Kz - Kzo;
vec3 ox21 = fract(p21*K) - Ko;
vec3 oy21 = mod(floor(p21*K), 7.0)*K - Ko;
vec3 oz21 = floor(p21*K2)*Kz - Kzo;
vec3 ox22 = fract(p22*K) - Ko;
vec3 oy22 = mod(floor(p22*K), 7.0)*K - Ko;
vec3 oz22 = floor(p22*K2)*Kz - Kzo;
vec3 ox23 = fract(p23*K) - Ko;
vec3 oy23 = mod(floor(p23*K), 7.0)*K - Ko;
vec3 oz23 = floor(p23*K2)*Kz - Kzo;
vec3 ox31 = fract(p31*K) - Ko;
vec3 oy31 = mod(floor(p31*K), 7.0)*K - Ko;
vec3 oz31 = floor(p31*K2)*Kz - Kzo;
vec3 ox32 = fract(p32*K) - Ko;
vec3 oy32 = mod(floor(p32*K), 7.0)*K - Ko;
vec3 oz32 = floor(p32*K2)*Kz - Kzo;
vec3 ox33 = fract(p33*K) - Ko;
vec3 oy33 = mod(floor(p33*K), 7.0)*K - Ko;
vec3 oz33 = floor(p33*K2)*Kz - Kzo;
vec3 dx11 = Pfx + jitter*ox11;
vec3 dy11 = Pfy.x + jitter*oy11;
vec3 dz11 = Pfz.x + jitter*oz11;
vec3 dx12 = Pfx + jitter*ox12;
vec3 dy12 = Pfy.x + jitter*oy12;
vec3 dz12 = Pfz.y + jitter*oz12;
vec3 dx13 = Pfx + jitter*ox13;
vec3 dy13 = Pfy.x + jitter*oy13;
vec3 dz13 = Pfz.z + jitter*oz13;
vec3 dx21 = Pfx + jitter*ox21;
vec3 dy21 = Pfy.y + jitter*oy21;
vec3 dz21 = Pfz.x + jitter*oz21;
vec3 dx22 = Pfx + jitter*ox22;
vec3 dy22 = Pfy.y + jitter*oy22;
vec3 dz22 = Pfz.y + jitter*oz22;
vec3 dx23 = Pfx + jitter*ox23;
vec3 dy23 = Pfy.y + jitter*oy23;
vec3 dz23 = Pfz.z + jitter*oz23;
vec3 dx31 = Pfx + jitter*ox31;
vec3 dy31 = Pfy.z + jitter*oy31;
vec3 dz31 = Pfz.x + jitter*oz31;
vec3 dx32 = Pfx + jitter*ox32;
vec3 dy32 = Pfy.z + jitter*oy32;
vec3 dz32 = Pfz.y + jitter*oz32;
vec3 dx33 = Pfx + jitter*ox33;
vec3 dy33 = Pfy.z + jitter*oy33;
vec3 dz33 = Pfz.z + jitter*oz33;
vec3 d11 = dx11 * dx11 + dy11 * dy11 + dz11 * dz11;
vec3 d12 = dx12 * dx12 + dy12 * dy12 + dz12 * dz12;
vec3 d13 = dx13 * dx13 + dy13 * dy13 + dz13 * dz13;
vec3 d21 = dx21 * dx21 + dy21 * dy21 + dz21 * dz21;
vec3 d22 = dx22 * dx22 + dy22 * dy22 + dz22 * dz22;
vec3 d23 = dx23 * dx23 + dy23 * dy23 + dz23 * dz23;
vec3 d31 = dx31 * dx31 + dy31 * dy31 + dz31 * dz31;
vec3 d32 = dx32 * dx32 + dy32 * dy32 + dz32 * dz32;
vec3 d33 = dx33 * dx33 + dy33 * dy33 + dz33 * dz33;
// Sort out the two smallest distances (F1, F2)
#if 0
// Cheat and sort out only F1
vec3 d1 = min(min(d11,d12), d13);
vec3 d2 = min(min(d21,d22), d23);
vec3 d3 = min(min(d31,d32), d33);
vec3 d = min(min(d1,d2), d3);
d.x = min(min(d.x,d.y),d.z);
return sqrt(d.xx); // F1 duplicated, no F2 computed
#else
// Do it right and sort out both F1 and F2
vec3 d1a = min(d11, d12);
d12 = max(d11, d12);
d11 = min(d1a, d13); // Smallest now not in d12 or d13
d13 = max(d1a, d13);
d12 = min(d12, d13); // 2nd smallest now not in d13
vec3 d2a = min(d21, d22);
d22 = max(d21, d22);
d21 = min(d2a, d23); // Smallest now not in d22 or d23
d23 = max(d2a, d23);
d22 = min(d22, d23); // 2nd smallest now not in d23
vec3 d3a = min(d31, d32);
d32 = max(d31, d32);
d31 = min(d3a, d33); // Smallest now not in d32 or d33
d33 = max(d3a, d33);
d32 = min(d32, d33); // 2nd smallest now not in d33
vec3 da = min(d11, d21);
d21 = max(d11, d21);
d11 = min(da, d31); // Smallest now in d11
d31 = max(da, d31); // 2nd smallest now not in d31
d11.xy = (d11.x < d11.y) ? d11.xy : d11.yx;
d11.xz = (d11.x < d11.z) ? d11.xz : d11.zx; // d11.x now smallest
d12 = min(d12, d21); // 2nd smallest now not in d21
d12 = min(d12, d22); // nor in d22
d12 = min(d12, d31); // nor in d31
d12 = min(d12, d32); // nor in d32
d11.yz = min(d11.yz,d12.xy); // nor in d12.yz
d11.y = min(d11.y,d12.z); // Only two more to go
d11.y = min(d11.y,d11.z); // Done! (Phew!)
return sqrt(d11.xy); // F1, F2
#endif
}
-- Vertex.tile
#version 120
uniform float time;
varying vec3 vTexCoord3D;
void main(void) {
vTexCoord3D = gl_Vertex.xyz * 4.0
+ 0.2 * vec3(snoise(gl_Vertex.xyz + vec3(0.0, 0.0, time)),
snoise(gl_Vertex.xyz + vec3(43.0, 17.0, time)),
snoise(gl_Vertex.xyz + vec3(0.0, -43.0, time-17.0)));
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}
-- Fragement.tile
#version 120
varying vec3 vTexCoord3D;
void main(void) {
vec2 F = cellular(vTexCoord3D.xyz);
float n = 0.1+F.y-F.x;
gl_FragColor = vec4(n*0.6, n*1.1, n*0.5, 1.0);
}