/* gl_rsurf.c surface-related refresh code Copyright (C) 1996-1997 Id Software, Inc. Copyright (C) 2000 Joseph Carter This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA $Id$ */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include #include #include "glquake.h" #include "sys.h" qboolean r_cache_thrash; extern double realtime; int skytexturenum; extern vec3_t shadecolor; // Ender (Extend) Colormod int lightmap_bytes; // 1 or 3 int lightmap_textures; unsigned int blocklights[18 * 18 * 3]; cvar_t *gl_colorlights; #define BLOCK_WIDTH 128 #define BLOCK_HEIGHT 128 // LordHavoc: since lightmaps are now allocated only as needed, allow a ridiculous number :) #define MAX_LIGHTMAPS 1024 int active_lightmaps; typedef struct glRect_s { unsigned char l, t, w, h; } glRect_t; glpoly_t *lightmap_polys[MAX_LIGHTMAPS]; glpoly_t *fullbright_polys[MAX_GLTEXTURES]; qboolean lightmap_modified[MAX_LIGHTMAPS]; glRect_t lightmap_rectchange[MAX_LIGHTMAPS]; int allocated[MAX_LIGHTMAPS][BLOCK_WIDTH]; // the lightmap texture data needs to be kept in // main memory so texsubimage can update properly // LordHavoc: changed to be allocated at runtime (typically lower memory usage) byte *lightmaps[MAX_LIGHTMAPS]; msurface_t *waterchain = NULL; msurface_t *sky_chain; extern qboolean lighthalf; // LordHavoc: place for gl_rsurf setup code void glrsurf_init (void) { memset (&lightmaps, 0, sizeof (lightmaps)); } void R_RecursiveLightUpdate (mnode_t *node) { int c; msurface_t *surf; if (node->children[0]->contents >= 0) R_RecursiveLightUpdate (node->children[0]); if (node->children[1]->contents >= 0) R_RecursiveLightUpdate (node->children[1]); if ((c = node->numsurfaces)) for (surf = cl.worldmodel->surfaces + node->firstsurface; c; c--, surf++) surf->cached_dlight = true; } // LordHavoc: function to force all lightmaps to be updated void R_ForceLightUpdate (void) { if (cl.worldmodel && cl.worldmodel->nodes && cl.worldmodel->nodes->contents >= 0) R_RecursiveLightUpdate (cl.worldmodel->nodes); } /* R_AddDynamicLights LordHavoc: completely rewrote this, relies on 64bit integer math... */ int dlightdivtable[8192]; int dlightdivtableinitialized = 0; /* R_AddDynamicLights NOTE! LordHavoc was here, and it shows... (Mercury) */ void R_AddDynamicLights (msurface_t *surf) { int sdtable[18], lnum, td, maxdist, maxdist2, maxdist3, i, s, t, smax, tmax, red, green, blue, j; unsigned int *bl; float dist, f; vec3_t impact, local; // use 64bit integer... shame it's not very standardized... #if _MSC_VER || __BORLANDC__ __int64 k; #else long long k; #endif if (!dlightdivtableinitialized) { dlightdivtable[0] = 1048576 >> 7; for (s = 1; s < 8192; s++) dlightdivtable[s] = 1048576 / (s << 7); dlightdivtableinitialized = 1; } smax = (surf->extents[0] >> 4) + 1; tmax = (surf->extents[1] >> 4) + 1; for (lnum = 0; lnum < MAX_DLIGHTS; lnum++) { if (!