quakeforge/libs/video/renderer/vulkan/vulkan_bsp.c

1452 lines
41 KiB
C
Raw Normal View History

/*
vulkan_bsp.c
Vulkan bsp
Copyright (C) 2012 Bill Currie <bill@taniwha.org>
Copyright (C) 2021 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2012/1/7
Date: 2021/1/18
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "qfalloca.h"
#include "QF/cvar.h"
#include "QF/darray.h"
#include "QF/dstring.h"
#include "QF/image.h"
#include "QF/render.h"
#include "QF/sys.h"
#include "QF/va.h"
#include "QF/vrect.h"
#include "QF/Vulkan/qf_bsp.h"
#include "QF/Vulkan/qf_lightmap.h"
#include "QF/Vulkan/qf_texture.h"
#include "QF/Vulkan/buffer.h"
#include "QF/Vulkan/command.h"
#include "QF/Vulkan/descriptor.h"
#include "QF/Vulkan/device.h"
#include "QF/Vulkan/scrap.h"
#include "QF/Vulkan/staging.h"
#include "r_internal.h"
#include "vid_vulkan.h"
#include "vkparse.h"
#define ALLOC_CHUNK 64
typedef struct bsppoly_s {
uint32_t count;
uint32_t indices[1];
} bsppoly_t;
#define CHAIN_SURF_F2B(surf,chain) \
do { \
instsurf_t *inst = (surf)->instsurf; \
if (__builtin_expect(!inst, 1)) \
(surf)->tinst = inst = get_instsurf (bctx); \
inst->surface = (surf); \
*(chain##_tail) = inst; \
(chain##_tail) = &inst->tex_chain; \
*(chain##_tail) = 0; \
} while (0)
#define CHAIN_SURF_B2F(surf,chain) \
do { \
instsurf_t *inst = (surf)->instsurf; \
if (__builtin_expect(!inst, 1)) \
(surf)->tinst = inst = get_instsurf (bctx); \
inst->surface = (surf); \
inst->tex_chain = (chain); \
(chain) = inst; \
} while (0)
#define GET_RELEASE(type,name) \
static inline type * \
get_##name (bspctx_t *bctx) \
{ \
type *ele; \
if (!bctx->free_##name##s) { \
int i; \
bctx->free_##name##s = calloc (ALLOC_CHUNK, sizeof (type)); \
for (i = 0; i < ALLOC_CHUNK - 1; i++) \
bctx->free_##name##s[i]._next = &bctx->free_##name##s[i + 1]; \
} \
ele = bctx->free_##name##s; \
bctx->free_##name##s = ele->_next; \
ele->_next = 0; \
*bctx->name##s_tail = ele; \
bctx->name##s_tail = &ele->_next; \
return ele; \
} \
static inline void \
release_##name##s (bspctx_t *bctx) \
{ \
if (bctx->name##s) { \
*bctx->name##s_tail = bctx->free_##name##s; \
bctx->free_##name##s = bctx->name##s; \
bctx->name##s = 0; \
bctx->name##s_tail = &bctx->name##s; \
} \
}
GET_RELEASE (elechain_t, elechain)
GET_RELEASE (elements_t, elements)
GET_RELEASE (instsurf_t, static_instsurf)
GET_RELEASE (instsurf_t, instsurf)
static void
add_texture (texture_t *tx, vulkan_ctx_t *ctx)
{
bspctx_t *bctx = ctx->bsp_context;
vulktex_t *tex = tx->render;
DARRAY_APPEND (&bctx->texture_chains, tex);
tex->tex_chain = 0;
tex->tex_chain_tail = &tex->tex_chain;
tex->elechain = 0;
tex->elechain_tail = &tex->elechain;
}
static void
init_surface_chains (model_t *model, vulkan_ctx_t *ctx)
{
bspctx_t *bctx = ctx->bsp_context;
int i;
release_static_instsurfs (bctx);
release_instsurfs (bctx);
for (i = 0; i < model->nummodelsurfaces; i++) {
model->surfaces[i].instsurf = get_static_instsurf (bctx);
model->surfaces[i].instsurf->surface = &model->surfaces[i];
}
}
static inline void
clear_tex_chain (vulktex_t *tex)
{
tex->tex_chain = 0;
tex->tex_chain_tail = &tex->tex_chain;
tex->elechain = 0;
tex->elechain_tail = &tex->elechain;
}
static void
clear_texture_chains (bspctx_t *bctx)
{
for (size_t i = 0; i < bctx->texture_chains.size; i++) {
if (!bctx->texture_chains.a[i])
continue;
clear_tex_chain (bctx->texture_chains.a[i]);
}
clear_tex_chain (r_notexture_mip->render);
release_elechains (bctx);
release_elementss (bctx);
release_instsurfs (bctx);
}
void
Vulkan_ClearElements (vulkan_ctx_t *ctx)
{
bspctx_t *bctx = ctx->bsp_context;
release_elechains (bctx);
release_elementss (bctx);
}
static void
update_lightmap (msurface_t *surf, vulkan_ctx_t *ctx)
{
int maps;
for (maps = 0; maps < MAXLIGHTMAPS && surf->styles[maps] != 255; maps++)
if (d_lightstylevalue[surf->styles[maps]] != surf->cached_light[maps])
goto dynamic;
if ((surf->dlightframe == r_framecount) || surf->cached_dlight) {
dynamic:
if (r_dynamic->int_val)
Vulkan_BuildLightMap (surf, ctx);
}
}
static inline void
chain_surface (msurface_t *surf, vec_t *transform, float *color,
vulkan_ctx_t *ctx)
{
bspctx_t *bctx = ctx->bsp_context;
instsurf_t *is;
if (surf->flags & SURF_DRAWSKY) {
CHAIN_SURF_F2B (surf, bctx->sky_chain);
} else if ((surf->flags & SURF_DRAWTURB) || (color && color[3] < 1.0)) {
CHAIN_SURF_B2F (surf, bctx->waterchain);
} else {
texture_t *tx;
vulktex_t *tex;
if (!surf->texinfo->texture->anim_total)
tx = surf->texinfo->texture;
else
tx = R_TextureAnimation (surf);
tex = tx->render;
CHAIN_SURF_F2B (surf, tex->tex_chain);
