/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // // q_math.c -- stateless support routines that are included in each code module // Some of the vector functions are static inline in q_shared.h. q3asm // doesn't understand static functions though, so we only want them in // one file. That's what this is about. #ifdef Q3_VM #define __Q3_VM_MATH #endif #include "q_shared.h" const vec3_t vec3_origin = {0,0,0}; vec3_t axisDefault[3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } }; vec4_t colorBlack = {0, 0, 0, 1}; vec4_t colorRed = {1, 0, 0, 1}; vec4_t colorGreen = {0, 1, 0, 1}; vec4_t colorBlue = {0, 0, 1, 1}; vec4_t colorYellow = {1, 1, 0, 1}; vec4_t colorMagenta= {1, 0, 1, 1}; vec4_t colorCyan = {0, 1, 1, 1}; vec4_t colorWhite = {1, 1, 1, 1}; vec4_t colorLtGrey = {0.75, 0.75, 0.75, 1}; vec4_t colorMdGrey = {0.5, 0.5, 0.5, 1}; vec4_t colorDkGrey = {0.25, 0.25, 0.25, 1}; // actually there are 35 colors but we want to use bitmask safely const vec4_t g_color_table[ 64 ] = { {0.0f, 0.0f, 0.0f, 1.0f}, {1.0f, 0.0f, 0.0f, 1.0f}, {0.0f, 1.0f, 0.0f, 1.0f}, {1.0f, 1.0f, 0.0f, 1.0f}, {0.2f, 0.2f, 1.0f, 1.0f}, //{0.0, 0.0, 1.0, 1.0}, {0.0f, 1.0f, 1.0f, 1.0f}, {1.0f, 0.0f, 1.0f, 1.0f}, {1.0f, 1.0f, 1.0f, 1.0f}, // extended color codes from CPMA/CNQ3: { 1.00000f, 0.50000f, 0.00000f, 1.00000f }, // 8 { 0.60000f, 0.60000f, 1.00000f, 1.00000f }, // 9 // CPMA's alphabet rainbow { 1.00000f, 0.00000f, 0.00000f, 1.00000f }, // a { 1.00000f, 0.26795f, 0.00000f, 1.00000f }, // b { 1.00000f, 0.50000f, 0.00000f, 1.00000f }, // c { 1.00000f, 0.73205f, 0.00000f, 1.00000f }, // d { 1.00000f, 1.00000f, 0.00000f, 1.00000f }, // e { 0.73205f, 1.00000f, 0.00000f, 1.00000f }, // f { 0.50000f, 1.00000f, 0.00000f, 1.00000f }, // g { 0.26795f, 1.00000f, 0.00000f, 1.00000f }, // h { 0.00000f, 1.00000f, 0.00000f, 1.00000f }, // i { 0.00000f, 1.00000f, 0.26795f, 1.00000f }, // j { 0.00000f, 1.00000f, 0.50000f, 1.00000f }, // k { 0.00000f, 1.00000f, 0.73205f, 1.00000f }, // l { 0.00000f, 1.00000f, 1.00000f, 1.00000f }, // m { 0.00000f, 0.73205f, 1.00000f, 1.00000f }, // n { 0.00000f, 0.50000f, 1.00000f, 1.00000f }, // o { 0.00000f, 0.26795f, 1.00000f, 1.00000f }, // p { 0.00000f, 0.00000f, 1.00000f, 1.00000f }, // q { 0.26795f, 0.00000f, 1.00000f, 1.00000f }, // r { 0.50000f, 0.00000f, 1.00000f, 1.00000f }, // s { 0.73205f, 0.00000f, 1.00000f, 1.00000f }, // t { 1.00000f, 0.00000f, 1.00000f, 1.00000f }, // u { 1.00000f, 0.00000f, 0.73205f, 1.00000f }, // v { 1.00000f, 0.00000f, 0.50000f, 1.00000f }, // w { 1.00000f, 0.00000f, 0.26795f, 1.00000f }, // x { 1.0, 1.0, 1.0, 1.0 }, // y, white, duped so all colors can be expressed with this palette { 0.5, 0.5, 0.5, 1.0 }, // z, grey }; int ColorIndexFromChar( char ccode ) { if ( ccode >= '0' && ccode <= '9' ) { return ( ccode - '0' ); } else if ( ccode >= 'a' && ccode <= 'z' ) { return ( ccode - 'a' + 10 ); } else if ( ccode >= 'A' && ccode <= 'Z' ) { return ( ccode - 'A' + 10 ); } else { return ColorIndex( COLOR_WHITE ); } } vec3_t bytedirs[NUMVERTEXNORMALS] = { {-0.525731f, 