(surf->dlightbits & (1 << lnum))) continue; // not lit by this light VectorSubtract (cl_dlights[lnum].origin, currententity->origin, local); dist = DotProduct (local, surf->plane->normal) - surf->plane->dist; for (i = 0; i < 3; i++) impact[i] = cl_dlights[lnum].origin[i] - surf->plane->normal[i] * dist; i = f = DotProduct (impact, surf->texinfo->vecs[0]) + surf->texinfo->vecs[0][3] - surf->texturemins[0]; // reduce calculations t = dist * dist; for (s = 0; s < smax; s++, i -= 16) sdtable[s] = i * i + t; i = f = DotProduct (impact, surf->texinfo->vecs[1]) + surf->texinfo->vecs[1][3] - surf->texturemins[1]; // for comparisons to minimum acceptable light maxdist = (int) ((cl_dlights[lnum].radius * cl_dlights[lnum].radius) * 0.75); // clamp radius to avoid exceeding 8192 entry division table if (maxdist > 1048576) maxdist = 1048576; maxdist3 = maxdist - (int) (dist * dist); // convert to 8.8 blocklights format red = f = cl_dlights[lnum].color[0] * maxdist; green = f = cl_dlights[lnum].color[1] * maxdist; blue = f = cl_dlights[lnum].color[2] * maxdist; bl = blocklights; for (t = 0; t < tmax; t++, i -= 16) { td = i * i; if (td < maxdist3) { // make sure some part of it is visible on this line maxdist2 = maxdist - td; for (s = 0; s < smax; s++) { if (sdtable[s] < maxdist2) { j = dlightdivtable[(sdtable[s] + td) >> 7]; bl[0] += (k = (red * j) >> 7); bl[1] += (k = (green * j) >> 7); bl[2] += (k = (blue * j) >> 7); } bl += 3; } } else bl += smax * 3; // skip line } } } /* R_BuildLightMap Combine and scale multiple lightmaps After talking it over with LordHavoc, I've decided to switch to using GL_RGB for colored lights and averaging them out for plain white lighting if needed. Much cleaner that way. --KB */ void R_BuildLightMap (msurface_t *surf, byte * dest, int stride) { int smax, tmax; int t; int i, j, size; byte *lightmap; unsigned int scale; int maps; float t2; unsigned int *bl; surf->cached_dlight = (surf->dlightframe == r_framecount); smax = (surf->extents[0] >> 4) + 1; tmax = (surf->extents[1] >> 4) + 1; size = smax * tmax; lightmap = surf->samples; // set to full bright if no light data if (!cl.worldmodel->lightdata) { bl = blocklights; for (i = 0; i < size; i++) { *bl++ = 255 << 8; *bl++ = 255 << 8; *bl++ = 255 << 8; } goto store; } // clear to no light bl = blocklights; for (i = 0; i < size; i++) { *bl++ = 0; *bl++ = 0; *bl++ = 0; } bl = blocklights; // add all the lightmaps if (lightmap) { for (maps = 0; maps < MAXLIGHTMAPS && surf->styles[maps] != 255; maps++) { scale = d_lightstylevalue[surf->styles[maps]]; surf->cached_light[maps] = scale; // 8.8 fraction bl = blocklights; for (i = 0; i < size; i++) { *bl++ += *lightmap++ * scale; *bl++ += *lightmap++ * scale; *bl++ += *lightmap++ * scale; } } } // add all the dynamic lights if (surf->dlightframe == r_framecount) R_AddDynamicLights (surf); store: // bound and shift if (gl_colorlights->int_val) { stride -= smax * 3; bl = blocklights; if (lighthalf) { for (i = 0; i < tmax; i++, dest += stride) { for (j = 0; j < smax; j++) { t = (int) *bl++ >> 8; *dest++ = bound (0, t, 255); t = (int) *bl++ >> 8; *dest++ = bound (0, t, 255); t = (int) *bl++ >> 8; *dest++ = bound (0, t, 255); } } } else { for (i = 0; i < tmax; i++, dest += stride) { for (j = 0; j < smax; j++) { t = (int) *bl++ >> 7; *dest++ = bound (0, t, 255); t = (int) *bl++ >> 7; *dest++ = bound (0, t, 255); t = (int) *bl++ >> 7; *dest++ = bound (0, t, 255); } } } } else { stride -= smax; bl = blocklights; if (lighthalf) { for (i = 0; i < tmax; i++, dest += stride) { for (j = 0; j < smax; j++) { t = (int) *bl++ >> 8; t2 = bound (0, t, 