/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_models.c -- model loading and caching #include "tr_local.h" #define LL(x) x=LittleLong(x) static qboolean R_LoadMD3(model_t *mod, int lod, void *buffer, int bufferSize, const char *modName); static qboolean R_LoadMDR(model_t *mod, void *buffer, int filesize, const char *name ); /* ==================== R_RegisterMD3 ==================== */ static qhandle_t R_RegisterMD3(const char *name, model_t *mod) { union { unsigned *u; void *v; } buf; int size; int lod; int ident; qboolean loaded = qfalse; int numLoaded; char filename[MAX_QPATH], namebuf[MAX_QPATH+20]; char *fext, defex[] = "md3"; numLoaded = 0; strcpy(filename, name); fext = strchr(filename, '.'); if(!fext) fext = defex; else { *fext = '\0'; fext++; } for (lod = MD3_MAX_LODS - 1 ; lod >= 0 ; lod--) { if(lod) Com_sprintf(namebuf, sizeof(namebuf), "%s_%d.%s", filename, lod, fext); else Com_sprintf(namebuf, sizeof(namebuf), "%s.%s", filename, fext); size = ri.FS_ReadFile( namebuf, &buf.v ); if(!buf.u) continue; ident = LittleLong(* (unsigned *) buf.u); if (ident == MD3_IDENT) loaded = R_LoadMD3(mod, lod, buf.u, size, name); else ri.Printf(PRINT_WARNING,"R_RegisterMD3: unknown fileid for %s\n", name); ri.FS_FreeFile(buf.v); if(loaded) { mod->numLods++; numLoaded++; } else break; } if(numLoaded) { // duplicate into higher lod spots that weren't // loaded, in case the user changes r_lodbias on the fly for(lod--; lod >= 0; lod--) { mod->numLods++; mod->mdv[lod] = mod->mdv[lod + 1]; } return mod->index; } #ifdef _DEBUG ri.Printf(PRINT_WARNING,"R_RegisterMD3: couldn't load %s\n", name); #endif mod->type = MOD_BAD; return 0; } /* ==================== R_RegisterMDR ==================== */ static qhandle_t R_RegisterMDR(const char *name, model_t *mod) { union { unsigned *u; void *v; } buf; int ident; qboolean loaded = qfalse; int filesize; filesize = ri.FS_ReadFile(name, (void **) &buf.v); if(!buf.u) { mod->type = MOD_BAD; return 0; } ident = LittleLong(*(unsigned *)buf.u); if(ident == MDR_IDENT) loaded = R_LoadMDR(mod, buf.u, filesize, name); ri.FS_FreeFile (buf.v); if(!loaded) { ri.Printf(PRINT_WARNING,"R_RegisterMDR: couldn't load mdr file %s\n", name); mod->type = MOD_BAD; return 0; } return mod->index; } /* ==================== R_RegisterIQM ==================== */ static qhandle_t R_RegisterIQM(const char *name, model_t *mod) { union { unsigned *u; void *v; } buf; qboolean loaded = qfalse; int filesize; filesize = ri.FS_ReadFile(name, (void **) &buf.v); if(!buf.u) { mod->type = MOD_BAD; return 0; } loaded = R_LoadIQM(mod, buf.u, filesize, name); ri.FS_FreeFile (buf.v); if(!loaded) { ri.Printf(PRINT_WARNING,"R_RegisterIQM: couldn't load iqm file %s\n", name); mod->type = MOD_BAD; return 0; } return mod->index; } typedef struct { const char *ext; qhandle_t (*ModelLoader)( const char *, model_t * ); } modelExtToLoaderMap_t; // Note that the ordering indicates the order of preference used // when there are multiple models of different formats available static modelExtToLoaderMap_t modelLoaders[ ] = { { "iqm", R_RegisterIQM }, { "mdr", R_RegisterMDR }, { "md3", R_RegisterMD3 } }; static int numModelLoaders = ARRAY_LEN(modelLoaders); //=============================================================================== /* ** R_GetModelByHandle */ model_t *R_GetModelByHandle( qhandle_t index ) { model_t *mod; // out of range gets the default model if ( index < 1 || index >= tr.numModels ) { return tr.models[0]; } mod = tr.models[index]; return mod; } //=============================================================================== /* ** R_AllocModel */ model_t *R_AllocModel( void ) { model_t *mod; if ( tr.numModels == MAX_MOD_KNOWN ) { return NULL; } mod = ri.Hunk_Alloc( sizeof( *tr.models[tr.numModels] ), h_low ); mod->index = tr.numModels; tr.models[tr.numModels] = mod; tr.numModels++; return mod; } /* ==================== RE_RegisterModel Loads in a