update_lightmap (surf, ctx);
}
if (!(is = surf->instsurf))
is = surf->tinst;
is->transform = transform;
is->color = color;
}
static void
register_textures (model_t *model, vulkan_ctx_t *ctx)
{
int i;
texture_t *tex;
for (i = 0; i < model->numtextures; i++) {
tex = model->textures[i];
if (!tex)
continue;
add_texture (tex, ctx);
}
}
static void
clear_textures (vulkan_ctx_t *ctx)
{
bspctx_t *bctx = ctx->bsp_context;
bctx->texture_chains.size = 0;
}
void
Vulkan_RegisterTextures (model_t **models, int num_models, vulkan_ctx_t *ctx)
{
int i;
model_t *m;
clear_textures (ctx);
init_surface_chains (r_worldentity.model, ctx);
add_texture (r_notexture_mip, ctx);
register_textures (r_worldentity.model, ctx);
for (i = 0; i < num_models; i++) {
m = models[i];
if (!m)
continue;
// sub-models are done as part of the main model
if (*m->name == '*')
continue;
// world has already been done, not interested in non-brush models
if (m == r_worldentity.model || m->type != mod_brush)
continue;
m->numsubmodels = 1; // no support for submodels in non-world model
register_textures (m, ctx);
}
}
static elechain_t *
add_elechain (vulktex_t *tex, int ec_index, bspctx_t *bctx)
{
elechain_t *ec;
ec = get_elechain (bctx);
ec->elements = get_elements (bctx);
ec->index = ec_index;
ec->transform = 0;
ec->color = 0;
*tex->elechain_tail = ec;
tex->elechain_tail = &ec->next;
return ec;
}
static void
count_verts_inds (model_t **models, msurface_t *fa,
uint32_t *verts, uint32_t *inds)
{
*verts = fa->numedges;
*inds = fa->numedges + 1;
}
static bsppoly_t *
build_surf_displist (model_t **models, msurface_t *fa, int base,
bspvert_t **vert_list)
{
int numverts;
int numindices;
int i;
vec_t *vec;
mvertex_t *vertices;
medge_t *edges;
int *surfedges;
int index;
bspvert_t *verts;
bsppoly_t *poly;
uint32_t *ind;
float s, t;
if (fa->ec_index < 0) {
// instance model
vertices = models[~fa->ec_index]->vertexes;
edges = models[~fa->ec_index]->edges;
surfedges = models[~fa->ec_index]->surfedges;
} else {
// main or sub model
vertices = r_worldentity.model->vertexes;
edges = r_worldentity.model->edges;
surfedges = r_worldentity.model->surfedges;
}
// create a triangle fan
numverts = fa->numedges;
numindices = numverts + 1;
verts = *vert_list;
// surf->polys is set to the next slot before the call
poly = (bsppoly_t *) fa->polys;
poly->count = numindices;
for (i = 0, ind = poly->indices; i < numverts; i++) {
*ind++ = base + i;
}
*ind++ = -1; // end of primitive
fa->polys = (glpoly_t *) poly;
for (i = 0; i < numverts; i++) {
index = surfedges[fa->firstedge + i];
if (index > 0) {
vec = vertices[edges[index].v[0]].position;
} else {
vec = vertices[edges[-index].v[1]].position;
}
s = DotProduct (vec, fa->texinfo->vecs[0]) + fa->texinfo->vecs[0][3];
t = DotProduct (vec, fa->texinfo->vecs[1]) + fa->texinfo->vecs[1][3];
VectorCopy (vec, verts[i].vertex);
verts[i].vertex[3] = 1;
verts[i].tlst[0] = s / fa->texinfo->texture->width;
verts[i].tlst[1] = t / fa->texinfo->texture->height;
//lightmap texture coordinates
if (!fa->lightpic) {
// sky and water textures don't have lightmaps
verts[i].tlst[2] = 0;
verts[i].tlst[3] = 0;
continue;
}
s = DotProduct (vec, fa->texinfo->vecs[0]) + fa->texinfo->vecs[0][3];
t = DotProduct (vec, fa->texinfo->vecs[1]) + fa->texinfo->vecs[1][3];
s -= fa->texturemins[0];
t -= fa->texturemins[1];
s += fa->lightpic->rect->x * 16 + 8;
t += fa->lightpic->rect->y * 16 + 8;
s /= 16;
t /= 16;
verts[i].tlst[2] = s * fa->lightpic->size;
verts[i].tlst[3] = t * fa->lightpic->size;
}
*vert_list += numverts;
return (bsppoly_t *) &poly->indices[numindices];
}
void
Vulkan_BuildDisplayLists (model_t **models, int num_models, vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
bspctx_t *bctx = ctx->bsp_context;
int i, j;
int vertex_index_base;
model_t *m;
dmodel_t *dm;
msurface_t *surf;
qfv_stagebuf_t *stage;
bspvert_t *vertices;
bsppoly_t *poly;
QuatSet (0, 0, sqrt(0.5), sqrt(0.5), bctx->sky_fix); // proper skies
QuatSet (0, 0, 0, 1, bctx->sky_rotation[0]);
QuatCopy (bctx->sky_rotation[0], bctx->sky_rotation[1]);
QuatSet (0, 0, 0, 0, bctx->sky_velocity);
QuatExp (bctx->sky_velocity, bctx->sky_velocity);
bctx->sky_time = vr_data.realtime;
// now run through all surfaces, chaining them to their textures, thus
// effectively sorting the surfaces by texture (without worrying about
// surface order on the same texture chain).
for (i = 0; i < num_models; i++) {
m = models[i];
if (!m)
continue;
// sub-models are done as part of the main model
if (*m->name == '*')
continue;
// non-bsp models don't have surfaces.