0.000000f, 0.850651f}, {-0.442863f, 0.238856f, 0.864188f}, {-0.295242f, 0.000000f, 0.955423f}, {-0.309017f, 0.500000f, 0.809017f}, {-0.162460f, 0.262866f, 0.951056f}, {0.000000f, 0.000000f, 1.000000f}, {0.000000f, 0.850651f, 0.525731f}, {-0.147621f, 0.716567f, 0.681718f}, {0.147621f, 0.716567f, 0.681718f}, {0.000000f, 0.525731f, 0.850651f}, {0.309017f, 0.500000f, 0.809017f}, {0.525731f, 0.000000f, 0.850651f}, {0.295242f, 0.000000f, 0.955423f}, {0.442863f, 0.238856f, 0.864188f}, {0.162460f, 0.262866f, 0.951056f}, {-0.681718f, 0.147621f, 0.716567f}, {-0.809017f, 0.309017f, 0.500000f},{-0.587785f, 0.425325f, 0.688191f}, {-0.850651f, 0.525731f, 0.000000f},{-0.864188f, 0.442863f, 0.238856f}, {-0.716567f, 0.681718f, 0.147621f},{-0.688191f, 0.587785f, 0.425325f}, {-0.500000f, 0.809017f, 0.309017f}, {-0.238856f, 0.864188f, 0.442863f}, {-0.425325f, 0.688191f, 0.587785f}, {-0.716567f, 0.681718f, -0.147621f}, {-0.500000f, 0.809017f, -0.309017f}, {-0.525731f, 0.850651f, 0.000000f}, {0.000000f, 0.850651f, -0.525731f}, {-0.238856f, 0.864188f, -0.442863f}, {0.000000f, 0.955423f, -0.295242f}, {-0.262866f, 0.951056f, -0.162460f}, {0.000000f, 1.000000f, 0.000000f}, {0.000000f, 0.955423f, 0.295242f}, {-0.262866f, 0.951056f, 0.162460f}, {0.238856f, 0.864188f, 0.442863f}, {0.262866f, 0.951056f, 0.162460f}, {0.500000f, 0.809017f, 0.309017f}, {0.238856f, 0.864188f, -0.442863f},{0.262866f, 0.951056f, -0.162460f}, {0.500000f, 0.809017f, -0.309017f},{0.850651f, 0.525731f, 0.000000f}, {0.716567f, 0.681718f, 0.147621f}, {0.716567f, 0.681718f, -0.147621f}, {0.525731f, 0.850651f, 0.000000f}, {0.425325f, 0.688191f, 0.587785f}, {0.864188f, 0.442863f, 0.238856f}, {0.688191f, 0.587785f, 0.425325f}, {0.809017f, 0.309017f, 0.500000f}, {0.681718f, 0.147621f, 0.716567f}, {0.587785f, 0.425325f, 0.688191f}, {0.955423f, 0.295242f, 0.000000f}, {1.000000f, 0.000000f, 0.000000f}, {0.951056f, 0.162460f, 0.262866f}, {0.850651f, -0.525731f, 0.000000f},{0.955423f, -0.295242f, 0.000000f}, {0.864188f, -0.442863f, 0.238856f}, {0.951056f, -0.162460f, 0.262866f}, {0.809017f, -0.309017f, 0.500000f}, {0.681718f, -0.147621f, 0.716567f}, {0.850651f, 0.000000f, 0.525731f}, {0.864188f, 0.442863f, -0.238856f}, {0.809017f, 0.309017f, -0.500000f}, {0.951056f, 0.162460f, -0.262866f}, {0.525731f, 0.000000f, -0.850651f}, {0.681718f, 0.147621f, -0.716567f}, {0.681718f, -0.147621f, -0.716567f},{0.850651f, 0.000000f, -0.525731f}, {0.809017f, -0.309017f, -0.500000f}, {0.864188f, -0.442863f, -0.238856f}, {0.951056f, -0.162460f, -0.262866f}, {0.147621f, 0.716567f, -0.681718f}, {0.309017f, 0.500000f, -0.809017f}, {0.425325f, 0.688191f, -0.587785f}, {0.442863f, 0.238856f, -0.864188f}, {0.587785f, 0.425325f, -0.688191f}, {0.688191f, 0.587785f, -0.425325f}, {-0.147621f, 0.716567f, -0.681718f}, {-0.309017f, 0.500000f, -0.809017f}, {0.000000f, 0.525731f, -0.850651f}, {-0.525731f, 0.000000f, -0.850651f}, {-0.442863f, 0.238856f, -0.864188f}, {-0.295242f, 0.000000f, -0.955423f}, {-0.162460f, 0.262866f, -0.951056f}, {0.000000f, 0.000000f, -1.000000f}, {0.295242f, 