/* gl_warp.c sky and water polygons Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA $Id$ */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include #include #ifdef HAVE_STRINGS_H #include #endif #include "bothdefs.h" #include "console.h" #include "model.h" #include "glquake.h" #include "sys.h" extern double realtime; extern model_t *loadmodel; extern int skytexturenum; int solidskytexture; int alphaskytexture; float speedscale; // for top sky and bottom sky // Set to true if a valid skybox is loaded --KB qboolean skyloaded = false; msurface_t *warpface; extern cvar_t *gl_subdivide_size; void BoundPoly (int numverts, float *verts, vec3_t mins, vec3_t maxs) { int i, j; float *v; mins[0] = mins[1] = mins[2] = 9999; maxs[0] = maxs[1] = maxs[2] = -9999; v = verts; for (i=0 ; i maxs[j]) maxs[j] = *v; } } void SubdividePolygon (int numverts, float *verts) { int i, j, k; vec3_t mins, maxs; float m; float *v; vec3_t front[64], back[64]; int f, b; float dist[64]; float frac; glpoly_t *poly; float s, t; if (numverts > 60) Sys_Error ("numverts = %i", numverts); BoundPoly (numverts, verts, mins, maxs); for (i=0 ; i<3 ; i++) { m = (mins[i] + maxs[i]) * 0.5; m = gl_subdivide_size->value * floor (m/gl_subdivide_size->value + 0.5); if (maxs[i] - m < 8) continue; if (m - mins[i] < 8) continue; // cut it v = verts + i; for (j=0 ; j= 0) { VectorCopy (v, front[f]); f++; } if (dist[j] <= 0) { VectorCopy (v, back[b]); b++; } if (dist[j] == 0 || dist[j+1] == 0) continue; if ( (dist[j] > 0) != (dist[j+1] > 0) ) { // clip point frac = dist[j] / (dist[j] - dist[j+1]); for (k=0 ; k<3 ; k++) front[f][k] = back[b][k] = v[k] + frac*(v[3+k] - v[k]); f++; b++; } } SubdividePolygon (f, front[0]); SubdividePolygon (b, back[0]); return; } poly = Hunk_Alloc (sizeof(glpoly_t) + (numverts-4) * VERTEXSIZE*sizeof(float)); poly->next = warpface->polys; warpface->polys = poly; poly->numverts = numverts; for (i=0 ; iverts[i]); s = DotProduct (verts, warpface->texinfo->vecs[0]); t = DotProduct (verts, warpface->texinfo->vecs[1]); poly->verts[i][3] = s; poly->verts[i][4] = t; } } /* ================ GL_SubdivideSurface Breaks a polygon up along axial 64 unit boundaries so that turbulent and sky warps can be done reasonably. ================ */ void GL_SubdivideSurface (msurface_t *fa) { vec3_t verts[64]; int numverts; int i; int lindex; float *vec; warpface = fa; // // convert edges back to a normal polygon // numverts = 0; for (i=0 ; inumedges ; i++) { lindex = loadmodel->surfedges[fa->firstedge + i]; if (lindex > 0) vec = loadmodel->vertexes[loadmodel->edges[lindex].v[0]].position; else vec = loadmodel->vertexes[loadmodel->edges[-lindex].v[1]].position; VectorCopy (vec, verts[numverts]); numverts++; } SubdividePolygon (numverts, verts[0]); } //========================================================= // speed up sin calculations - Ed float turbsin[] = { # include "gl_warp_sin.h" }; #define TURBSCALE (256.0 / (2 * M_PI)) /* ============= EmitWaterPolys Does a water warp on the pre-fragmented glpoly_t chain ============= */ void EmitWaterPolys (msurface_t *fa) { glpoly_t *p; float *v; int i; float s, t, os, ot; vec3_t nv; for (p=fa->polys ; p ; p=p->next) { glBegin (GL_POLYGON); for (i=0,v=p->verts[0] ; inumverts ; i++, v+=VERTEXSIZE) { os = v[3]; ot = v[4]; s = os + turbsin[(int)((ot*0.125+realtime) * TURBSCALE) & 255]; s *= (1.0/64); t = ot + turbsin[(int)((os*0.125+realtime) * TURBSCALE) & 255]; t *= (1.0/64); glTexCoord2f (s, t); VectorCopy (v, nv); nv[2] += r_waterripple->value * turbsin[(int)((v[3]*0.125+realtime) * TURBSCALE) & 255] * turbsin[(int)((v[4]*0.125+realtime) * TURBSCALE) & 255] * (1.0 / 64.0); glVertex3fv (nv); } glEnd (); } } /* ================================================================= Quake 2 environment sky ================================================================= */ #define SKY_TEX 2000 /* ================================================================= PCX Loading ================================================================= */ byte *pcx_rgb; /* ============ LoadPCX ============ */ void LoadPCX (FILE *f) { pcx_t *pcx, pcxbuf; byte palette[768]; byte *pix; int x, y; int dataByte, runLength; int count; // // parse the PCX file // fread (&pcxbuf, 1, sizeof(pcxbuf), f); pcx = &pcxbuf; if (pcx->manufacturer != 0x0a || pcx->version != 5 || pcx->encoding != 1 || pcx->bits_per_pixel != 8 || pcx->xmax >= 320 || pcx->ymax >= 256) { Con_Printf ("Bad pcx file\n"); return; } // seek to palette fseek (f, -768, SEEK_END); fread (palette, 1, 768, f); fseek (f, sizeof(pcxbuf) - 4, SEEK_SET); count = (pcx->xmax+1) * (pcx->ymax+1); pcx_rgb = malloc( count * 4); for (y=0 ; y<=pcx->ymax ; y++) { pix = pcx_rgb + 4*y*(pcx->xmax+1); for (x=0 ; x<=pcx->ymax ; ) { dataByte = fgetc(f); if((dataByte & 0xC0) == 0xC0) { runLength = dataByte & 0x3F; dataByte = fgetc(f); } else runLength = 1; while(runLength-- > 0) { pix[0] = palette[dataByte*3]; pix[1] = palette[dataByte*3+1]; pix[2] = palette[dataByte*3+2]; pix[3] = 255; pix += 4; x++; } } } } /* ========================================================= TARGA LOADING ========================================================= */ typedef struct _TargaHeader { unsigned char id_length, colormap_type, image_type; unsigned short colormap_index, colormap_length; unsigned char colormap_size; unsigned short x_origin, y_origin, width, height; unsigned char pixel_size, attributes; } TargaHeader; TargaHeader targa_header; byte *targa_rgba; int fgetLittleShort (FILE *f) { byte b1, b2; b1 = fgetc(f); b2 = fgetc(f); return (short)(b1 + b2*256); } int fgetLittleLong (FILE *f) { byte b1, b2, b3, b4; b1 = fgetc(f); b2 = fgetc(f); b3 = fgetc(f); b4 = fgetc(f); return b1 + (b2<<8) + (b3<<16) + (b4<<24); } /* ============= LoadTGA ============= */ void LoadTGA (FILE *fin) { int columns, rows, numPixels; byte *pixbuf; int row, column; unsigned char red = 0, green = 0, blue = 0, alphabyte = 0; targa_header.id_length = fgetc(fin); targa_header.colormap_type = fgetc(fin); targa_header.image_type = fgetc(fin); targa_header.colormap_index = fgetLittleShort(fin); targa_header.colormap_length = fgetLittleShort(fin); targa_header.colormap_size = fgetc(fin); targa_header.x_origin = fgetLittleShort(fin); targa_header.y_origin = fgetLittleShort(fin); targa_header.width = fgetLittleShort(fin); targa_header.height = fgetLittleShort(fin); targa_header.pixel_size = fgetc(fin); targa_header.attributes = fgetc(fin); if (targa_header.image_type!=2 && targa_header.image_type!=10) Sys_Error ("LoadTGA: Only type 2 and 10 targa RGB images supported\n"); if (targa_header.colormap_type !=0 || (targa_header.pixel_size!=32 && targa_header.pixel_size!