dm = m->submodels;
for (j = 0; j < m->numsurfaces; j++) {
vulktex_t *tex;
if (j == dm->firstface + dm->numfaces) {
dm++;
if (dm - m->submodels == m->numsubmodels) {
// limit the surfaces
// probably never hit
Sys_Printf ("R_BuildDisplayLists: too many surfaces\n");
m->numsurfaces = j;
break;
}
}
surf = m->surfaces + j;
surf->ec_index = dm - m->submodels;
if (!surf->ec_index && m != r_worldentity.model)
surf->ec_index = -1 - i; // instanced model
tex = surf->texinfo->texture->render;
// append surf to the texture chain
CHAIN_SURF_F2B (surf, tex->tex_chain);
}
}
// All vertices from all brush models go into one giant vbo.
uint32_t vertex_count = 0;
uint32_t index_count = 0;
uint32_t poly_count = 0;
for (size_t i = 0; i < bctx->texture_chains.size; i++) {
vulktex_t *tex = bctx->texture_chains.a[i];
for (instsurf_t *is = tex->tex_chain; is; is = is->tex_chain) {
uint32_t verts, inds;
count_verts_inds (models, is->surface, &verts, &inds);
vertex_count += verts;
index_count += inds;
poly_count++;
}
}
size_t frames = bctx->frames.size;
size_t index_buffer_size = index_count * frames * sizeof (uint32_t);
size_t vertex_buffer_size = vertex_count * sizeof (bspvert_t);
stage = QFV_CreateStagingBuffer (device, vertex_buffer_size, 1,
ctx->cmdpool);
qfv_packet_t *packet = QFV_PacketAcquire (stage);
vertices = QFV_PacketExtend (packet, vertex_buffer_size);
vertex_index_base = 0;
// holds all the polygon definitions (count + indices)
bctx->polys = malloc ((index_count + poly_count) * sizeof (uint32_t));
// All usable surfaces have been chained to the (base) texture they use.
// Run through the textures, using their chains to build display maps.
// For animated textures, if a surface is on one texture of the group, it
// will be on all.
poly = bctx->polys;
int count = 0;
for (size_t i = 0; i < bctx->texture_chains.size; i++) {
vulktex_t *tex;
instsurf_t *is;
elechain_t *ec = 0;
tex = bctx->texture_chains.a[i];
for (is = tex->tex_chain; is; is = is->tex_chain) {
msurface_t *surf = is->surface;
if (!tex->elechain) {
ec = add_elechain (tex, surf->ec_index, bctx);
}
if (surf->ec_index != ec->index) { // next sub-model
ec = add_elechain (tex, surf->ec_index, bctx);
}
surf->polys = (glpoly_t *) poly;
poly = build_surf_displist (models, surf, vertex_index_base,
&vertices);
vertex_index_base += surf->numedges;
count++;
}
}
clear_texture_chains (bctx);
Sys_MaskPrintf (SYS_VULKAN,
"R_BuildDisplayLists: verts:%u, inds:%u, polys:%u (%d) %zd\n",
vertex_count, index_count, poly_count, count,
((size_t) poly - (size_t) bctx->polys)/sizeof(uint32_t));
if (index_buffer_size > bctx->index_buffer_size) {
if (bctx->index_buffer) {
dfunc->vkUnmapMemory (device->dev, bctx->index_memory);
dfunc->vkDestroyBuffer (device->dev, bctx->index_buffer, 0);
dfunc->vkFreeMemory (device->dev, bctx->index_memory, 0);
}
bctx->index_buffer
= QFV_CreateBuffer (device, index_buffer_size,
VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
bctx->index_memory
= QFV_AllocBufferMemory (device, bctx->index_buffer,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
index_buffer_size, 0);
QFV_BindBufferMemory (device,
bctx->index_buffer, bctx->index_memory, 0);
bctx->index_buffer_size = index_buffer_size;
void *data;
dfunc->vkMapMemory (device->dev, bctx->index_memory, 0,
index_buffer_size, 0, &data);
uint32_t *index_data = data;
for (size_t i = 0; i < frames; i++) {
uint32_t offset = index_count * i;
bctx->frames.a[i].index_data = index_data + offset;
bctx->frames.a[i].index_offset = offset * sizeof (uint32_t);
bctx->frames.a[i].index_count = 0;
}
}
if (vertex_buffer_size > bctx->vertex_buffer_size) {
if (bctx->vertex_buffer) {
dfunc->vkDestroyBuffer (device->dev, bctx->vertex_buffer, 0);
dfunc->vkFreeMemory (device->dev, bctx->vertex_memory, 0);
}
bctx->vertex_buffer
= QFV_CreateBuffer (device, vertex_buffer_size,
VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
bctx->vertex_memory
= QFV_AllocBufferMemory (device, bctx->vertex_buffer,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
vertex_buffer_size, 0);
QFV_BindBufferMemory (device,
bctx->vertex_buffer, bctx->vertex_memory, 0);
bctx->vertex_buffer_size = vertex_buffer_size;
}
VkBufferMemoryBarrier wr_barrier = {
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, 0,
0, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED,
bctx->vertex_buffer, 0, vertex_buffer_size,
};
dfunc->vkCmdPipelineBarrier (packet->cmd,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0, 0, 0, 1, &wr_barrier, 0, 0);
VkBufferCopy copy_region = { packet->offset, 0, vertex_buffer_size };
dfunc->vkCmdCopyBuffer (packet->cmd, stage->buffer,
bctx->vertex_buffer, 1, &copy_region);
VkBufferMemoryBarrier rd_barrier = {
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, 0,
VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,
VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED,
bctx->vertex_buffer, 0, vertex_buffer_size,
};
dfunc->vkCmdPipelineBarrier (packet->cmd,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
0, 0, 0, 1, &rd_barrier, 0, 0);
QFV_PacketSubmit (packet);
QFV_DestroyStagingBuffer (stage);
}
static void
R_DrawBrushModel (entity_t *e, vulkan_ctx_t *ctx)
{
float dot, radius;
int i;
unsigned k;
model_t *model;
plane_t *plane;
msurface_t *surf;
qboolean rotated;
vec3_t mins, maxs, org;
model = e->model;
if (e->transform[0] != 1 || e->transform[5] != 1 || e->transform[10] != 1) {
rotated = true;
radius = model->radius;
if (R_CullSphere (e->origin, radius))
return;
} else {
rotated = false;
VectorAdd (e->origin, model->mins, mins);
VectorAdd (e->origin, model->maxs, maxs);
if (R_CullBox (mins, maxs))
return;
}
VectorSubtract (r_refdef.vieworg, e->origin, org);
if (rotated) {
vec3_t temp;
VectorCopy (org, temp);
org[0] = DotProduct (temp, e->transform + 0);
org[1] = DotProduct (temp, e->transform + 4);
org[2] = DotProduct (temp, e->transform + 8);
}
// calculate dynamic lighting for bmodel if it's not an instanced model
if (model->firstmodelsurface != 0 && r_dlight_lightmap->int_val) {
vec3_t lightorigin;
for (k = 0; k < r_maxdlights; k++) {
if ((r_dlights[k].die < vr_data.realtime)
|| (!r_dlights[k].radius))
continue;
VectorSubtract (r_dlights[k].origin, e->origin, lightorigin);
R_RecursiveMarkLights (lightorigin, &r_dlights[k], k,
model->nodes + model->hulls[0].firstclipnode);
}
}
surf = &model->surfaces[model->firstmodelsurface];
for (i = 0; i < model->nummodelsurfaces; i++, surf++) {
// find the node side on which we are
plane = surf->plane;
dot = PlaneDiff (org, plane);
// enqueue the polygon
if (((surf->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON))
|| (!(surf->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON))) {
chain_surface (surf, e->transform, e->colormod, ctx);
}
}
}
static inline void
visit_leaf (mleaf_t *leaf)
{
// deal with model fragments in this leaf
if (leaf->efrags)
R_StoreEfrags (leaf->efrags);
}
static inline int
get_side (mnode_t *node)
{
// find the node side on which we are
plane_t *plane = node->plane;
if (plane->type < 3)
return (r_origin[plane->type] - plane->dist) < 0;
return (DotProduct (r_origin, plane->normal) - plane->dist) < 0;
}
static inline void
visit_node (mnode_t *node, int side, vulkan_ctx_t *ctx)
{
int c;
msurface_t *surf;
// sneaky hack for side = side ? SURF_PLANEBACK : 0;
side = (~side + 1) & SURF_PLANEBACK;
// draw stuff
if ((c = node->numsurfaces)) {
surf = r_worldentity.model->surfaces + node->firstsurface;
for (; c; c--, surf++) {
if (surf->visframe != r_visframecount)
continue;
// side is either 0 or SURF_PLANEBACK
if (side ^ (surf->flags & SURF_PLANEBACK))
continue; // wrong side
chain_surface (surf, 0, 0, ctx);
}
}
}
static inline int
test_node (mnode_t *node)
{
if (node->contents < 0)
return 0;
if (node->visframe != r_visframecount)
return 0;
if (R_CullBox (node->minmaxs, node->minmaxs + 3))
return 0;
return 1;
}
static void
R_VisitWorldNodes (model_t *model, vulkan_ctx_t *ctx)
{
typedef struct {
mnode_t *node;
int side;
} rstack_t;
rstack_t *node_ptr;
rstack_t *node_stack;
mnode_t *node;
mnode_t *front;
int side;
node = model->nodes;
// +2 for paranoia
node_stack = alloca ((model->depth + 2) * sizeof (rstack_t));
node_ptr = node_stack;
while (1) {
while (test_node (node)) {
side = get_side (node);
front = node->children[side];
if (test_node (front)) {
node_ptr->node = node;
node_ptr->side = side;
node_ptr++;
node = front;
continue;
}
if (front->contents < 0 && front->contents != CONTENTS_SOLID)
visit_leaf ((mleaf_t *) front);
visit_node (node, side, ctx);
node = node->children[!side];
}
if (node->contents < 0 && node->contents != CONTENTS_SOLID)
visit_leaf ((mleaf_t *) node);
if (node_ptr != node_stack) {
node_ptr--;
node = node_ptr->node;
side = node_ptr->side;
visit_node (node, side, ctx);
node = node->children[!side];
continue;
}
break;
}
if (node->contents < 0 && node->contents != CONTENTS_SOLID)
visit_leaf ((mleaf_t *) node);
}
static void
draw_elechain (elechain_t *ec, VkPipelineLayout layout, qfv_devfuncs_t *dfunc,
VkCommandBuffer cmd)
{
elements_t *el;
/*if (colloc >= 0) {
float *color;
color = ec->color;
if (!color)
color = bctx->default_color;
if (!QuatCompare (color, bctx->last_color)) {
QuatCopy (color, bctx->last_color);
qfeglVertexAttrib4fv (quake_bsp.color.location, color);
}
}*/
if (ec->transform) {
dfunc->vkCmdPushConstants (cmd, layout, VK_SHADER_STAGE_VERTEX_BIT,
0, 16 * sizeof (float), ec->transform);
}
for (el = ec->elements; el; el = el->next) {
//FIXME check if these are contiguous and if so merge into one
//command
if (!el->index_count)
