/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ #include "cm_local.h" /* ================== CM_PointLeafnum_r ================== */ static int CM_PointLeafnum_r( const vec3_t p, int num ) { float d; cNode_t *node; cplane_t *plane; while (num >= 0) { node = cm.nodes + num; plane = node->plane; if (plane->type < 3) d = p[plane->type] - plane->dist; else d = DotProduct (plane->normal, p) - plane->dist; if (d < 0) num = node->children[1]; else num = node->children[0]; } c_pointcontents++; // optimize counter return -1 - num; } int CM_PointLeafnum( const vec3_t p ) { if ( !cm.numNodes ) { // map not loaded return 0; } return CM_PointLeafnum_r (p, 0); } /* ====================================================================== LEAF LISTING ====================================================================== */ void CM_StoreLeafs( leafList_t *ll, int nodenum ) { int leafNum; leafNum = -1 - nodenum; // store the lastLeaf even if the list is overflowed if ( cm.leafs[ leafNum ].cluster != -1 ) { ll->lastLeaf = leafNum; } if ( ll->count >= ll->maxcount) { ll->overflowed = qtrue; return; } ll->list[ ll->count++ ] = leafNum; } void CM_StoreBrushes( leafList_t *ll, int nodenum ) { int i, k; int leafnum; int brushnum; cLeaf_t *leaf; cbrush_t *b; leafnum = -1 - nodenum; leaf = &cm.leafs[leafnum]; for ( k = 0 ; k < leaf->numLeafBrushes ; k++ ) { brushnum = cm.leafbrushes[leaf->firstLeafBrush+k]; b = &cm.brushes[brushnum]; if ( b->checkcount == cm.checkcount ) { continue; // already checked this brush in another leaf } b->checkcount = cm.checkcount; for ( i = 0 ; i < 3 ; i++ ) { if ( b->bounds[0][i] >= ll->bounds[1][i] || b->bounds[1][i] <= ll->bounds[0][i] ) { break; } } if ( i != 3 ) { continue; } if ( ll->count >= ll->maxcount) { ll->overflowed = qtrue; return; } ((cbrush_t **)ll->list)[ ll->count++ ] = b; } #if 0 // store patches? for ( k = 0 ; k < leaf->numLeafSurfaces ; k++ ) { patch = cm.surfaces[ cm.leafsurfaces[ leaf->firstleafsurface + k ] ]; if ( !patch ) { continue; } } #endif } /* ============= CM_BoxLeafnums Fills in a list of all the leafs touched ============= */ void CM_BoxLeafnums_r( leafList_t *ll, int nodenum ) { cplane_t *plane; cNode_t *node; int s; while (1) { if (nodenum < 0) { ll->storeLeafs( ll, nodenum ); return; } node = &cm.nodes[nodenum]; plane = node->plane; s = BoxOnPlaneSide( ll->bounds[0], ll->bounds[1], plane ); if (s == 1) { nodenum = node->children[0]; } else if (s == 2) { nodenum = node->children[1]; } else { // go down both CM_BoxLeafnums_r( ll, node->children[0] ); nodenum = node->children[1]; } } } /* ================== CM_BoxLeafnums ================== */ int CM_BoxLeafnums( const vec3_t mins, const vec3_t maxs, int *list, int listsize, int *lastLeaf) { leafList_t ll; cm.checkcount++; VectorCopy( mins, ll.bounds[0] ); VectorCopy( maxs, ll.bounds[1] ); ll.count = 0; ll.maxcount = listsize; ll.list = list; ll.storeLeafs = CM_StoreLeafs; ll.lastLeaf = 0; ll.overflowed = qfalse; CM_BoxLeafnums_r( &ll, 0 ); *lastLeaf = ll.lastLeaf; return ll.count; } /* ================== CM_BoxBrushes ================== */ int CM_BoxBrushes( const vec3_t mins, const vec3_t maxs, cbrush_t **list, int listsize ) { leafList_t ll; cm.checkcount++; VectorCopy( mins, ll.bounds[0] ); VectorCopy( maxs, ll.bounds[1] ); ll.count = 0; ll.maxcount = listsize; ll.list = (void *)list; ll.storeLeafs = CM_StoreBrushes; ll.lastLeaf = 0; ll.overflowed = qfalse; CM_BoxLeafnums_r( &ll, 0 ); return ll.count; } //==================================================================== /* ================== CM_PointContents ================== */ int CM_PointContents( const vec3_t p, clipHandle_t model ) { int leafnum; int i, k; int brushnum; cLeaf_t *leaf; cbrush_t *b; int contents; float d; cmodel_t *clipm; if (!cm.numNodes) { // map not loaded return 0; } if ( model ) { clipm = CM_ClipHandleToModel( model ); leaf = &clipm->leaf; } else { leafnum = CM_PointLeafnum_r (p, 0); leaf = &cm.leafs[leafnum]; } contents = 0; for (k=0 ; knumLeafBrushes ; k++) { brushnum = cm.leafbrushes[leaf->firstLeafBrush+k]; b = &cm.brushes[brushnum]; if ( !CM_BoundsIntersectPoint( b->bounds[0], b->bounds[1], p ) ) { continue; } // see if the point is in the brush for ( i = 0 ; i < b->numsides ; i++ ) { d = DotProduct( p, b->sides[i].plane->normal ); // FIXME test for Cash // if ( d >= b->sides[i].plane->dist ) { if ( d > b->sides[i].plane->dist ) { break; } } if ( i == b->numsides ) { contents |= b->contents; } } return contents; } /* ================== CM_TransformedPointContents Handles offsetting and rotation of the end points for moving and rotating entities ================== */ int CM_TransformedPointContents( const vec3_t p, clipHandle_t model, const vec3_t origin, const vec3_t angles) { vec3_t p_l; vec3_t