=24)) Sys_Error ("Texture_LoadTGA: Only 32 or 24 bit images supported (no colormaps)\n"); columns = targa_header.width; rows = targa_header.height; numPixels = columns * rows; targa_rgba = malloc (numPixels*4); if (targa_header.id_length != 0) fseek(fin, targa_header.id_length, SEEK_CUR); // skip TARGA image comment if (targa_header.image_type==2) { // Uncompressed, RGB images for(row=rows-1; row>=0; row--) { pixbuf = targa_rgba + row*columns*4; for(column=0; column=0; row--) { pixbuf = targa_rgba + row*columns*4; for(column=0; column0) row--; else goto breakOut; pixbuf = targa_rgba + row*columns*4; } } } else { // non run-length packet for(j=0;j0) row--; else goto breakOut; pixbuf = targa_rgba + row*columns*4; } } } } breakOut:; } } fclose(fin); } /* ================== R_LoadSkys ================== */ char *suf[6] = {"rt", "bk", "lf", "ft", "up", "dn"}; void R_LoadSkys (char * skyname) { int i; FILE *f; char name[64]; if (stricmp (skyname, "none") == 0) { skyloaded = false; return; } skyloaded = true; for (i=0 ; i<6 ; i++) { glBindTexture (GL_TEXTURE_2D, SKY_TEX + i); snprintf (name, sizeof(name),"env/%s%s.tga", skyname, suf[i]); COM_FOpenFile (name, &f); if (!f) { Con_DPrintf ("Couldn't load %s\n", name); skyloaded = false; continue; } LoadTGA (f); glTexImage2D (GL_TEXTURE_2D, 0, gl_solid_format, 256, 256, 0, GL_RGBA, GL_UNSIGNED_BYTE, targa_rgba); free (targa_rgba); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); } if (!skyloaded) Con_Printf ("Unable to load skybox %s, using normal sky\n", skyname); } void R_SkyBoxPolyVec(vec5_t v) { // avoid interpolation seams // s = s * (254.0/256.0) + (1.0/256.0); // t = t * (254.0/256.0) + (1.0/256.0); glTexCoord2fv (v); glVertex3f (r_refdef.vieworg[0] + v[2], r_refdef.vieworg[1] + v[3], r_refdef.vieworg[2] + v[4]); } #define ftc(x) (x * (254.0/256.0) + (1.0/256.0)) vec5_t skyvec[6][4] = { { // right {ftc(1), ftc(0), 1024, 1024, 1024}, {ftc(1), ftc(1), 1024, 1024, -1024}, {ftc(0), ftc(1), -1024, 1024, -1024}, {ftc(0), ftc(0), -1024, 1024, 1024} }, { // back {ftc(1), ftc(0), -1024, 1024, 1024}, {ftc(1), ftc(1), -1024, 1024, -1024}, {ftc(0), ftc(1), -1024, -1024, -1024}, {ftc(0), ftc(0), -1024, -1024, 1024} }, { // left {ftc(1), ftc(0), -1024, -1024, 1024}, {ftc(1), ftc(1), -1024, -1024, -1024}, {ftc(0), ftc(1), 1024, -1024, -1024}, {ftc(0), ftc(0), 1024, -1024, 1024} }, { // front {ftc(1), ftc(0), 1024, -1024, 1024}, {ftc(1), ftc(1), 1024, -1024, -1024}, {ftc(0), ftc(1), 1024, 1024, -1024}, {ftc(0), ftc(0), 1024, 1024, 1024} }, { // up {ftc(1), ftc(0), 1024, -1024, 1024}, {ftc(1), ftc(1), 1024, 1024, 1024}, {ftc(0), ftc(1), -1024, 1024, 1024}, {ftc(0), ftc(0), -1024, -1024, 1024} }, { // down {ftc(1), ftc(0), 1024, 1024, -1024}, {ftc(1), ftc(1), 1024, -1024, -1024}, {ftc(0), ftc(1), -1024, -1024, -1024}, {ftc(0), ftc(0), -1024, 1024, -1024} } }; #undef ftc void R_DrawSkyBox (void) { int i, j; GL_DisableMultitexture (); glEnable (GL_DEPTH_TEST); glDepthFunc (GL_ALWAYS); // glDisable (GL_BLEND); // glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glDepthRange (gldepthmax, gldepthmax); glColor3f (0.5, 0.5, 0.5); for (i = 0; i < 6; i++) { glBindTexture(GL_TEXTURE_2D, SKY_TEX + i); glBegin(GL_QUADS); for (j = 0; j < 4; j++) R_SkyBoxPolyVec(skyvec[i][j]); glEnd(); } glColor3f (1,1,1); glDepthFunc (GL_LEQUAL); glEnable (GL_DEPTH_TEST); glDepthRange(gldepthmin, gldepthmax); } vec3_t domescale; void R_DrawSkyLayer (float s) { int a, b; float x, y, a1x, a1y, a2x, a2y; vec3_t