0.000000f, -0.955423f}, {0.162460f, 0.262866f, -0.951056f}, {-0.442863f, -0.238856f, -0.864188f}, {-0.309017f, -0.500000f, -0.809017f}, {-0.162460f, -0.262866f, -0.951056f}, {0.000000f, -0.850651f, -0.525731f}, {-0.147621f, -0.716567f, -0.681718f}, {0.147621f, -0.716567f, -0.681718f}, {0.000000f, -0.525731f, -0.850651f}, {0.309017f, -0.500000f, -0.809017f}, {0.442863f, -0.238856f, -0.864188f}, {0.162460f, -0.262866f, -0.951056f}, {0.238856f, -0.864188f, -0.442863f}, {0.500000f, -0.809017f, -0.309017f}, {0.425325f, -0.688191f, -0.587785f}, {0.716567f, -0.681718f, -0.147621f}, {0.688191f, -0.587785f, -0.425325f}, {0.587785f, -0.425325f, -0.688191f}, {0.000000f, -0.955423f, -0.295242f}, {0.000000f, -1.000000f, 0.000000f}, {0.262866f, -0.951056f, -0.162460f}, {0.000000f, -0.850651f, 0.525731f}, {0.000000f, -0.955423f, 0.295242f}, {0.238856f, -0.864188f, 0.442863f}, {0.262866f, -0.951056f, 0.162460f}, {0.500000f, -0.809017f, 0.309017f}, {0.716567f, -0.681718f, 0.147621f}, {0.525731f, -0.850651f, 0.000000f}, {-0.238856f, -0.864188f, -0.442863f}, {-0.500000f, -0.809017f, -0.309017f}, {-0.262866f, -0.951056f, -0.162460f}, {-0.850651f, -0.525731f, 0.000000f}, {-0.716567f, -0.681718f, -0.147621f}, {-0.716567f, -0.681718f, 0.147621f}, {-0.525731f, -0.850651f, 0.000000f}, {-0.500000f, -0.809017f, 0.309017f}, {-0.238856f, -0.864188f, 0.442863f}, {-0.262866f, -0.951056f, 0.162460f}, {-0.864188f, -0.442863f, 0.238856f}, {-0.809017f, -0.309017f, 0.500000f}, {-0.688191f, -0.587785f, 0.425325f}, {-0.681718f, -0.147621f, 0.716567f}, {-0.442863f, -0.238856f, 0.864188f}, {-0.587785f, -0.425325f, 0.688191f}, {-0.309017f, -0.500000f, 0.809017f}, {-0.147621f, -0.716567f, 0.681718f}, {-0.425325f, -0.688191f, 0.587785f}, {-0.162460f, -0.262866f, 0.951056f}, {0.442863f, -0.238856f, 0.864188f}, {0.162460f, -0.262866f, 0.951056f}, {0.309017f, -0.500000f, 0.809017f}, {0.147621f, -0.716567f, 0.681718f}, {0.000000f, -0.525731f, 0.850651f}, {0.425325f, -0.688191f, 0.587785f}, {0.587785f, -0.425325f, 0.688191f}, {0.688191f, -0.587785f, 0.425325f}, {-0.955423f, 0.295242f, 0.000000f}, {-0.951056f, 0.162460f, 0.262866f}, {-1.000000f, 0.000000f, 0.000000f}, {-0.850651f, 0.000000f, 0.525731f}, {-0.955423f, -0.295242f, 0.000000f}, {-0.951056f, -0.162460f, 0.262866f}, {-0.864188f, 0.442863f, -0.238856f}, {-0.951056f, 0.162460f, -0.262866f}, {-0.809017f, 0.309017f, -0.500000f}, {-0.864188f, -0.442863f, -0.238856f}, {-0.951056f, -0.162460f, -0.262866f}, {-0.809017f, -0.309017f, -0.500000f}, {-0.681718f, 0.147621f, -0.716567f}, {-0.681718f, -0.147621f, -0.716567f}, {-0.850651f, 0.000000f, -0.525731f}, {-0.688191f, 0.587785f, -0.425325f}, {-0.587785f, 0.425325f, -0.688191f}, {-0.425325f, 0.688191f, -0.587785f}, {-0.425325f, -0.688191f, -0.587785f}, {-0.587785f, -0.425325f, -0.688191f}, {-0.688191f, -0.587785f, -0.425325f} }; //============================================================== int Q_rand( int *seed ) { *seed = (69069 * *seed + 1); return *seed; } float Q_random( int *seed ) { return ( Q_rand( seed ) & 0xffff ) / (float)0x10000; } float Q_crandom( int *seed ) { return 2.0 * ( Q_random( seed ) - 0.5 ); } //======================================================= signed char ClampChar( int i ) { if ( i < -128 ) { return -128; } if ( i > 127 ) { return 127; } return i; } signed char ClampCharMove( int i ) { if ( i < -127 ) { return -127; } if ( i > 127 ) { return 127; } return i; } signed short ClampShort( int i ) { if ( i < -32768 ) { return -32768; } if ( i > 0x7fff ) { return 0x7fff; } return i; } // this isn't a real cheap function to call! int DirToByte( vec3_t dir ) { int i, best; float d, bestd; if ( !dir ) { return 0; } bestd = 0; best = 0; for (i=0 ; i bestd) { bestd = d; best = i; } } return best; } void ByteToDir( int b, vec3_t dir ) { if ( b < 0 || b >= NUMVERTEXNORMALS ) { VectorCopy( vec3_origin, dir ); return; } VectorCopy (bytedirs[b], dir); } unsigned ColorBytes3 (float r, float g, float b) { unsigned i; ( (byte *)&i )[0] = r * 255; ( (byte *)&i )[1] = g * 255; ( (byte *)&i )[2] = b * 255; return i; } unsigned ColorBytes4 (float r, float g, float b, float a) { unsigned i; ( (byte *)&i )[0] = r * 255; ( (byte *)&i )[1] = g * 255; ( (byte *)&i )[2] = b * 255; ( (byte *)&i )[3] = a * 255; return i; } float NormalizeColor( const vec3_t in, vec3_t out ) { float max; max = in[0]; if ( in[1] > max ) { max = in[1]; } if ( in[2] > max ) { max = in[2]; } if ( !max ) { VectorClear( out ); } else { out[0] = in[0] / max; out[1] = in[1] / max; out[2] = in[2] / max; } return max; } /* ===================== PlaneFromPoints Returns false if the triangle is degenerate. The normal will point out of the clock for clockwise ordered points ===================== */ qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) { vec3_t d1, d2; VectorSubtract( b, a, d1 ); VectorSubtract( c, a, d2 ); CrossProduct( d2, d1, plane ); if ( VectorNormalize( plane ) == 0 ) { return qfalse; } plane[3] = DotProduct( a, plane ); return qtrue; } /* =============== RotatePointAroundVector This is not implemented very well... =============== */ void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ) { float m[3][3]; float im[3][3]; float zrot[3][3]; float tmpmat[3][3]; float rot[3][3]; int i; vec3_t vr, vup, vf; float rad; vf[0] = dir[0]; vf[1] = dir[1]; vf[2] = dir[2]; PerpendicularVector( vr, dir ); CrossProduct( vr, vf, vup ); m[0][0] = vr[0]; m[1][0] = vr[1]; m[2][0] = vr[2]; m[0][1] = vup[0]; m[1][1] = vup[1]; m[2][1] = vup[2]; m[0][2] = vf[0]; m[1][2] = vf[1]; m[2][2] = vf[2]; memcpy( im, m, sizeof( im ) ); im[0][1] = m[1][0]; im[0][2] = m[2][0]; im[1][0] = m[0][1]; im[1][2] = m[2][1]; im[2][0] = m[0][2]; im[2][1] = m[1][2]; memset( zrot, 0, sizeof( zrot ) ); zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F; rad = DEG2RAD( degrees ); zrot[0][0] = cos( rad ); zrot[0][1] = sin( rad ); zrot[1][0] = -sin( rad ); zrot[1][1] = cos( rad ); MatrixMultiply( m, zrot, tmpmat ); MatrixMultiply( tmpmat, im, rot ); for ( i = 0; i < 3; i++ ) { dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2]; } } /* =============== RotateAroundDirection =============== */ void RotateAroundDirection( vec3_t axis[3], float yaw ) { // create an arbitrary axis[1] PerpendicularVector( axis[1], axis[0] ); // rotate it around axis[0] by yaw if ( yaw ) { vec3_t temp; VectorCopy( axis[1], temp ); RotatePointAroundVector( axis[1], axis[0], temp, yaw ); } // cross to get axis[2] CrossProduct( axis[0], axis[1], axis[2] ); } void vectoangles( const vec3_t value1, vec3_t angles ) { float forward; float yaw, pitch; if ( value1[1] == 0 && value1[0] == 0 ) { yaw = 0; if ( value1[2] > 0 ) { pitch = 90; } else { pitch = 270; } } else { if ( value1[0] ) { yaw = ( atan2 ( value1[1], value1[0] ) * 180 / M_PI ); } else if ( value1[1] > 0 ) { yaw = 90; } else { yaw = 270; } if ( yaw < 0 ) { yaw += 360; } forward = sqrt ( value1[0]*value1[0] + value1[1]*value1[1] ); pitch = ( atan2(value1[2], forward) * 180 / M_PI ); if ( pitch < 0 ) { pitch += 360; } } angles[PITCH] = -pitch; angles[YAW] = yaw; angles[ROLL] = 0; } /* ================= AnglesToAxis ================= */ void AnglesToAxis( const vec3_t angles, vec3_t axis[3] ) { vec3_t right; // angle vectors returns "right" instead of "y axis" AngleVectors( angles, axis[0], right, axis[2] ); VectorSubtract( vec3_origin, right, axis[1] ); } void AxisClear( vec3_t axis[3] ) { axis[0][0] = 1; axis[0][1] = 0; axis[0][2] = 0; axis[1][0] = 0; axis[1][1] = 1; axis[1][2] = 0; axis[2][0] = 0; axis[2][1] = 0; axis[2][2] = 1; } void AxisCopy( vec3_t in[3], vec3_t out[3] ) { VectorCopy( in[0], out[0] ); VectorCopy( in[1], out[1] ); VectorCopy( in[2], out[2] ); } void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal ) { float d; vec3_t n; float inv_denom; inv_denom = DotProduct( normal, normal ); #ifndef Q3_VM assert( Q_fabs(inv_denom) != 0.0f ); // zero vectors get here #endif inv_denom = 1.0f / inv_denom; d = DotProduct( normal, p ) * inv_denom; n[0] = normal[0] * inv_denom; n[1] = normal[1] * inv_denom; n[2] = normal[2] * inv_denom; dst[0] = p[0] - d * n[0]; dst[1] = p[1] - d * n[1]; dst[2] = p[2] - d * n[2]; } /* ================ MakeNormalVectors Given a normalized forward vector, create two other perpendicular vectors ================ */ void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) { float d; // this rotate and negate guarantees a vector // not colinear with the original right[1] = -forward[0]; right[2] = forward[1]; right[0] = forward[2]; d = DotProduct (right, forward); VectorMA (right, -d, forward, right); VectorNormalize (right); CrossProduct (right, forward, up); } void VectorRotate( const vec3_t in, const vec3_t matrix[3], vec3_t out ) { out[0] = DotProduct( in, matrix[0] ); out[1] = DotProduct( in, matrix[1] ); out[2] = DotProduct( in, matrix[2] ); } //============================================================================ /* ** float q_rsqrt( float number ) */ float Q_rsqrt( float number ) { floatint_t t; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; t.f = number; t.i = 0x5f3759df - ( t.i >> 1 ); // what the fuck? y = t.f; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed return y; } float Q_fabs( float f ) { floatint_t fi; fi.f = f; fi.i &= 0x7FFFFFFF; return fi.f; } //============================================================ /* =============== LerpAngle =============== */ float LerpAngle (float from, float to, float frac) { float a; if ( to - from > 180 ) { to -= 360; } if ( to - from < -180 ) { to += 360; } a = from + frac * (to - from); return a; } /* ================= AngleSubtract Always returns a value from -180 to 180 ================= */ float AngleSubtract( float a1, float a2 ) { float a; a = a1 - a2; while ( a > 180 ) { a -= 360; } while ( a < -180 ) { a += 360; } return a; } void AnglesSubtract( vec3_t v1, vec3_t v2, vec3_t v3 ) { v3[0] = AngleSubtract( v1[0], v2[0] ); v3[1] = AngleSubtract( v1[1], v2[1] ); v3[2] = AngleSubtract( v1[2], v2[2] ); } float AngleMod(float a) { a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535); return a; } /* ================= AngleNormalize360 returns angle normalized to the range [0 <= angle < 360] ================= */ float AngleNormalize360 ( float angle ) { return (360.0 / 65536) * ((int)(angle * (65536 / 360.0)) & 65535); } /* ================= AngleNormalize180 returns angle normalized to the range [-180 < angle <= 180] ================= */ float AngleNormalize180 ( float angle ) { angle = AngleNormalize360( angle ); if ( angle > 180.0 ) { angle -= 360.0; } return angle; } /* ================= AngleDelta returns the normalized delta from angle1 to angle2 ================= */ float AngleDelta ( float angle1, float angle2 ) { return AngleNormalize180( angle1 - angle2 ); } //============================================================ /* ================= SetPlaneSignbits ================= */ void SetPlaneSignbits (cplane_t *out) { int bits, j; // for fast box on planeside test bits = 0; for (j=0 ; j<3 ; j++) { if (out->normal[j] < 0) { bits |= 1<signbits = bits; } /* ================== BoxOnPlaneSide Returns 1, 2, or 1 + 2 ================== */ int BoxOnPlaneSide(vec3_t emins, vec3_t emaxs, struct cplane_s *p) { float dist[2]; int sides, b, i; // fast axial cases if (p->type < 3) { if (p->dist <= emins[p->type]) return 1; if (p->dist >= emaxs[p->type]) return 2; return 3; } // general case dist[0] = dist[1] = 0; if (p->signbits < 8) // >= 8: default case is original code (dist[0]=dist[1]=0) { for (i=0 ; i<3 ; i++) { b = (p->signbits >> i) & 1; dist[ b] += p->normal[i]*emaxs[i]; dist[!b] += p->normal[i]*emins[i]; } } sides = 0; if (dist[0] >= p->dist) sides = 1; if (dist[1] < p->dist) sides |= 2; return sides; } /* ================= RadiusFromBounds ================= */ float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) { int i; vec3_t corner; float a, b; for (i=0 ; i<3 ; i++) { a = fabs( mins[i] ); b = fabs( maxs[i] ); corner[i] = a > b ? a : b; } return VectorLength (corner); } void ClearBounds( vec3_t mins, vec3_t maxs ) { mins[0] = mins[1] = mins[2] = 99999; maxs[0] = maxs[1] = maxs[2] = -99999; } void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) { if ( v[0] < mins[0] ) { mins[0] = v[0]; } if ( v[0] > maxs[0]) { maxs[0] = v[0]; } if ( v[1] < mins[1] ) { mins[1] = v[1]; } if ( v[1] > maxs[1]) { maxs[1] = v[1]; } if ( v[2] < mins[2] ) { mins[2] = v[2]; } if ( v[2] > maxs[2]) { maxs[2] = v[2]; } } qboolean BoundsIntersect(const vec3_t mins, const vec3_t maxs, const vec3_t mins2, const vec3_t maxs2) { if ( maxs[0] < mins2[0] || maxs[1] < mins2[1] || maxs[2] < mins2[2] || mins[0] > maxs2[0] || mins[1] > maxs2[1] || mins[2] > maxs2[2]) { return qfalse; } return qtrue; } qboolean BoundsIntersectSphere(const vec3_t mins, const vec3_t maxs, const vec3_t origin, vec_t radius) { if ( origin[0] - radius > maxs[0] || origin[0] + radius < mins[0] || origin[1] - radius > maxs[1] || origin[1] + radius < mins[1] || origin[2] - radius > maxs[2] || origin[2] + radius < mins[2]) { return qfalse; } return qtrue; } qboolean BoundsIntersectPoint(const vec3_t mins, const vec3_t maxs, const vec3_t origin) { if ( origin[0] > maxs[0] || origin[0] < mins[0] || origin[1] > maxs[1] || origin[1] < mins[1] || origin[2] > maxs[2] || origin[2] < mins[2]) { return qfalse; } return qtrue; } vec_t VectorNormalize( vec3_t v ) { // NOTE: TTimo - Apple G4 altivec source uses double? float length, ilength; length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; if ( length ) { /* writing it this way allows gcc to recognize that rsqrt can be used */ ilength = 1/(float)sqrt (length); /* sqrt(length) = length * (1 / sqrt(length)) */ length *= ilength; v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } return length; } vec_t VectorNormalize2( const vec3_t v, vec3_t out) { float length, ilength; length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; if (length) { /* writing it this way allows gcc to recognize that rsqrt can be used */ ilength = 1/(float)sqrt (length); /* sqrt(length) = length * (1 / sqrt(length)) */ length *= ilength; out[0] = v[0]*ilength; out[1] = v[1]*ilength; out[2] = v[2]*ilength; } else { VectorClear( out ); } return length; } void _VectorMA( const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc) { vecc[0] = veca[0] + scale*vecb[0]; vecc[1] = veca[1] + scale*vecb[1]; vecc[2] = veca[2] + scale*vecb[2]; } vec_t _DotProduct( const vec3_t v1, const vec3_t v2 ) { return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; } void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out ) { out[0] = veca[0]-vecb[0]; out[1] = veca[1]-vecb[1]; out[2] = veca[2]-vecb[2]; } void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out ) { out[0] = veca[0]+vecb[0]; out[1] = veca[1]+vecb[1]; out[2] = veca[2]+vecb[2]; } void _VectorCopy( const vec3_t in, vec3_t out ) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } void _VectorScale( const vec3_t in, vec_t scale, vec3_t out ) { out[0] = in[0]*scale; out[1] = in[1]*scale; out[2] = in[2]*scale; } void Vector4Scale( const vec4_t in, vec_t scale, vec4_t out ) { out[0] = in[0]*scale; out[1] = in[1]*scale; out[2] = in[2]*scale; out[3] = in[3]*scale; } int Q_log2( int val ) { int answer; answer = 0; while ( ( val>>=1 ) != 0 ) { answer++; } return answer; } /* ================= PlaneTypeForNormal ================= */ /* int PlaneTypeForNormal (vec3_t normal) { if ( normal[0] == 1.0 ) return PLANE_X; if ( normal[1] == 1.0 ) return PLANE_Y; if ( normal[2] == 1.0 ) return PLANE_Z; return PLANE_NON_AXIAL; } */ /* ================ MatrixMultiply ================ */ void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; } void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; static float sr, sp, sy, cr, cp, cy; // static to help MS compiler fp bugs angle = angles[YAW] * (M_PI*2 / 360); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (M_PI*2 / 360); sp = sin(angle); cp = cos(angle); angle = angles[ROLL] * (M_PI*2 / 360); sr = sin(angle); cr = cos(angle); if (forward) { forward[0] = cp*cy; forward[1] = cp*sy; forward[2] = -sp; } if (right) { right[0] = (-1*sr*sp*cy+-1*cr*-sy); right[1] = (-1*sr*sp*sy+-1*cr*cy); right[2] = -1*sr*cp; } if (up) { up[0] = (cr*sp*cy+-sr*-sy); up[1] = (cr*sp*sy+-sr*cy); up[2] = cr*cp; } } /* ** assumes "src" is normalized */ void PerpendicularVector( vec3_t dst, const vec3_t src ) { int pos; int i; float minelem = 1.0F; vec3_t tempvec; /* ** find the smallest magnitude axially aligned vector */ for ( pos = 0, i = 0; i < 3; i++ ) { if ( fabs( src[i] ) < minelem ) { pos = i; minelem = fabs( src[i] ); } } tempvec[0] = tempvec[1] = tempvec[2] = 0.0F; tempvec[pos] = 1.0F; /* ** project the point onto the plane defined by src */ ProjectPointOnPlane( dst, tempvec, src ); /* ** normalize the result */ VectorNormalize( dst ); } /* ================ Q_isnan Don't pass doubles to this ================ */ int Q_isnan( float x ) { floatint_t fi; fi.f = x; fi.u &= 0x7FFFFFFF; fi.u = 0x7F800000 - fi.u; return (int)( fi.u >> 31 ); } //------------------------------------------------------------------------ /* ================ Q_isfinite ================ */ static int Q_isfinite( float f ) { floatint_t fi; fi.f = f; if ( fi.u == 0xFF800000 || fi.u == 0x7F800000 ) return 0; // -INF or +INF fi.u = 0x7F800000 - (fi.u & 0x7FFFFFFF); if ( (int)( fi.u >> 31 ) ) return 0; // -NAN or +NAN return 1; } /* ================ Q_atof ================ */ float Q_atof( const char *str ) { float f; f = atof( str ); // modern C11-like implementations of atof() may return INF or NAN // which breaks all FP code where such values getting passed // and effectively corrupts range checks for cvars as well if ( !Q_isfinite( f ) ) return 0.0f; return f; } /* ================ Q_log2f ================ */ float Q_log2f( float f ) { return logf( f ) / M_LN2; } /* ================ Q_exp2f ================ */ float Q_exp2f( float f ) { return powf( 2.0f, f ); } #ifndef Q3_VM /* ===================== Q_acos the msvc acos doesn't always return a value between -PI and PI: int i; i = 1065353246; acos(*(float*) &i) == -1.#IND0 ===================== */ float Q_acos(float c) { float angle; angle = acos(c); if (angle > M_PI) { return (float)M_PI; } if (angle < -M_PI) { return (float)M_PI; } return angle; } #endif