model for the given name Zero will be returned if the model fails to load. An entry will be retained for failed models as an optimization to prevent disk rescanning if they are asked for again. ==================== */ qhandle_t RE_RegisterModel( const char *name ) { model_t *mod; qhandle_t hModel; qboolean orgNameFailed = qfalse; int orgLoader = -1; int i; char localName[ MAX_QPATH ]; const char *ext; char altName[ MAX_QPATH ]; if ( !name || !name[0] ) { ri.Printf( PRINT_ALL, "RE_RegisterModel: NULL name\n" ); return 0; } if ( strlen( name ) >= MAX_QPATH ) { ri.Printf( PRINT_ALL, "Model name exceeds MAX_QPATH\n" ); return 0; } // // search the currently loaded models // for ( hModel = 1 ; hModel < tr.numModels; hModel++ ) { mod = tr.models[hModel]; if ( !strcmp( mod->name, name ) ) { if( mod->type == MOD_BAD ) { return 0; } return hModel; } } // allocate a new model_t if ( ( mod = R_AllocModel() ) == NULL ) { ri.Printf( PRINT_WARNING, "RE_RegisterModel: R_AllocModel() failed for '%s'\n", name); return 0; } // only set the name after the model has been successfully loaded Q_strncpyz( mod->name, name, sizeof( mod->name ) ); R_IssuePendingRenderCommands(); mod->type = MOD_BAD; mod->numLods = 0; // // load the files // Q_strncpyz( localName, name, sizeof( localName ) ); ext = COM_GetExtension( localName ); if( *ext ) { // Look for the correct loader and use it for( i = 0; i < numModelLoaders; i++ ) { if( !Q_stricmp( ext, modelLoaders[ i ].ext ) ) { // Load hModel = modelLoaders[ i ].ModelLoader( localName, mod ); break; } } // A loader was found if( i < numModelLoaders ) { if( !hModel ) { // Loader failed, most likely because the file isn't there; // try again without the extension orgNameFailed = qtrue; orgLoader = i; COM_StripExtension( name, localName, MAX_QPATH ); } else { // Something loaded return mod->index; } } } // Try and find a suitable match using all // the model formats supported for( i = 0; i < numModelLoaders; i++ ) { if (i == orgLoader) continue; Com_sprintf( altName, sizeof (altName), "%s.%s", localName, modelLoaders[ i ].ext ); // Load hModel = modelLoaders[ i ].ModelLoader( altName, mod ); if( hModel ) { if( orgNameFailed ) { ri.Printf( PRINT_DEVELOPER, "WARNING: %s not present, using %s instead\n", name, altName ); } break; } } return hModel; } /* ================= R_LoadMD3 ================= */ static qboolean R_LoadMD3(model_t * mod, int lod, void *buffer, int bufferSize, const char *modName) { int f, i, j; md3Header_t *md3Model; md3Frame_t *md3Frame; md3Surface_t *md3Surf; md3Shader_t *md3Shader; md3Triangle_t *md3Tri; md3St_t *md3st; md3XyzNormal_t *md3xyz; md3Tag_t *md3Tag; mdvModel_t *mdvModel; mdvFrame_t *frame; mdvSurface_t *surf;//, *surface; int *shaderIndex; glIndex_t *tri; mdvVertex_t *v; mdvSt_t *st; mdvTag_t *tag; mdvTagName_t *tagName; int version; int size; md3Model = (md3Header_t *) buffer; version = LittleLong(md3Model->version); if(version != MD3_VERSION) { ri.Printf(PRINT_WARNING, "R_LoadMD3: %s has wrong version (%i should be %i)\n", modName, version, MD3_VERSION); return qfalse; } mod->type = MOD_MESH; size = LittleLong(md3Model->ofsEnd); mod->dataSize += size; mdvModel = mod->mdv[lod] = ri.Hunk_Alloc(sizeof(mdvModel_t), h_low); // Com_Memcpy(mod->md3[lod], buffer, LittleLong(md3Model->ofsEnd)); LL(md3Model->ident); LL(md3Model->version); LL(md3Model->numFrames); LL(md3Model->numTags); LL(md3Model->numSurfaces); LL(md3Model->ofsFrames); LL(md3Model->ofsTags); LL(md3Model->ofsSurfaces); LL(md3Model->ofsEnd); if(md3Model->numFrames < 1) { ri.Printf(PRINT_WARNING, "R_LoadMD3: %s has no frames\n", modName); return qfalse; } // swap all the frames mdvModel->numFrames = md3Model->numFrames; mdvModel->frames = frame = ri.Hunk_Alloc(sizeof(*frame) * md3Model->numFrames, h_low); md3Frame = (md3Frame_t *) ((byte *) md3Model + md3Model->ofsFrames); for(i = 0; i < md3Model->numFrames; i++, frame++, md3Frame++) { frame->radius = LittleFloat(md3Frame->radius); for(j = 0; j < 3; j++) { frame->bounds[0][j] = LittleFloat(md3Frame->bounds[0][j]); frame->bounds[1][j] = LittleFloat(md3Frame->bounds[1][j]); frame->localOrigin[j] = LittleFloat(md3Frame->localOrigin[j]); } } // swap all the tags mdvModel->numTags = md3Model->numTags; mdvModel->tags = tag = ri.Hunk_Alloc(sizeof(*tag) * (md3Model->numTags * md3Model->numFrames), h_low); md3Tag = (md3Tag_t *) ((byte *) md3Model + md3Model->ofsTags); for(i = 0; i < md3Model->numTags * md3Model->numFrames; i++, tag++, md3Tag++) { for(j = 0; j < 3; j++) { tag->origin[j] = LittleFloat(md3Tag->origin[j]); tag->axis[0][j] = LittleFloat(md3Tag->axis[0][j]); tag->axis[1][j] = LittleFloat(md3Tag->axis[1][j]); tag->axis[2][j] = LittleFloat(md3Tag->axis[2][j]); } } mdvModel->tagNames = tagName = ri.Hunk_Alloc(sizeof(*tagName) * (md3Model->numTags), h_low); md3Tag = (md3Tag_t *) ((byte *) md3Model + md3Model->ofsTags); for(i = 0; i < md3Model->numTags; i++, tagName++, md3Tag++) { Q_strncpyz(tagName->name, md3Tag->name, sizeof(tagName->name)); } // swap all the surfaces mdvModel->numSurfaces = md3Model->numSurfaces; mdvModel->surfaces = surf = ri.Hunk_Alloc(sizeof(*surf) * md3Model->numSurfaces, h_low); md3Surf = (md3Surface_t *) ((byte *) md3Model + md3Model->ofsSurfaces); for(i = 0; i < md3Model->numSurfaces; i++) { LL(md3Surf->ident); LL(md3Surf->flags); LL(md3Surf->numFrames); LL(md3Surf->numShaders); LL(md3Surf->numTriangles); LL(md3Surf->ofsTriangles); LL(md3Surf->numVerts); LL(md3Surf->ofsShaders); LL(md3Surf->ofsSt); LL(md3Surf->ofsXyzNormals); LL(md3Surf->ofsEnd); if(md3Surf->numVerts >= SHADER_MAX_VERTEXES) { ri.Printf(PRINT_WARNING, "R_LoadMD3: %s has more than %i verts on %s (%i).\n", modName, SHADER_MAX_VERTEXES - 1, md3Surf->name[0] ? md3Surf->name : "a surface", md3Surf->numVerts ); return qfalse; } if(md3Surf->numTriangles * 3 >= SHADER_MAX_INDEXES) { ri.Printf(PRINT_WARNING, "R_LoadMD3: %s has more than %i triangles on %s (%i).\n", modName, ( SHADER_MAX_INDEXES / 3 ) - 1, md3Surf->name[0] ? md3Surf->name : "a surface", md3Surf->numTriangles ); return qfalse; } // change to surface identifier surf->surfaceType = SF_MDV; // give pointer to model for Tess_SurfaceMDX surf->model = mdvModel; // copy surface name Q_strncpyz(surf->name, md3Surf->name, sizeof(surf->name)); // lowercase the surface name so skin compares are faster Q_strlwr(surf->name); // strip off a trailing _1 or _2 // this is a crutch for q3data being a mess j = strlen(surf->name); if(j > 2 && surf->name[j - 2] == '_') { surf->name[j - 2] = 0; } // register the shaders surf->numShaderIndexes = md3Surf->numShaders; surf->shaderIndexes = shaderIndex = ri.Hunk_Alloc(sizeof(*shaderIndex) * md3Surf->numShaders, h_low); md3Shader = (md3Shader_t *) ((byte *) md3Surf + md3Surf->ofsShaders); for(j = 0; j < md3Surf->numShaders; j++, shaderIndex++, md3Shader++) { shader_t *sh; sh = R_FindShader(md3Shader->name, LIGHTMAP_NONE, qtrue); if(sh->defaultShader) { *shaderIndex = 0; } else { *shaderIndex = sh->index; } } // swap all the triangles surf->numIndexes = md3Surf->numTriangles * 3; surf->indexes = tri = ri.Hunk_Alloc(sizeof(*tri) * 3 * md3Surf->numTriangles, h_low); md3Tri = (md3Triangle_t *) ((byte *) md3Surf + md3Surf->ofsTriangles); for(j = 0; j < md3Surf->numTriangles; j++, tri += 3, md3Tri++) { tri[0] = LittleLong(md3Tri->indexes[0]); tri[1] = LittleLong(md3Tri->indexes[1]); tri[2] = LittleLong(md3Tri->indexes[2]); } // swap all the XyzNormals surf->numVerts = md3Surf->numVerts; surf->verts = v = ri.Hunk_Alloc(sizeof(*v) * (md3Surf->numVerts * md3Surf->numFrames), h_low); md3xyz = (md3XyzNormal_t *) ((byte *) md3Surf + md3Surf->ofsXyzNormals); for(j = 0; j < md3Surf->numVerts * md3Surf->numFrames; j++, md3xyz++, v++) { unsigned lat, lng; unsigned short normal; vec3_t