continue;
dfunc->vkCmdDrawIndexed (cmd, el->index_count, 1, el->first_index,
0, 0);
el->first_index = 0;
el->index_count = 0;
}
}
static VkImageView
get_view (qfv_tex_t *tex)
{
if (tex) {
return tex->view;
}
return 0;
}
static void
bsp_begin (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
bspctx_t *bctx = ctx->bsp_context;
//XXX quat_t fog;
bctx->default_color[3] = 1;
QuatCopy (bctx->default_color, bctx->last_color);
__auto_type cframe = &ctx->framebuffers.a[ctx->curFrame];
bspframe_t *bframe = &bctx->frames.a[ctx->curFrame];
VkCommandBuffer cmd = bframe->bsp_cmd;
DARRAY_APPEND (cframe->subCommand, cmd);
VkDescriptorBufferInfo bufferInfo = {
ctx->matrices.buffer_3d, 0, VK_WHOLE_SIZE
};
VkDescriptorImageInfo imageInfo[] = {
{ bctx->sampler,
QFV_ScrapImageView (bctx->light_scrap),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
{ bctx->sampler,
QFV_ScrapImageView (bctx->light_scrap),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
{ bctx->sampler,
QFV_ScrapImageView (bctx->light_scrap),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
{ bctx->sampler,
get_view (bctx->skysheet_tex),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
{ bctx->sampler,
get_view (bctx->skybox_tex),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
};
VkWriteDescriptorSet write[] = {
{ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0,
0, 0, 1,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0, &bufferInfo, 0 },
{ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0,
1, 0, 1,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
&imageInfo[0], 0, 0 },
{ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0,
2, 0, 1,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
&imageInfo[1], 0, 0 },
{ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0,
3, 0, 1,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
&imageInfo[2], 0, 0 },
{ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0,
4, 0, 1,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
&imageInfo[3], 0, 0 },
{ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0,
5, 0, 1,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
&imageInfo[4], 0, 0 },
};
dfunc->vkResetCommandBuffer (cmd, 0);
VkCommandBufferInheritanceInfo inherit = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO, 0,
ctx->renderpass.renderpass, 0,
cframe->framebuffer,
0, 0, 0,
};
VkCommandBufferBeginInfo beginInfo = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, 0,
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT
| VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, &inherit,
};
dfunc->vkBeginCommandBuffer (cmd, &beginInfo);
dfunc->vkCmdBindPipeline (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
bctx->main);
VkViewport viewport = {0, 0, vid.width, vid.height, 0, 1};
VkRect2D scissor = { {0, 0}, {vid.width, vid.height} };
dfunc->vkCmdSetViewport (cmd, 0, 1, &viewport);
dfunc->vkCmdSetScissor (cmd, 0, 1, &scissor);
VkDeviceSize offsets[] = { 0 };
dfunc->vkCmdBindVertexBuffers (cmd, 0, 1, &bctx->vertex_buffer, offsets);
dfunc->vkCmdBindIndexBuffer (cmd, bctx->index_buffer, bframe->index_offset,
VK_INDEX_TYPE_UINT32);
dfunc->vkCmdPushDescriptorSetKHR (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
bctx->layout, 0, 4, write);
//XXX glsl_Fog_GetColor (fog);
//XXX fog[3] = glsl_Fog_GetDensity () / 64.0;
}
static void
bsp_end (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
bspctx_t *bctx = ctx->bsp_context;
bspframe_t *bframe = &bctx->frames.a[ctx->curFrame];
dfunc->vkEndCommandBuffer (bframe->bsp_cmd);
}
/*static void
turb_begin (bspctx_t *bctx)
{
quat_t fog;
bctx->default_color[3] = bound (0, r_wateralpha->value, 1);
QuatCopy (bctx->default_color, bctx->last_color);
qfeglVertexAttrib4fv (quake_bsp.color.location, default_color);
Mat4Mult (glsl_projection, glsl_view, bsp_vp);
qfeglUseProgram (quake_turb.program);
qfeglEnableVertexAttribArray (quake_turb.vertex.location);
qfeglEnableVertexAttribArray (quake_turb.tlst.location);
qfeglDisableVertexAttribArray (quake_turb.color.location);
qfeglVertexAttrib4fv (quake_turb.color.location, default_color);
glsl_Fog_GetColor (fog);
fog[3] = glsl_Fog_GetDensity () / 64.0;
qfeglUniform4fv (quake_turb.fog.location, 1, fog);
qfeglUniform1i (quake_turb.palette.location, 1);
qfeglActiveTexture (GL_TEXTURE0 + 1);
qfeglEnable (GL_TEXTURE_2D);
qfeglBindTexture (GL_TEXTURE_2D, glsl_palette);
qfeglUniform1f (quake_turb.time.location, vr_data.realtime);
qfeglUniform1i (quake_turb.texture.location, 0);
qfeglActiveTexture (GL_TEXTURE0 + 0);
qfeglEnable (GL_TEXTURE_2D);
qfeglBindBuffer (GL_ARRAY_BUFFER, bsp_vbo);
}*/
/*static void
turb_end (bspctx_t *bctx)
{
qfeglDisableVertexAttribArray (quake_turb.vertex.location);
qfeglDisableVertexAttribArray (quake_turb.tlst.location);