255); t = (int) *bl++ >> 8; t2 += bound (0, t, 255); t = (int) *bl++ >> 8; t2 += bound (0, t, 255); t2 *= (1.0 / 3.0); *dest++ = t2; } } } else { for (i = 0; i < tmax; i++, dest += stride) { for (j = 0; j < smax; j++) { t = (int) *bl++ >> 7; t2 = bound (0, t, 255); t = (int) *bl++ >> 7; t2 += bound (0, t, 255); t = (int) *bl++ >> 7; t2 += bound (0, t, 255); t2 *= (1.0 / 3.0); *dest++ = t2; } } } } } /* R_TextureAnimation Returns the proper texture for a given time and base texture */ texture_t * R_TextureAnimation (texture_t *base) { int relative; int count; if (currententity->frame) { if (base->alternate_anims) base = base->alternate_anims; } if (!base->anim_total) return base; relative = (int) (cl.time * 10) % base->anim_total; count = 0; while (base->anim_min > relative || base->anim_max <= relative) { base = base->anim_next; if (!base) Sys_Error ("R_TextureAnimation: broken cycle"); if (++count > 100) Sys_Error ("R_TextureAnimation: infinite cycle"); } return base; } /* BRUSH MODELS */ extern int solidskytexture; extern int alphaskytexture; extern float speedscale; // for top sky and bottom sky QF_glActiveTextureARB qglActiveTexture = NULL; QF_glMultiTexCoord2fARB qglMultiTexCoord2f = NULL; void GL_UploadLightmap (int i, int x, int y, int w, int h) { glTexSubImage2D (GL_TEXTURE_2D, 0, 0, y, BLOCK_WIDTH, h, gl_lightmap_format, GL_UNSIGNED_BYTE, lightmaps[i] + (y * BLOCK_WIDTH) * lightmap_bytes); } /* R_DrawSequentialPoly Systems that have fast state and texture changes can just do everything as it passes with no need to sort */ void R_DrawMultitexturePoly (msurface_t *s) { int maps; float *v; int i; texture_t *texture = R_TextureAnimation (s->texinfo->texture); c_brush_polys++; i = s->lightmaptexturenum; glColor3f (1, 1, 1); // Binds world to texture env 0 qglActiveTexture (gl_mtex_enum + 0); glBindTexture (GL_TEXTURE_2D, texture->gl_texturenum); glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); glEnable (GL_TEXTURE_2D); // Binds lightmap to texenv 1 qglActiveTexture (gl_mtex_enum + 1); glBindTexture (GL_TEXTURE_2D, lightmap_textures + i); glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glEnable (GL_TEXTURE_2D); // check for lightmap modification if (r_dynamic->int_val) { for (maps = 0; maps < MAXLIGHTMAPS && s->styles[maps] != 255; maps++) if (d_lightstylevalue[s->styles[maps]] != s->cached_light[maps]) goto dynamic; if (s->dlightframe == r_framecount // dynamic this frame || s->cached_dlight) // dynamic previously { dynamic: R_BuildLightMap (s, lightmaps[s->lightmaptexturenum] + (s->light_t * BLOCK_WIDTH + s->light_s) * lightmap_bytes, BLOCK_WIDTH * lightmap_bytes); GL_UploadLightmap (i, s->light_s, s->light_t, (s->extents[0] >> 4) + 1, (s->extents[1] >> 4) + 1); } } glBegin (GL_POLYGON); v = s->polys->verts[0]; for (i = 0; i < s->polys->numverts; i++, v += VERTEXSIZE) { qglMultiTexCoord2f (gl_mtex_enum + 0, v[3], v[4]); qglMultiTexCoord2f (gl_mtex_enum + 1, v[5], v[6]); glVertex3fv (v); } glEnd (); glDisable (GL_TEXTURE_2D); qglActiveTexture (gl_mtex_enum + 0); glEnable (GL_TEXTURE_2D); if (texture->gl_fb_texturenum > 0) { s->polys->fb_chain = fullbright_polys[texture->gl_fb_texturenum]; fullbright_polys[texture->gl_fb_texturenum] = s->polys; } glColor3ubv (lighthalf_v); glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } /* R_BlendLightmaps */ void R_BlendLightmaps (void) { int i, j; glpoly_t *p; float *v; glDepthMask (GL_FALSE); // don't bother writing Z glBlendFunc (GL_ZERO, GL_SRC_COLOR); glColor3f (1, 1, 1); for (i = 0; i < MAX_LIGHTMAPS; i++) { p = lightmap_polys[i]; if (!p) continue; glBindTexture (GL_TEXTURE_2D, lightmap_textures + i); if (lightmap_modified[i]) { GL_UploadLightmap (i, lightmap_rectchange[i].l, lightmap_rectchange[i].t, lightmap_rectchange[i].w, lightmap_rectchange[i].h); lightmap_modified[i] = false; } for (; p; p = p->chain) { glBegin (GL_POLYGON); v = p->verts[0]; for (j = 0; j < p->numverts; j++, v += VERTEXSIZE) { glTexCoord2fv (&v[5]); glVertex3fv (v); } glEnd (); } } // Return to normal blending --KB glColor3ubv (lighthalf_v); glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glDepthMask (GL_TRUE); // back to normal Z buffering } /* R_RenderFullbrights */ void R_RenderFullbrights (void) { int i, j; glpoly_t *p; float *v; glBlendFunc (GL_ONE, GL_ONE); for (i = 1; i < MAX_GLTEXTURES; i++) { if (!fullbright_polys[i]) continue; glBindTexture (GL_TEXTURE_2D, i); for (p = fullbright_polys[i]; p; p = p->fb_chain) { glBegin (GL_POLYGON); for (j = 0, v = p->verts[0]; j < p->numverts; j++, v += VERTEXSIZE) { glTexCoord2fv (&v[3]); glVertex3fv (v); } glEnd (); } } glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } /* R_RenderBrushPoly */ void R_RenderBrushPoly (msurface_t *fa) { byte *base; int maps; glRect_t *theRect; int i; float *v; int smax, tmax; texture_t *texture = R_TextureAnimation (fa->texinfo->texture); c_brush_polys++; glColor3f (1, 1, 1); glBindTexture (GL_TEXTURE_2D, texture->gl_texturenum); glBegin (GL_POLYGON); v = fa->polys->verts[0]; for (i = 0; i < fa->polys->numverts; i++, v += VERTEXSIZE) { glTexCoord2fv (&v[3]); glVertex3fv (v); } glEnd (); // add the poly to the proper lightmap chain fa->polys->chain = lightmap_polys[fa->lightmaptexturenum]; lightmap_polys[fa->lightmaptexturenum] = fa->polys; if (texture->gl_fb_texturenum > 0) { fa->polys->fb_chain = fullbright_polys[texture->gl_fb_texturenum]; fullbright_polys[texture->gl_fb_texturenum] = fa->polys; } // check for lightmap modification for (maps = 0; maps < MAXLIGHTMAPS && fa->styles[maps] != 255; maps++) if (d_lightstylevalue[fa->styles[maps]] != fa->cached_light[maps]) goto dynamic; if (fa->dlightframe == r_framecount // dynamic this frame || fa->cached_dlight) // dynamic previously { dynamic: if (r_dynamic->int_val) { lightmap_modified[fa->lightmaptexturenum] = true; theRect = &lightmap_rectchange[fa->lightmaptexturenum]; if (fa->light_t < theRect->t) { if (theRect->h) theRect->h += theRect->t - fa->light_t; theRect->t = fa->light_t; } if (fa->light_s < theRect->l) { if (theRect->w) theRect->w += theRect->l - fa->light_s; theRect->l = fa->light_s; } smax = (fa->extents[0] >> 4) + 1; tmax = (fa->extents[1] >> 4) + 1; if ((theRect->w + theRect->l) < (fa->light_s + smax)) theRect->w = (fa->light_s - theRect->l) + smax; if ((theRect->h + theRect->t) < (fa->light_t + tmax)) theRect->h = (fa->light_t - theRect->t) + tmax; base = lightmaps[fa->lightmaptexturenum] + (fa->light_t * BLOCK_WIDTH + fa->light_s) * lightmap_bytes; R_BuildLightMap (fa, base, BLOCK_WIDTH * lightmap_bytes); } } glColor3ubv (lighthalf_v); } void GL_WaterSurface (msurface_t *s) { int i; i = s->texinfo->texture->gl_texturenum; glBindTexture (GL_TEXTURE_2D, i); if (r_wateralpha->value < 1.0) { glDepthMask (GL_FALSE); if (lighthalf) { glColor4f (0.5, 0.5, 0.5, r_wateralpha->value); } else { glColor4f (1, 1, 1, r_wateralpha->value); } EmitWaterPolys (s); glColor3ubv (lighthalf_v); glDepthMask (GL_TRUE); } else EmitWaterPolys (s); } /* R_DrawWaterSurfaces */ void R_DrawWaterSurfaces (void) { int i; msurface_t *s; if (!waterchain) return; // go back to the world matrix glLoadMatrixf (r_world_matrix); if (r_wateralpha->value < 1.0) { glDepthMask (GL_FALSE); if (lighthalf) { glColor4f (0.5, 0.5, 0.5, r_wateralpha->value); } else { glColor4f (1, 1, 1, r_wateralpha->value); } } i = -1; for (s = waterchain; s; s = s->texturechain) { if (i != s->texinfo->texture->gl_texturenum) { i = s->texinfo->texture->gl_texturenum; glBindTexture (GL_TEXTURE_2D, i); } EmitWaterPolys (s); } waterchain = NULL; if (r_wateralpha->value < 1.0) { glDepthMask (GL_TRUE); glColor3ubv (lighthalf_v); } } /* DrawTextureChains */ void DrawTextureChains (void) { int i; msurface_t *s; glDisable (GL_BLEND); for (i = 0; i < cl.worldmodel->numtextures; i++) { if (!cl.worldmodel->textures[i]) continue; for (s = cl.worldmodel->textures[i]->texturechain; s; s = s->texturechain) R_RenderBrushPoly (s); cl.worldmodel->textures[i]->texturechain = NULL; } glEnable (GL_BLEND); } /* R_DrawBrushModel */ void R_DrawBrushModel (entity_t *e) { int i; int k; vec3_t mins, maxs; msurface_t *psurf; float dot; mplane_t *pplane; model_t *clmodel; qboolean rotated; currententity = e; clmodel = e->model; if (e->angles[0] || e->angles[1] || e->angles[2]) { rotated = true; for (i = 0; i < 3; i++) { mins[i] = e->origin[i] - clmodel->radius; maxs[i] = e->origin[i] + clmodel->radius; } } else { rotated = false; VectorAdd (e->origin, clmodel->mins, mins); VectorAdd (e->origin, clmodel->maxs, maxs); } if (R_CullBox (mins, maxs)) return; memset (lightmap_polys, 0, sizeof (lightmap_polys)); memset (fullbright_polys, 0, sizeof (fullbright_polys)); if (gl_sky_clip->int_val) { sky_chain = 0; } VectorSubtract (r_refdef.vieworg, e->origin, modelorg); if (rotated) { vec3_t temp; vec3_t forward, right, up; VectorCopy (modelorg, temp); AngleVectors (e->angles, forward, right, up); modelorg[0] = DotProduct (temp, forward); modelorg[1] = -DotProduct (temp, right); modelorg[2] = DotProduct (temp, up); } psurf = &clmodel->surfaces[clmodel->firstmodelsurface]; // calculate dynamic lighting for bmodel if it's not an instanced model if (clmodel->firstmodelsurface != 0 && gl_dlight_lightmap->int_val) { vec3_t lightorigin; for (k = 0; k < MAX_DLIGHTS; k++) { if ((cl_dlights[k].die < cl.time) || (!cl_dlights[k].radius)) continue; VectorSubtract (cl_dlights[k].origin, e->origin, lightorigin); R_MarkLights (lightorigin, &cl_dlights[k], 1 << k, clmodel->nodes + clmodel->hulls[0].firstclipnode); } } glPushMatrix (); e->angles[0] = -e->angles[0]; // stupid quake bug R_RotateForEntity (e); e->angles[0] = -e->angles[0]; // stupid quake bug // draw texture for (i = 0; i < clmodel->nummodelsurfaces; i++, psurf++) { // find which side of the node we are on pplane = psurf->plane; dot = DotProduct (modelorg, pplane->normal) - pplane->dist; // draw the polygon if (((psurf->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON)) || (!