v; for (a = 0; a < 32; a++) { a1x = bubble_costable[a]; a1y = -bubble_sintable[a]; a2x = bubble_costable[a+1]; a2y = -bubble_sintable[a+1]; glBegin (GL_TRIANGLE_STRIP); glTexCoord2f(0.5,0.5); glVertex3f(r_refdef.vieworg[0], r_refdef.vieworg[1], r_refdef.vieworg[2]+domescale[2]); for (b = 1; b < 16; b++) { x = bubble_costable[b+16]; y = -bubble_sintable[b+16]; v[0] = a1x*x * domescale[0]; v[1] = a1y*x * domescale[1]; v[2] = y * domescale[2]; glTexCoord2f((v[0] + s) * (1.0 / 128.0), (v[1] + s) * (1.0 / 128.0)); glVertex3f(v[0] + r_refdef.vieworg[0], v[1] + r_refdef.vieworg[1], v[2] + r_refdef.vieworg[2]); v[0] = a2x*x * domescale[0]; v[1] = a2y*x * domescale[1]; v[2] = y * domescale[2]; glTexCoord2f((v[0] + s) * (1.0 / 128.0), (v[1] + s) * (1.0 / 128.0)); glVertex3f(v[0] + r_refdef.vieworg[0], v[1] + r_refdef.vieworg[1], v[2] + r_refdef.vieworg[2]); } glTexCoord2f(0.5,0.5); glVertex3f(r_refdef.vieworg[0], r_refdef.vieworg[1], r_refdef.vieworg[2]-domescale[2]); glEnd (); } } void R_DrawSkyDome (void) { GL_DisableMultitexture (); glEnable (GL_DEPTH_TEST); glDepthFunc (GL_ALWAYS); // glDisable (GL_BLEND); // glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glDepthRange (gldepthmax, gldepthmax); glColor3f (0.5, 0.5, 0.5); // base sky glBindTexture (GL_TEXTURE_2D, solidskytexture); domescale[0] = 512; domescale[1] = 512; domescale[2] = 128; speedscale = realtime*8; speedscale -= (int)speedscale & ~127; R_DrawSkyLayer (speedscale); glEnable (GL_BLEND); // clouds glBindTexture (GL_TEXTURE_2D, alphaskytexture); domescale[0] = 512; domescale[1] = 512; domescale[2] = 128; speedscale = realtime*16; speedscale -= (int)speedscale & ~127; R_DrawSkyLayer (speedscale); // glDisable (GL_BLEND); glColor3f (1,1,1); glDepthFunc (GL_LEQUAL); glEnable (GL_DEPTH_TEST); glDepthRange (gldepthmin, gldepthmax); } void R_DrawSky ( void ) { if (skyloaded) R_DrawSkyBox(); else R_DrawSkyDome(); } //=============================================================== /* ============= R_InitSky A sky texture is 256*128, with the right side being a masked overlay ============== */ void R_InitSky (texture_t *mt) { int i, j, p; byte *src; unsigned trans[128*128]; unsigned transpix; int r, g, b; unsigned *rgba; src = (byte *)mt + mt->offsets[0]; // make an average value for the back to avoid // a fringe on the top level r = g = b = 0; for (i=0 ; i<128 ; i++) for (j=0 ; j<128 ; j++) { p = src[i*256 + j + 128]; rgba = &d_8to24table[p]; trans[(i*128) + j] = *rgba; r += ((byte *)rgba)[0]; g += ((byte *)rgba)[1]; b += ((byte *)rgba)[2]; } ((byte *)&transpix)[0] = r/(128*128); ((byte *)&transpix)[1] = g/(128*128); ((byte *)&transpix)[2] = b/(128*128); ((byte *)&transpix)[3] = 0; if (!solidskytexture) solidskytexture = texture_extension_number++; glBindTexture (GL_TEXTURE_2D, solidskytexture ); glTexImage2D (GL_TEXTURE_2D, 0, gl_solid_format, 128, 128, 0, GL_RGBA, GL_UNSIGNED_BYTE, trans); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); for (i=0 ; i<128 ; i++) for (j=0 ; j<128 ; j++) { p = src[i*256 + j]; if (p == 0) trans[(i*128) + j] = transpix; else trans[(i*128) + j] = d_8to24table[p]; } if (!alphaskytexture) alphaskytexture = texture_extension_number++; glBindTexture (GL_TEXTURE_2D, alphaskytexture); glTexImage2D (GL_TEXTURE_2D, 0, gl_alpha_format, 128, 128, 0, GL_RGBA, GL_UNSIGNED_BYTE, trans); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); }