qfeglActiveTexture (GL_TEXTURE0 + 0);
qfeglDisable (GL_TEXTURE_2D);
qfeglActiveTexture (GL_TEXTURE0 + 1);
qfeglDisable (GL_TEXTURE_2D);
qfeglBindBuffer (GL_ARRAY_BUFFER, 0);
}*/
/*XXX static void
spin (mat4_t mat, bspctx_t *bctx)
{
quat_t q;
mat4_t m;
float blend;
while (vr_data.realtime - bctx->sky_time > 1) {
QuatCopy (bctx->sky_rotation[1], bctx->sky_rotation[0]);
QuatMult (bctx->sky_velocity, bctx->sky_rotation[0],
bctx->sky_rotation[1]);
bctx->sky_time += 1;
}
blend = bound (0, (vr_data.realtime - bctx->sky_time), 1);
QuatBlend (bctx->sky_rotation[0], bctx->sky_rotation[1], blend, q);
QuatMult (bctx->sky_fix, q, q);
Mat4Identity (mat);
VectorNegate (r_origin, mat + 12);
QuatToMatrix (q, m, 1, 1);
Mat4Mult (m, mat, mat);
}*/
static void
sky_begin (bspctx_t *bctx)
{
//XXX mat4_t mat;
//XXX quat_t fog;
bctx->default_color[3] = 1;
QuatCopy (bctx->default_color, bctx->last_color);
/* qfeglVertexAttrib4fv (quake_bsp.color.location, bctx->default_color);
Mat4Mult (glsl_projection, glsl_view, bsp_vp);
if (bctx->skybox_tex) {
sky_params.mvp_matrix = &quake_skybox.mvp_matrix;
sky_params.vertex = &quake_skybox.vertex;
sky_params.sky_matrix = &quake_skybox.sky_matrix;
sky_params.fog = &quake_skybox.fog;
qfeglUseProgram (quake_skybox.program);
qfeglEnableVertexAttribArray (quake_skybox.vertex.location);
qfeglUniform1i (quake_skybox.sky.location, 0);
qfeglActiveTexture (GL_TEXTURE0 + 0);
qfeglEnable (GL_TEXTURE_CUBE_MAP);
qfeglBindTexture (GL_TEXTURE_CUBE_MAP, skybox_tex);
} else {
sky_params.mvp_matrix = &quake_skyid.mvp_matrix;
sky_params.sky_matrix = &quake_skyid.sky_matrix;
sky_params.vertex = &quake_skyid.vertex;
sky_params.fog = &quake_skyid.fog;
qfeglUseProgram (quake_skyid.program);
qfeglEnableVertexAttribArray (quake_skyid.vertex.location);
qfeglUniform1i (quake_skyid.palette.location, 2);
qfeglActiveTexture (GL_TEXTURE0 + 2);
qfeglEnable (GL_TEXTURE_2D);
qfeglBindTexture (GL_TEXTURE_2D, glsl_palette);
qfeglUniform1f (quake_skyid.time.location, vr_data.realtime);
qfeglUniform1i (quake_skyid.trans.location, 0);
qfeglActiveTexture (GL_TEXTURE0 + 0);
qfeglEnable (GL_TEXTURE_2D);
qfeglUniform1i (quake_skyid.solid.location, 1);
qfeglActiveTexture (GL_TEXTURE0 + 1);
qfeglEnable (GL_TEXTURE_2D);
}
glsl_Fog_GetColor (fog);
fog[3] = glsl_Fog_GetDensity () / 64.0;
qfeglUniform4fv (sky_params.fog->location, 1, fog);
spin (mat);
qfeglUniformMatrix4fv (sky_params.sky_matrix->location, 1, false, mat);
qfeglBindBuffer (GL_ARRAY_BUFFER, bsp_vbo);*/
}
static void
sky_end (bspctx_t *bctx)
{
/*XXX qfeglDisableVertexAttribArray (sky_params.vertex->location);
qfeglActiveTexture (GL_TEXTURE0 + 0);
qfeglDisable (GL_TEXTURE_2D);
qfeglDisable (GL_TEXTURE_CUBE_MAP);
qfeglActiveTexture (GL_TEXTURE0 + 1);
qfeglDisable (GL_TEXTURE_2D);
qfeglActiveTexture (GL_TEXTURE0 + 2);
qfeglDisable (GL_TEXTURE_2D);
qfeglBindBuffer (GL_ARRAY_BUFFER, 0);*/
}
static inline void
add_surf_elements (vulktex_t *tex, instsurf_t *is,
elechain_t **ec, elements_t **el,
bspctx_t *bctx, bspframe_t *bframe)
{
msurface_t *surf = is->surface;
bsppoly_t *poly = (bsppoly_t *) surf->polys;
if (!tex->elechain) {
(*ec) = add_elechain (tex, surf->ec_index, bctx);
(*ec)->transform = is->transform;
(*ec)->color = is->color;
(*el) = (*ec)->elements;
(*el)->first_index = bframe->index_count;
}
if (is->transform != (*ec)->transform || is->color != (*ec)->color) {
(*ec) = add_elechain (tex, surf->ec_index, bctx);
(*ec)->transform = is->transform;
(*ec)->color = is->color;
(*el) = (*ec)->elements;
(*el)->first_index = bframe->index_count;
}
memcpy (bframe->index_data + bframe->index_count,
poly->indices, poly->count * sizeof (poly->indices[0]));
(*el)->index_count += poly->count;
bframe->index_count += poly->count;
}
static void
build_tex_elechain (vulktex_t *tex, bspctx_t *bctx, bspframe_t *bframe)
{
instsurf_t *is;
elechain_t *ec = 0;
elements_t *el = 0;
for (is = tex->tex_chain; is; is = is->tex_chain) {
add_surf_elements (tex, is, &ec, &el, bctx, bframe);
}
}
void
Vulkan_DrawWorld (vulkan_ctx_t *ctx)
{
static float identity[] = {
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1,
};
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
bspctx_t *bctx = ctx->bsp_context;
bspframe_t *bframe = &bctx->frames.a[ctx->curFrame];
entity_t worldent;
clear_texture_chains (bctx); // do this first for water and skys
bframe->index_count = 0;
memset (&worldent, 0, sizeof (worldent));
worldent.model = r_worldentity.model;
//vulktex_t *tex = r_worldentity.model->skytexture->render;
//bctx->skysheet_tex = tex->tex;
currententity = &worldent;
R_VisitWorldNodes (worldent.model, ctx);
if (r_drawentities->int_val) {
entity_t *ent;
for (ent = r_ent_queue; ent; ent = ent->next) {
if (ent->model->type != mod_brush)
continue;
currententity = ent;