(psurf->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON))) { if (psurf->flags & SURF_DRAWTURB) { GL_WaterSurface (psurf); } else if (psurf->flags & SURF_DRAWSKY) { psurf->texturechain = sky_chain; sky_chain = psurf; return; } else if (gl_mtex_active) { R_DrawMultitexturePoly (psurf); } else { R_RenderBrushPoly (psurf); } } } if (!gl_mtex_active) R_BlendLightmaps (); if (gl_fb_bmodels->int_val) R_RenderFullbrights (); if (gl_sky_clip->int_val) R_DrawSkyChain (sky_chain); glPopMatrix (); } /* WORLD MODEL */ /* R_RecursiveWorldNode */ void R_RecursiveWorldNode (mnode_t *node) { int c, side; mplane_t *plane; msurface_t *surf, **mark; mleaf_t *pleaf; double dot; if (node->contents == CONTENTS_SOLID) // solid return; if (node->visframe != r_visframecount) return; if (R_CullBox (node->minmaxs, node->minmaxs + 3)) return; // if a leaf node, draw stuff if (node->contents < 0) { pleaf = (mleaf_t *) node; if ((c = pleaf->nummarksurfaces)) { mark = pleaf->firstmarksurface; do { (*mark)->visframe = r_framecount; mark++; } while (--c); } // deal with model fragments in this leaf if (pleaf->efrags) R_StoreEfrags (&pleaf->efrags); return; } // node is just a decision point, so go down the apropriate sides // find which side of the node we are on plane = node->plane; switch (plane->type) { case PLANE_X: dot = modelorg[0] - plane->dist; break; case PLANE_Y: dot = modelorg[1] - plane->dist; break; case PLANE_Z: dot = modelorg[2] - plane->dist; break; default: dot = DotProduct (modelorg, plane->normal) - plane->dist; break; } side = dot < 0; // recurse down the children, front side first // LordHavoc: save a stack frame by avoiding a call if (node->children[side]->contents != CONTENTS_SOLID && node->children[side]->visframe == r_visframecount && !R_CullBox (node->children[side]->minmaxs, node->children[side]->minmaxs + 3)) R_RecursiveWorldNode (node->children[side]); // draw stuff if ((c = node->numsurfaces)) { surf = cl.worldmodel->surfaces + node->firstsurface; if (dot < -BACKFACE_EPSILON) side = SURF_PLANEBACK; else if (dot > BACKFACE_EPSILON) side = 0; for (; c; c--, surf++) { if (surf->visframe != r_framecount) continue; if ((dot < 0) ^ !!(surf->flags & SURF_PLANEBACK)) continue; // wrong side if (surf->flags & SURF_DRAWTURB) { surf->texturechain = waterchain; waterchain = surf; } else if (surf->flags & SURF_DRAWSKY) { surf->texturechain = sky_chain; sky_chain = surf; continue; } else if (gl_mtex_active) { R_DrawMultitexturePoly (surf); } else { surf->texturechain = surf->texinfo->texture->texturechain; surf->texinfo->texture->texturechain = surf; } } } // recurse down the back side // LordHavoc: save a stack frame by avoiding a call side = !side; if (node->children[side]->contents != CONTENTS_SOLID && node->children[side]->visframe == r_visframecount && !R_CullBox (node->children[side]->minmaxs, node->children[side]->minmaxs + 3)) R_RecursiveWorldNode (node->children[side]); } /* R_DrawWorld */ void R_DrawWorld (void) { entity_t