fNormal; v->xyz[0] = LittleShort(md3xyz->xyz[0]) * MD3_XYZ_SCALE; v->xyz[1] = LittleShort(md3xyz->xyz[1]) * MD3_XYZ_SCALE; v->xyz[2] = LittleShort(md3xyz->xyz[2]) * MD3_XYZ_SCALE; normal = LittleShort(md3xyz->normal); lat = ( normal >> 8 ) & 0xff; lng = ( normal & 0xff ); lat *= (FUNCTABLE_SIZE/256); lng *= (FUNCTABLE_SIZE/256); // decode X as cos( lat ) * sin( long ) // decode Y as sin( lat ) * sin( long ) // decode Z as cos( long ) fNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng]; fNormal[1] = tr.sinTable[lat] * tr.sinTable[lng]; fNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK]; R_VaoPackNormal(v->normal, fNormal); } // swap all the ST surf->st = st = ri.Hunk_Alloc(sizeof(*st) * md3Surf->numVerts, h_low); md3st = (md3St_t *) ((byte *) md3Surf + md3Surf->ofsSt); for(j = 0; j < md3Surf->numVerts; j++, md3st++, st++) { st->st[0] = LittleFloat(md3st->st[0]); st->st[1] = LittleFloat(md3st->st[1]); } // calc tangent spaces { vec3_t *sdirs = ri.Malloc(sizeof(*sdirs) * surf->numVerts * mdvModel->numFrames); vec3_t *tdirs = ri.Malloc(sizeof(*tdirs) * surf->numVerts * mdvModel->numFrames); for(j = 0, v = surf->verts; j < (surf->numVerts * mdvModel->numFrames); j++, v++) { VectorClear(sdirs[j]); VectorClear(tdirs[j]); } for(f = 0; f < mdvModel->numFrames; f++) { for(j = 0, tri = surf->indexes; j < surf->numIndexes; j += 3, tri += 3) { vec3_t sdir, tdir; const float *v0, *v1, *v2, *t0, *t1, *t2; glIndex_t index0, index1, index2; index0 = surf->numVerts * f + tri[0]; index1 = surf->numVerts * f + tri[1]; index2 = surf->numVerts * f + tri[2]; v0 = surf->verts[index0].xyz; v1 = surf->verts[index1].xyz; v2 = surf->verts[index2].xyz; t0 = surf->st[tri[0]].st; t1 = surf->st[tri[1]].st; t2 = surf->st[tri[2]].st; R_CalcTexDirs(sdir, tdir, v0, v1, v2, t0, t1, t2); VectorAdd(sdir, sdirs[index0], sdirs[index0]); VectorAdd(sdir, sdirs[index1], sdirs[index1]); VectorAdd(sdir, sdirs[index2], sdirs[index2]); VectorAdd(tdir, tdirs[index0], tdirs[index0]); VectorAdd(tdir, tdirs[index1], tdirs[index1]); VectorAdd(tdir, tdirs[index2], tdirs[index2]); } } for(j = 0, v = surf->verts; j < (surf->numVerts * mdvModel->numFrames); j++, v++) { vec3_t normal; vec4_t tangent; VectorNormalize(sdirs[j]); VectorNormalize(tdirs[j]); R_VaoUnpackNormal(normal, v->normal); tangent[3] = R_CalcTangentSpace(tangent, NULL, normal, sdirs[j], tdirs[j]); R_VaoPackTangent(v->tangent, tangent); } ri.Free(sdirs); ri.Free(tdirs); } // find the next surface md3Surf = (md3Surface_t *) ((byte *) md3Surf + md3Surf->ofsEnd); surf++; } { srfVaoMdvMesh_t *vaoSurf; mdvModel->numVaoSurfaces = mdvModel->numSurfaces; mdvModel->vaoSurfaces = ri.Hunk_Alloc(sizeof(*mdvModel->vaoSurfaces) * mdvModel->numSurfaces, h_low); vaoSurf = mdvModel->vaoSurfaces; surf = mdvModel->surfaces; for (i = 0; i < mdvModel->numSurfaces; i++, vaoSurf++, surf++) { uint32_t offset_xyz, offset_st, offset_normal, offset_tangent; uint32_t stride_xyz, stride_st, stride_normal, stride_tangent; uint32_t dataSize, dataOfs; uint8_t *data; if (mdvModel->numFrames > 1) { // vertex animation, store texcoords first, then position/normal/tangents offset_st = 0; offset_xyz = surf->numVerts * sizeof(vec2_t); offset_normal = offset_xyz + sizeof(vec3_t); offset_tangent = offset_normal + sizeof(int16_t) * 4; stride_st = sizeof(vec2_t); stride_xyz = sizeof(vec3_t) + sizeof(int16_t) * 4; stride_xyz += sizeof(int16_t) * 4; stride_normal = stride_tangent = stride_xyz; dataSize = offset_xyz + surf->numVerts * mdvModel->numFrames * stride_xyz; } else { // no animation, interleave everything offset_xyz = 0; offset_st = offset_xyz + sizeof(vec3_t); offset_normal = offset_st + sizeof(vec2_t); offset_tangent = offset_normal + sizeof(int16_t) * 4; stride_xyz = offset_tangent + sizeof(int16_t) * 4; stride_st = stride_normal = stride_tangent = stride_xyz; dataSize = surf->numVerts * stride_xyz; } data = ri.Malloc(dataSize); dataOfs = 0; if (mdvModel->numFrames > 1) { st = surf->st; for ( j = 0 ; j < surf->numVerts ; j++, st++ ) { memcpy(data + dataOfs, &st->st, sizeof(vec2_t)); dataOfs += sizeof(st->st); } v = surf->verts; for ( j = 0; j < surf->numVerts * mdvModel->numFrames ; j++, v++ ) { // xyz memcpy(data + dataOfs, &v->xyz, sizeof(vec3_t)); dataOfs += sizeof(vec3_t); // normal memcpy(data + dataOfs, &v->normal, sizeof(int16_t) * 4); dataOfs += sizeof(int16_t) * 4; // tangent memcpy(data + dataOfs, &v->tangent, sizeof(int16_t) * 4); dataOfs += sizeof(int16_t) * 4; } } else { v = surf->verts; st = surf->st; for ( j = 0; j < surf->numVerts; j++, v++, st++ ) { // xyz memcpy(data + dataOfs, &v->xyz, sizeof(vec3_t)); dataOfs += sizeof(v->xyz); // st memcpy(data + dataOfs, &st->st, sizeof(vec2_t)); dataOfs += sizeof(st->st); // normal memcpy(data + dataOfs, &v->normal, sizeof(int16_t) * 4); dataOfs += sizeof(int16_t) * 4; // tangent memcpy(data + dataOfs, &v->tangent, sizeof(int16_t) * 4); dataOfs += sizeof(int16_t) * 4; } } vaoSurf->surfaceType = SF_VAO_MDVMESH; vaoSurf->mdvModel = mdvModel; vaoSurf->mdvSurface = surf; vaoSurf->numIndexes = surf->numIndexes; vaoSurf->numVerts = surf->numVerts; vaoSurf->vao = R_CreateVao(va("staticMD3Mesh_VAO '%s'", surf->name), data, dataSize, (byte *)surf->indexes, surf->numIndexes * sizeof(*surf->indexes), VAO_USAGE_STATIC); vaoSurf->vao->attribs[ATTR_INDEX_POSITION].enabled = 1; vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].enabled = 1; vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].enabled = 1; vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].enabled = 1; vaoSurf->vao->attribs[ATTR_INDEX_POSITION].count = 3; vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].count = 2; vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].count = 4; vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].count = 4; vaoSurf->vao->attribs[ATTR_INDEX_POSITION].type = GL_FLOAT; vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].type = GL_FLOAT; vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].type = GL_SHORT; vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].type = GL_SHORT; vaoSurf->vao->attribs[ATTR_INDEX_POSITION].normalized = GL_FALSE; vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].normalized = GL_FALSE; vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].normalized = GL_TRUE; vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].normalized = GL_TRUE; vaoSurf->vao->attribs[ATTR_INDEX_POSITION].offset = offset_xyz; vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].offset = offset_st; vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].offset = offset_normal; vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].offset = offset_tangent; vaoSurf->vao->attribs[ATTR_INDEX_POSITION].stride = stride_xyz; vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].stride = stride_st; vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].stride = stride_normal; vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].stride = stride_tangent; if (mdvModel->numFrames > 1) { vaoSurf->vao->attribs[ATTR_INDEX_POSITION2] = vaoSurf->vao->attribs[ATTR_INDEX_POSITION]; vaoSurf->vao->attribs[ATTR_INDEX_NORMAL2 ] = vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ]; vaoSurf->vao->attribs[ATTR_INDEX_TANGENT2 ] = vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ]; vaoSurf->vao->frameSize = stride_xyz * surf->numVerts; } Vao_SetVertexPointers(vaoSurf->vao); ri.Free(data); } } return qtrue; } /* ================= R_LoadMDR ================= */ static qboolean R_LoadMDR( model_t *mod, void *buffer, int filesize, const char *mod_name ) { int i, j, k, l; mdrHeader_t *pinmodel, *mdr; mdrFrame_t *frame; mdrLOD_t *lod, *curlod; mdrSurface_t *surf, *cursurf; mdrTriangle_t *tri, *curtri; mdrVertex_t *v, *curv; mdrWeight_t *weight, *curweight; mdrTag_t *tag, *curtag; int size; shader_t *sh; pinmodel = (mdrHeader_t *)buffer; pinmodel->version = LittleLong(pinmodel->version); if (pinmodel->version != MDR_VERSION) { ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has wrong version (%i should be %i)\n", mod_name, pinmodel->version, MDR_VERSION); return qfalse; } size = LittleLong(pinmodel->ofsEnd); if(size > filesize) { ri.Printf(PRINT_WARNING, "R_LoadMDR: Header of %s is broken. Wrong filesize declared!