R_DrawBrushModel (ent, ctx);
}
}
Vulkan_FlushLightmaps (ctx);
bsp_begin (ctx);
dfunc->vkCmdPushConstants (bframe->bsp_cmd, bctx->layout,
VK_SHADER_STAGE_VERTEX_BIT,
0, 16 * sizeof (float), identity);
float frag_pc[8] = { };
dfunc->vkCmdPushConstants (bframe->bsp_cmd, bctx->layout,
VK_SHADER_STAGE_FRAGMENT_BIT,
64, 8 * sizeof (float), &frag_pc);
//XXX qfeglActiveTexture (GL_TEXTURE0 + 0);
for (size_t i = 0; i < bctx->texture_chains.size; i++) {
vulktex_t *tex;
elechain_t *ec = 0;
tex = bctx->texture_chains.a[i];
build_tex_elechain (tex, bctx, bframe);
//XXX if (tex->elechain)
//XXX qfeglBindTexture (GL_TEXTURE_2D, tex->gl_texturenum);
for (ec = tex->elechain; ec; ec = ec->next) {
draw_elechain (ec, bctx->layout, dfunc, bframe->bsp_cmd);
}
tex->elechain = 0;
tex->elechain_tail = &tex->elechain;
}
bsp_end (ctx);
}
void
Vulkan_DrawWaterSurfaces (vulkan_ctx_t *ctx)
{
/* bspctx_t *bctx = ctx->bsp_context;
instsurf_t *is;
msurface_t *surf;
vulktex_t *tex = 0;
elechain_t *ec = 0;
elements_t *el = 0;
if (!bctx->waterchain)
return;
turb_begin (bctx);
for (is = bctx->waterchain; is; is = is->tex_chain) {
surf = is->surface;
if (tex != surf->texinfo->texture) {
if (tex) {
//XXX qfeglBindTexture (GL_TEXTURE_2D, tex->gl_texturenum);
//for (ec = tex->elechain; ec; ec = ec->next)
// draw_elechain (ec, quake_turb.mvp_matrix.location,
// quake_turb.vertex.location,
// quake_turb.tlst.location,
// quake_turb.color.location);
tex->elechain = 0;
tex->elechain_tail = &tex->elechain;
}
tex = surf->texinfo->texture;
}
add_surf_elements (tex, is, &ec, &el, bctx);
}
if (tex) {
//XXX qfeglBindTexture (GL_TEXTURE_2D, tex->gl_texturenum);
//for (ec = tex->elechain; ec; ec = ec->next)
// draw_elechain (ec, quake_turb.mvp_matrix.location,
// quake_turb.vertex.location,
// quake_turb.tlst.location,
// quake_turb.color.location);
tex->elechain = 0;
tex->elechain_tail = &tex->elechain;
}
turb_end (bctx);
bctx->waterchain = 0;
bctx->waterchain_tail = &bctx->waterchain;*/
}
void
Vulkan_DrawSky (vulkan_ctx_t *ctx)
{
bspctx_t *bctx = ctx->bsp_context;
bspframe_t *bframe = &bctx->frames.a[ctx->curFrame];
instsurf_t *is;
msurface_t *surf;
vulktex_t *tex = 0;
elechain_t *ec = 0;
elements_t *el = 0;
if (!bctx->sky_chain)
return;
sky_begin (bctx);
for (is = bctx->sky_chain; is; is = is->tex_chain) {
surf = is->surface;
if (tex != surf->texinfo->texture->render) {
if (tex) {
if (!bctx->skybox_tex) {
//XXX qfeglActiveTexture (GL_TEXTURE0 + 0);
//qfeglBindTexture (GL_TEXTURE_2D, tex->sky_tex[0]);
//qfeglActiveTexture (GL_TEXTURE0 + 1);
//qfeglBindTexture (GL_TEXTURE_2D, tex->sky_tex[1]);
}
//for (ec = tex->elechain; ec; ec = ec->next)
// draw_elechain (ec, sky_params.mvp_matrix->location,
// sky_params.vertex->location, -1, -1);
tex->elechain = 0;
tex->elechain_tail = &tex->elechain;
}
tex = surf->texinfo->texture->render;
}
add_surf_elements (tex, is, &ec, &el, bctx, bframe);
}
if (tex) {
if (!bctx->skybox_tex) {
//XXX qfeglActiveTexture (GL_TEXTURE0 + 0);
//qfeglBindTexture (GL_TEXTURE_2D, tex->sky_tex[0]);
//qfeglActiveTexture (GL_TEXTURE0 + 1);
//qfeglBindTexture (GL_TEXTURE_2D, tex->sky_tex[1]);
}
//for (ec = tex->elechain; ec; ec = ec->next)
// draw_elechain (ec, sky_params.mvp_matrix->location,
// sky_params.vertex->location, -1, -1);
tex->elechain = 0;
tex->elechain_tail = &tex->elechain;
}
sky_end (bctx);
bctx->sky_chain = 0;
bctx->sky_chain_tail = &bctx->sky_chain;
}
void
Vulkan_Bsp_Init (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
bspctx_t *bctx = calloc (1, sizeof (bspctx_t));
ctx->bsp_context = bctx;
bctx->waterchain_tail = &bctx->waterchain;
bctx->sky_chain_tail = &bctx->sky_chain;
bctx->static_instsurfs_tail = &bctx->static_instsurfs;
bctx->elechains_tail = &bctx->elechains;
bctx->elementss_tail = &bctx->elementss;
bctx->instsurfs_tail = &bctx->instsurfs;
bctx->light_scrap = QFV_CreateScrap (device, 2048, tex_frgba, ctx->staging);
size_t size = QFV_ScrapSize (bctx->light_scrap);
bctx->light_stage = QFV_CreateStagingBuffer (device, size, 3,
ctx->cmdpool);
DARRAY_INIT (&bctx->texture_chains, 64);
size_t frames = ctx->framebuffers.size;
DARRAY_INIT (&bctx->frames, frames);
DARRAY_RESIZE (&bctx->frames, frames);
bctx->frames.grow = 0;
bctx->main = Vulkan_CreatePipeline (ctx, "quakebsp.main");
bctx->layout = QFV_GetPipelineLayout (ctx, "quakebsp");
bctx->sampler = QFV_GetSampler (ctx, "quakebsp");
__auto_type layouts = QFV_AllocDescriptorSetLayoutSet (frames, alloca);
for (size_t i = 0; i < layouts->size; i++) {
layouts->a[i] = QFV_GetDescriptorSetLayout (ctx, "quakebsp");
}
__auto_type cmdBuffers = QFV_AllocCommandBufferSet (3 * frames, alloca);
QFV_AllocateCommandBuffers (device, ctx->cmdpool, 1, cmdBuffers);
for (size_t i = 0; i < frames; i++) {