ent; memset (&ent, 0, sizeof (ent)); ent.model = cl.worldmodel; VectorCopy (r_refdef.vieworg, modelorg); currententity = &ent; memset (lightmap_polys, 0, sizeof (lightmap_polys)); memset (fullbright_polys, 0, sizeof (fullbright_polys)); if (gl_sky_clip->int_val) { sky_chain = 0; } else { // Be sure to clear the skybox --KB R_DrawSky (); } R_RecursiveWorldNode (cl.worldmodel->nodes); DrawTextureChains (); if (!gl_mtex_active) R_BlendLightmaps (); if (gl_fb_bmodels->int_val) R_RenderFullbrights (); if (gl_sky_clip->int_val) R_DrawSkyChain (sky_chain); } /* R_MarkLeaves */ void R_MarkLeaves (void) { byte *vis; mnode_t *node; int i; byte solid[4096]; if (r_oldviewleaf == r_viewleaf && !r_novis->int_val) return; r_visframecount++; r_oldviewleaf = r_viewleaf; if (r_novis->int_val) { vis = solid; memset (solid, 0xff, (cl.worldmodel->numleafs + 7) >> 3); } else vis = Mod_LeafPVS (r_viewleaf, cl.worldmodel); for (i = 0; i < cl.worldmodel->numleafs; i++) { if (vis[i >> 3] & (1 << (i & 7))) { node = (mnode_t *) &cl.worldmodel->leafs[i + 1]; do { if (node->visframe == r_visframecount) break; node->visframe = r_visframecount; node = node->parent; } while (node); } } } /* LIGHTMAP ALLOCATION */ // returns a texture number and the position inside it int AllocBlock (int w, int h, int *x, int *y) { int i, j; int best, best2; int texnum; for (texnum = 0; texnum < MAX_LIGHTMAPS; texnum++) { best = BLOCK_HEIGHT; for (i = 0; i < BLOCK_WIDTH - w; i++) { best2 = 0; for (j = 0; j < w; j++) { if (allocated[texnum][i + j] >= best) break; if (allocated[texnum][i + j] > best2) best2 = allocated[texnum][i + j]; } if (j == w) { // this is a valid spot *x = i; *y = best = best2; } } if (best + h > BLOCK_HEIGHT) continue; // LordHavoc: allocate lightmaps only as needed if (!lightmaps[texnum]) lightmaps[texnum] = calloc (BLOCK_WIDTH * BLOCK_HEIGHT, 3); for (i = 0; i < w; i++) allocated[texnum][*x + i] = best + h; return texnum; } Sys_Error ("AllocBlock: full"); return 0; } mvertex_t *r_pcurrentvertbase; model_t *currentmodel; int nColinElim; /* BuildSurfaceDisplayList */ void BuildSurfaceDisplayList (msurface_t *fa) { int i, lindex, lnumverts; medge_t *pedges, *r_pedge; int vertpage; float *vec; float s, t; glpoly_t *poly; // reconstruct the polygon pedges = currentmodel->edges; lnumverts = fa->numedges; vertpage = 0; // draw texture poly = Hunk_Alloc (sizeof (glpoly_t) + (lnumverts - 4) * VERTEXSIZE * sizeof (float)); poly->next = fa->polys; poly->flags = fa->flags; fa->polys = poly; poly->numverts = lnumverts; for (i = 0; i < lnumverts; i++) { lindex = currentmodel->surfedges[fa->firstedge + i]; if (lindex > 0) { r_pedge = &pedges[lindex]; vec = r_pcurrentvertbase[r_pedge->v[0]].position; } else { r_pedge = &pedges[-lindex]; vec = r_pcurrentvertbase[r_pedge->v[1]].position; } s = DotProduct (vec, fa->texinfo->vecs[0]) + fa->texinfo->vecs[0][3]; s /= fa->texinfo->texture->width; t = DotProduct (vec, fa->texinfo->vecs[1]) + fa->texinfo->vecs[1][3]; t /= fa->texinfo->texture->height; VectorCopy (vec, poly->verts[i]); poly->verts[i][3] = s; poly->verts[i][4] = t; // lightmap texture coordinates s = DotProduct (vec, fa->texinfo->vecs[0]) + fa->texinfo->vecs[0][3]; s -= fa->texturemins[0]; s += fa->light_s * 16; s += 8; s /= BLOCK_WIDTH * 16; // fa->texinfo->texture->width; t = DotProduct (vec, fa->texinfo->vecs[1]) + fa->texinfo->vecs[1][3]; t -= fa->texturemins[1]; t += fa->light_t * 16; t += 8; t /= BLOCK_HEIGHT * 16; // fa->texinfo->texture->height; poly->verts[i][5] = s; poly->verts[i][6] = t; } // remove co-linear points - Ed if (!gl_keeptjunctions->int_val && !