\n", mod_name); return qfalse; } mod->type = MOD_MDR; LL(pinmodel->numFrames); LL(pinmodel->numBones); LL(pinmodel->ofsFrames); // This is a model that uses some type of compressed Bones. We don't want to uncompress every bone for each rendered frame // over and over again, we'll uncompress it in this function already, so we must adjust the size of the target mdr. if(pinmodel->ofsFrames < 0) { // mdrFrame_t is larger than mdrCompFrame_t: size += pinmodel->numFrames * sizeof(frame->name); // now add enough space for the uncompressed bones. size += pinmodel->numFrames * pinmodel->numBones * ((sizeof(mdrBone_t) - sizeof(mdrCompBone_t))); } // simple bounds check if(pinmodel->numBones < 0 || sizeof(*mdr) + pinmodel->numFrames * (sizeof(*frame) + (pinmodel->numBones - 1) * sizeof(*frame->bones)) > size) { ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has broken structure.\n", mod_name); return qfalse; } mod->dataSize += size; mod->modelData = mdr = ri.Hunk_Alloc( size, h_low ); // Copy all the values over from the file and fix endian issues in the process, if necessary. mdr->ident = LittleLong(pinmodel->ident); mdr->version = pinmodel->version; // Don't need to swap byte order on this one, we already did above. Q_strncpyz(mdr->name, pinmodel->name, sizeof(mdr->name)); mdr->numFrames = pinmodel->numFrames; mdr->numBones = pinmodel->numBones; mdr->numLODs = LittleLong(pinmodel->numLODs); mdr->numTags = LittleLong(pinmodel->numTags); // We don't care about the other offset values, we'll generate them ourselves while loading. mod->numLods = mdr->numLODs; if ( mdr->numFrames < 1 ) { ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has no frames\n", mod_name); return qfalse; } /* The first frame will be put into the first free space after the header */ frame = (mdrFrame_t *)(mdr + 1); mdr->ofsFrames = (int)((byte *) frame - (byte *) mdr); if (pinmodel->ofsFrames < 0) { mdrCompFrame_t *cframe; // compressed model... cframe = (mdrCompFrame_t *)((byte *) pinmodel - pinmodel->ofsFrames); for(i = 0; i < mdr->numFrames; i++) { for(j = 0; j < 3; j++) { frame->bounds[0][j] = LittleFloat(cframe->bounds[0][j]); frame->bounds[1][j] = LittleFloat(cframe->bounds[1][j]); frame->localOrigin[j] = LittleFloat(cframe->localOrigin[j]); } frame->radius = LittleFloat(cframe->radius); frame->name[0] = '\0'; // No name supplied in the compressed version. for(j = 0; j < mdr->numBones; j++) { for(k = 0; k < (sizeof(cframe->bones[j].Comp) / 2); k++) { // Do swapping for the uncompressing functions. They seem to use shorts // values only, so I assume this will work. Never tested it on other // platforms, though. ((unsigned short *)(cframe->bones[j].Comp))[k] = LittleShort( ((unsigned short *)(cframe->bones[j].Comp))[k] ); } /* Now do the actual uncompressing */ MC_UnCompress(frame->bones[j].matrix, cframe->bones[j].Comp); } // Next Frame... cframe = (mdrCompFrame_t *) &cframe->bones[j]; frame = (mdrFrame_t *) &frame->bones[j]; } } else { mdrFrame_t *curframe; // uncompressed model... // curframe = (mdrFrame_t *)((byte *) pinmodel + pinmodel->ofsFrames); // swap all the frames for ( i = 0 ; i < mdr->numFrames ; i++) { for(j = 0; j < 3; j++) { frame->bounds[0][j] = LittleFloat(curframe->bounds[0][j]); frame->bounds[1][j] = LittleFloat(curframe->bounds[1][j]); frame->localOrigin[j] = LittleFloat(curframe->localOrigin[j]); } frame->radius = LittleFloat(curframe->radius); Q_strncpyz(frame->name, curframe->name, sizeof(frame->name)); for (j = 0; j < (int) (mdr->numBones * sizeof(mdrBone_t) / 4); j++) { ((float *)frame->bones)[j] = LittleFloat( ((float *)curframe->bones)[j] ); } curframe = (mdrFrame_t *) &curframe->bones[mdr->numBones]; frame = (mdrFrame_t *) &frame->bones[mdr->numBones]; } } // frame should now point to the first free address after all frames. lod = (mdrLOD_t *) frame; mdr->ofsLODs = (int) ((byte *) lod - (byte *)mdr); curlod = (mdrLOD_t *)((byte *) pinmodel + LittleLong(pinmodel->ofsLODs)); // swap all the LOD's for ( l = 0 ; l < mdr->numLODs ; l++) { // simple bounds check if((byte *) (lod + 1) > (byte *) mdr + size) { ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has broken structure.