__auto_type bframe = &bctx->frames.a[i];
bframe->bsp_cmd = cmdBuffers->a[i];
bframe->turb_cmd = cmdBuffers->a[i];
bframe->sky_cmd = cmdBuffers->a[i];
}
}
void
Vulkan_Bsp_Shutdown (struct vulkan_ctx_s *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
bspctx_t *bctx = ctx->bsp_context;
dfunc->vkDestroyPipeline (device->dev, bctx->main, 0);
DARRAY_CLEAR (&bctx->texture_chains);
DARRAY_CLEAR (&bctx->frames);
QFV_DestroyStagingBuffer (bctx->light_stage);
QFV_DestroyScrap (bctx->light_scrap);
if (bctx->vertex_buffer) {
dfunc->vkDestroyBuffer (device->dev, bctx->vertex_buffer, 0);
dfunc->vkFreeMemory (device->dev, bctx->vertex_memory, 0);
}
if (bctx->index_buffer) {
dfunc->vkDestroyBuffer (device->dev, bctx->index_buffer, 0);
dfunc->vkFreeMemory (device->dev, bctx->index_memory, 0);
}
}
static inline __attribute__((const)) int
is_pow2 (unsigned x)
{
int count;
for (count = 0; x; x >>= 1)
if (x & 1)
count++;
return count == 1;
}
// NOTE: this expects the destination tex_t to be set up: memory allocated
// and dimentions/format etc already set. the size of the rect to be copied
// is taken from dst. Also, dst->format and src->format must be the same, and
// either 3 or 4, or bad things will happen. Also, no clipping is done, so if
// x < 0 or y < 0 or x + dst->width > src->width
// or y + dst->height > src->height, bad things will happen.
/*XXX static void
copy_sub_tex (tex_t *src, int x, int y, tex_t *dst)
{
int dstbytes;
int srcbytes;
int i;
srcbytes = src->width * src->format;
dstbytes = dst->width * dst->format;
x *= src->format;
for (i = 0; i < dst->height; i++)
memcpy (dst->data + i * dstbytes, src->data + (i + y) * srcbytes + x,
dstbytes);
}*/
/*XXX void
Vulkan_R_LoadSkys (const char *sky, vulkan_ctx_t *ctx)
{
const char *name;
int i;
tex_t *tex;
// NOTE: quake's world and GL's world are rotated relative to each other
// quake has x right, y in, z up. gl has x right, y up, z out
// quake order: +x -x +z -z +y -y
// gl order: +x -x +y -y +z -z
// fizquake orger: -y +y +z -z +x -x
// to get from quake order to fitzquake order, all that's needed is
// a -90 degree rotation on the (quake) z-axis. This is taken care of in
// the sky_matrix setup code.
// However, from the player's perspective, skymaps have lf and rt
// swapped, but everythink makes sense if looking at the cube from outside
// along the positive y axis, with the front of the cube being the nearest
// face. This matches nicely with Blender's default cube in front (num-1)
// view.
static const char *sky_suffix[] = { "ft", "bk", "up", "dn", "rt", "lf"};
static int sky_coords[][2] = {
{2, 0}, // front
{0, 0}, // back
{1, 1}, // up
{0, 1}, // down
{2, 1}, // left
{1, 0}, // right
};
if (!sky || !*sky)
sky = r_skyname->string;
if (!*sky || !strcasecmp (sky, "none")) {
skybox_loaded = false;
return;
}
if (!skybox_tex)
qfeglGenTextures (1, &skybox_tex);
qfeglBindTexture (GL_TEXTURE_CUBE_MAP, skybox_tex);
//blender envmap
// bk rt ft
// dn up lt
tex = LoadImage (name = va ("env/%s_map", sky));
if (tex && tex->format >= 3 && tex->height * 3 == tex->width * 2
&& is_pow2 (tex->height)) {
tex_t *sub;
int size = tex->height / 2;
skybox_loaded = true;
sub = malloc (field_offset (tex_t, data[size * size * tex->format]));
sub->width = size;
sub->height = size;
sub->format = tex->format;
sub->palette = tex->palette;
for (i = 0; i < 6; i++) {
int x, y;
x = sky_coords[i][0] * size;
y = sky_coords[i][1] * size;
copy_sub_tex (tex, x, y, sub);
qfeglTexImage2D (GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0,
sub->format == 3 ? GL_RGB : GL_RGBA,
sub->width, sub->height, 0,
sub->format == 3 ? GL_RGB : GL_RGBA,
GL_UNSIGNED_BYTE, sub->data);
}
free (sub);
} else {
skybox_loaded = true;
for (i = 0; i < 6; i++) {
tex = LoadImage (name = va ("env/%s%s", sky, sky_suffix[i]));
if (!tex || tex->format < 3) { // FIXME pcx support
Sys_MaskPrintf (SYS_GLSL, "Couldn't load %s\n", name);
// also look in gfx/env, where Darkplaces looks for skies
tex = LoadImage (name = va ("gfx/env/%s%s", sky,
sky_suffix[i]));
if (!tex || tex->format < 3) { // FIXME pcx support
Sys_MaskPrintf (SYS_GLSL, "Couldn't load %s\n", name);
skybox_loaded = false;
continue;
}
}
Sys_MaskPrintf (SYS_GLSL, "Loaded %s\n", name);
qfeglTexImage2D (GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0,
tex->format == 3 ? GL_RGB : GL_RGBA,
tex->width, tex->height, 0,
tex->format == 3 ? GL_RGB : GL_RGBA,
GL_UNSIGNED_BYTE, tex->data);
}
}
qfeglTexParameteri (GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE);
qfeglTexParameteri (GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T,
GL_CLAMP_TO_EDGE);
qfeglTexParameteri (GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
qfeglTexParameteri (GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
qfeglGenerateMipmap (GL_TEXTURE_CUBE_MAP);
}*/