temp; vec3_t forward, right, up; // subtract origin offset VectorSubtract (p, origin, p_l); // rotate start and end into the models frame of reference if ( model != BOX_MODEL_HANDLE && (angles[0] || angles[1] || angles[2]) ) { AngleVectors (angles, forward, right, up); VectorCopy (p_l, temp); p_l[0] = DotProduct (temp, forward); p_l[1] = -DotProduct (temp, right); p_l[2] = DotProduct (temp, up); } return CM_PointContents( p_l, model ); } /* =============================================================================== PVS =============================================================================== */ byte *CM_ClusterPVS (int cluster) { if (cluster < 0 || cluster >= cm.numClusters || !cm.vised ) { return cm.visibility; } return cm.visibility + cluster * cm.clusterBytes; } /* =============================================================================== AREAPORTALS =============================================================================== */ static void CM_FloodArea_r( int areaNum, int floodnum) { int i; cArea_t *area; int *con; area = &cm.areas[ areaNum ]; if ( area->floodvalid == cm.floodvalid ) { if (area->floodnum == floodnum) return; Com_Error (ERR_DROP, "FloodArea_r: reflooded"); } area->floodnum = floodnum; area->floodvalid = cm.floodvalid; con = cm.areaPortals + areaNum * cm.numAreas; for ( i=0 ; i < cm.numAreas ; i++ ) { if ( con[i] > 0 ) { CM_FloodArea_r( i, floodnum ); } } } /* ==================== CM_FloodAreaConnections ==================== */ void CM_FloodAreaConnections( void ) { int i; cArea_t *area; int floodnum; // all current floods are now invalid cm.floodvalid++; floodnum = 0; for (i = 0 ; i < cm.numAreas ; i++) { area = &cm.areas[i]; if (area->floodvalid == cm.floodvalid) { continue; // already flooded into } floodnum++; CM_FloodArea_r (i, floodnum); } } /* ==================== CM_AdjustAreaPortalState ==================== */ void CM_AdjustAreaPortalState( int area1, int area2, qboolean open ) { if ( area1 < 0 || area2 < 0 ) { return; } if ( area1 >= cm.numAreas || area2 >= cm.numAreas ) { Com_Error (ERR_DROP, "CM_ChangeAreaPortalState: bad area number"); } if ( open ) { cm.areaPortals[ area1 * cm.numAreas + area2 ]++; cm.areaPortals[ area2 * cm.numAreas + area1 ]++; } else { cm.areaPortals[ area1 * cm.numAreas + area2 ]--; cm.areaPortals[ area2 * cm.numAreas + area1 ]--; if ( cm.areaPortals[ area2 * cm.numAreas + area1 ] < 0 ) { Com_Error (ERR_DROP, "CM_AdjustAreaPortalState: negative reference count"); } } CM_FloodAreaConnections (); } /* ==================== CM_AreasConnected ==================== */ qboolean CM_AreasConnected( int area1, int area2 ) { #ifndef BSPC if ( cm_noAreas->integer ) { return qtrue; } #endif return qtrue; if ( area1 < 0 || area2 < 0 ) { return qfalse; } if (area1 >= cm.numAreas || area2 >= cm.numAreas) { Com_Error (ERR_DROP, "area >= cm.numAreas"); } if (cm.areas[area1].floodnum == cm.areas[area2].floodnum) { return qtrue; } return qfalse; } /* ================= CM_WriteAreaBits Writes a bit vector of all the areas that are in the same flood as the area parameter Returns the number of bytes needed to hold all the bits. The bits are OR'd in, so you can CM_WriteAreaBits from multiple viewpoints and get the union of all visible areas. This is used to cull non-visible entities from snapshots ================= */ int CM_WriteAreaBits (byte *buffer, int area) { int i; int floodnum; int bytes; bytes = (cm.numAreas+7)>>3; #ifndef BSPC if (cm_noAreas->integer || area == -1) #else if ( area == -1) #endif { // for debugging, send everything Com_Memset (buffer, 255, bytes); } else { floodnum = cm.areas[area].floodnum; for (i=0 ; i>3] |= 1<<(i&7); } } return bytes; } #define BOUNDS_CLIP_EPSILON 0.25f // assume single precision and slightly increase to compensate potential SIMD precision loss in 64-bit environment /* ==================== CM_BoundsIntersect ==================== */ qboolean CM_BoundsIntersect( const vec3_t mins, const vec3_t maxs, const vec3_t mins2, const vec3_t maxs2 ) { if (maxs[0] < mins2[0] - BOUNDS_CLIP_EPSILON || maxs[1] < mins2[1] - BOUNDS_CLIP_EPSILON || maxs[2] < mins2[2] - BOUNDS_CLIP_EPSILON || mins[0] > maxs2[0] + BOUNDS_CLIP_EPSILON || mins[1] > maxs2[1] + BOUNDS_CLIP_EPSILON || mins[2] > maxs2[2] + BOUNDS_CLIP_EPSILON) { return qfalse; } return qtrue; } /* ==================== CM_BoundsIntersectPoint ==================== */ qboolean CM_BoundsIntersectPoint( const vec3_t mins, const vec3_t maxs, const vec3_t point ) { if (maxs[0] < point[0] - BOUNDS_CLIP_EPSILON || maxs[1] < point[1] - BOUNDS_CLIP_EPSILON || maxs[2] < point[2] - BOUNDS_CLIP_EPSILON || mins[0] > point[0] + BOUNDS_CLIP_EPSILON || mins[1] > point[1] + BOUNDS_CLIP_EPSILON || mins[2] > point[2] + BOUNDS_CLIP_EPSILON) { return qfalse; } return qtrue; }