\n", mod_name); return qfalse; } lod->numSurfaces = LittleLong(curlod->numSurfaces); // swap all the surfaces surf = (mdrSurface_t *) (lod + 1); lod->ofsSurfaces = (int)((byte *) surf - (byte *) lod); cursurf = (mdrSurface_t *) ((byte *)curlod + LittleLong(curlod->ofsSurfaces)); for ( i = 0 ; i < lod->numSurfaces ; i++) { // simple bounds check if((byte *) (surf + 1) > (byte *) mdr + size) { ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has broken structure.\n", mod_name); return qfalse; } // first do some copying stuff surf->ident = SF_MDR; Q_strncpyz(surf->name, cursurf->name, sizeof(surf->name)); Q_strncpyz(surf->shader, cursurf->shader, sizeof(surf->shader)); surf->ofsHeader = (byte *) mdr - (byte *) surf; surf->numVerts = LittleLong(cursurf->numVerts); surf->numTriangles = LittleLong(cursurf->numTriangles); // numBoneReferences and BoneReferences generally seem to be unused // now do the checks that may fail. if ( surf->numVerts >= SHADER_MAX_VERTEXES ) { ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has more than %i verts on %s (%i).\n", mod_name, SHADER_MAX_VERTEXES - 1, surf->name[0] ? surf->name : "a surface", surf->numVerts ); return qfalse; } if ( surf->numTriangles*3 >= SHADER_MAX_INDEXES ) { ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has more than %i triangles on %s (%i).\n", mod_name, ( SHADER_MAX_INDEXES / 3 ) - 1, surf->name[0] ? surf->name : "a surface", surf->numTriangles ); return qfalse; } // lowercase the surface name so skin compares are faster Q_strlwr( surf->name ); // register the shaders sh = R_FindShader(surf->shader, LIGHTMAP_NONE, qtrue); if ( sh->defaultShader ) { surf->shaderIndex = 0; } else { surf->shaderIndex = sh->index; } // now copy the vertexes. v = (mdrVertex_t *) (surf + 1); surf->ofsVerts = (int)((byte *) v - (byte *) surf); curv = (mdrVertex_t *) ((byte *)cursurf + LittleLong(cursurf->ofsVerts)); for(j = 0; j < surf->numVerts; j++) { LL(curv->numWeights); // simple bounds check if(curv->numWeights < 0 || (byte *) (v + 1) + (curv->numWeights - 1) * sizeof(*weight) > (byte *) mdr + size) { ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has broken structure.\n", mod_name); return qfalse; } v->normal[0] = LittleFloat(curv->normal[0]); v->normal[1] = LittleFloat(curv->normal[1]); v->normal[2] = LittleFloat(curv->normal[2]); v->texCoords[0] = LittleFloat(curv->texCoords[0]); v->texCoords[1] = LittleFloat(curv->texCoords[1]); v->numWeights = curv->numWeights; weight = &v->weights[0]; curweight = &curv->weights[0]; // Now copy all the weights for(k = 0; k < v->numWeights; k++) { weight->boneIndex = LittleLong(curweight->boneIndex); weight->boneWeight = LittleFloat(curweight->boneWeight); weight->offset[0] = LittleFloat(curweight->offset[0]); weight->offset[1] = LittleFloat(curweight->offset[1]); weight->offset[2] = LittleFloat(curweight->offset[2]); weight++; curweight++; } v = (mdrVertex_t *) weight; curv = (mdrVertex_t *) curweight; } // we know the offset to the triangles now: tri = (mdrTriangle_t *) v; surf->ofsTriangles = (int)((byte *) tri - (byte *) surf); curtri = (mdrTriangle_t *)((byte *) cursurf + LittleLong(cursurf->ofsTriangles)); // simple bounds check if(surf->numTriangles < 0 || (byte *) (tri + surf->numTriangles) > (byte *) mdr + size) { ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has broken structure.