(fa->flags & SURF_UNDERWATER)) { for (i = 0; i < lnumverts; ++i) { vec3_t v1, v2; float *prev, *this, *next; prev = poly->verts[(i + lnumverts - 1) % lnumverts]; this = poly->verts[i]; next = poly->verts[(i + 1) % lnumverts]; VectorSubtract (this, prev, v1); VectorNormalize (v1); VectorSubtract (next, prev, v2); VectorNormalize (v2); // skip co-linear points # define COLINEAR_EPSILON 0.001 if ((fabs (v1[0] - v2[0]) <= COLINEAR_EPSILON) && (fabs (v1[1] - v2[1]) <= COLINEAR_EPSILON) && (fabs (v1[2] - v2[2]) <= COLINEAR_EPSILON)) { int j; for (j = i + 1; j < lnumverts; ++j) { int k; for (k = 0; k < VERTEXSIZE; ++k) poly->verts[j - 1][k] = poly->verts[j][k]; } --lnumverts; ++nColinElim; // retry next vertex next time, which is now current vertex --i; } } } poly->numverts = lnumverts; } /* GL_CreateSurfaceLightmap */ void GL_CreateSurfaceLightmap (msurface_t *surf) { int smax, tmax; byte *base; if (surf->flags & (SURF_DRAWSKY | SURF_DRAWTURB)) return; smax = (surf->extents[0] >> 4) + 1; tmax = (surf->extents[1] >> 4) + 1; surf->lightmaptexturenum = AllocBlock (smax, tmax, &surf->light_s, &surf->light_t); base = lightmaps[surf->lightmaptexturenum] + (surf->light_t * BLOCK_WIDTH + surf->light_s) * lightmap_bytes; R_BuildLightMap (surf, base, BLOCK_WIDTH * lightmap_bytes); } /* GL_BuildLightmaps Builds the lightmap texture with all the surfaces from all brush models */ void GL_BuildLightmaps (void) { int i, j; model_t *m; memset (allocated, 0, sizeof (allocated)); r_framecount = 1; // no dlightcache if (!lightmap_textures) { lightmap_textures = texture_extension_number; texture_extension_number += MAX_LIGHTMAPS; } if (gl_colorlights->int_val) { gl_lightmap_format = GL_RGB; lightmap_bytes = 3; } else { gl_lightmap_format = GL_LUMINANCE; lightmap_bytes = 1; } for (j = 1; j < MAX_MODELS; j++) { m = cl.model_precache[j]; if (!m) break; if (m->name[0] == '*') continue; r_pcurrentvertbase = m->vertexes; currentmodel = m; for (i = 0; i < m->numsurfaces; i++) { if (m->surfaces[i].flags & SURF_DRAWTURB) continue; if (gl_sky_divide->int_val && (m->surfaces[i].flags & SURF_DRAWSKY)) continue; GL_CreateSurfaceLightmap (m->surfaces + i); BuildSurfaceDisplayList (m->surfaces + i); } } if (gl_mtex_active) qglActiveTexture (gl_mtex_enum + 1); // upload all lightmaps that were filled for (i = 0; i < MAX_LIGHTMAPS; i++) { if (!allocated[i][0]) break; // no more used lightmap_modified[i] = false; lightmap_rectchange[i].l = BLOCK_WIDTH; lightmap_rectchange[i].t = BLOCK_HEIGHT; lightmap_rectchange[i].w = 0; lightmap_rectchange[i].h = 0; glBindTexture (GL_TEXTURE_2D, lightmap_textures + i); glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexImage2D (GL_TEXTURE_2D, 0, lightmap_bytes, BLOCK_WIDTH, BLOCK_HEIGHT, 0, gl_lightmap_format, GL_UNSIGNED_BYTE, lightmaps[i]); } if (gl_mtex_active) qglActiveTexture (gl_mtex_enum + 0); }