\n", mod_name); return qfalse; } for(j = 0; j < surf->numTriangles; j++) { tri->indexes[0] = LittleLong(curtri->indexes[0]); tri->indexes[1] = LittleLong(curtri->indexes[1]); tri->indexes[2] = LittleLong(curtri->indexes[2]); tri++; curtri++; } // tri now points to the end of the surface. surf->ofsEnd = (byte *) tri - (byte *) surf; surf = (mdrSurface_t *) tri; // find the next surface. cursurf = (mdrSurface_t *) ((byte *) cursurf + LittleLong(cursurf->ofsEnd)); } // surf points to the next lod now. lod->ofsEnd = (int)((byte *) surf - (byte *) lod); lod = (mdrLOD_t *) surf; // find the next LOD. curlod = (mdrLOD_t *)((byte *) curlod + LittleLong(curlod->ofsEnd)); } // lod points to the first tag now, so update the offset too. tag = (mdrTag_t *) lod; mdr->ofsTags = (int)((byte *) tag - (byte *) mdr); curtag = (mdrTag_t *) ((byte *)pinmodel + LittleLong(pinmodel->ofsTags)); // simple bounds check if(mdr->numTags < 0 || (byte *) (tag + mdr->numTags) > (byte *) mdr + size) { ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has broken structure.\n", mod_name); return qfalse; } for (i = 0 ; i < mdr->numTags ; i++) { tag->boneIndex = LittleLong(curtag->boneIndex); Q_strncpyz(tag->name, curtag->name, sizeof(tag->name)); tag++; curtag++; } // And finally we know the real offset to the end. mdr->ofsEnd = (int)((byte *) tag - (byte *) mdr); // phew! we're done. return qtrue; } //============================================================================= /* ** RE_BeginRegistration */ void RE_BeginRegistration( glconfig_t *glconfigOut ) { int i; R_Init(); *glconfigOut = glConfig; R_IssuePendingRenderCommands(); tr.visIndex = 0; // force markleafs to regenerate for(i = 0; i < MAX_VISCOUNTS; i++) { tr.visClusters[i] = -2; } R_ClearFlares(); RE_ClearScene(); tr.registered = qtrue; } //============================================================================= /* =============== R_ModelInit =============== */ void R_ModelInit( void ) { model_t *mod; // leave a space for NULL model tr.numModels = 0; mod = R_AllocModel(); mod->type = MOD_BAD; } /* ================ R_Modellist_f ================ */ void R_Modellist_f( void ) { int i, j; model_t *mod; int total; int lods; total = 0; for ( i = 1 ; i < tr.numModels; i++ ) { mod = tr.models[i]; lods = 1; for ( j = 1 ; j < MD3_MAX_LODS ; j++ ) { if ( mod->mdv[j] && mod->mdv[j] != mod->mdv[j-1] ) { lods++; } } ri.Printf( PRINT_ALL, "%8i : (%i) %s\n",mod->dataSize, lods, mod->name ); total += mod->dataSize; } ri.Printf( PRINT_ALL, "%8i : Total models\n", total ); #if 0 // not working right with new hunk if ( tr.world ) { ri.Printf( PRINT_ALL, "\n%8i : %s\n", tr.world->dataSize, tr.world->name ); } #endif } //============================================================================= /* ================ R_GetTag ================ */ static mdvTag_t *R_GetTag( mdvModel_t *mod, int frame, const char *_tagName ) { int i; mdvTag_t *tag; mdvTagName_t *tagName; if ( frame >= mod->numFrames ) { // it is possible to have a bad frame while changing models, so don't error frame = mod->numFrames - 1; } tag = mod->tags + frame * mod->numTags; tagName = mod->tagNames; for(i = 0; i < mod->numTags; i++, tag++, tagName++) { if(!strcmp(tagName->name, _tagName)) { return tag; } } return NULL; } static mdvTag_t *R_GetAnimTag( mdrHeader_t *mod, int framenum, const char *tagName, mdvTag_t * dest) { int i, j, k; int frameSize; mdrFrame_t *frame; mdrTag_t *tag; if ( framenum >= mod->numFrames ) { // it is possible to have a bad frame while changing models, so don't error framenum = mod->numFrames - 1; } tag = (mdrTag_t *)((byte *)mod + mod->ofsTags); for ( i = 0 ; i < mod->numTags ; i++, tag++ ) { if ( !strcmp( tag->name, tagName ) ) { // uncompressed model... // frameSize = (intptr_t)( &((mdrFrame_t *)0)->bones[ mod->numBones ] ); frame = (mdrFrame_t *)((byte *)mod + mod->ofsFrames + framenum * frameSize ); for (j = 0; j < 3; j++) { for (k = 0; k < 3; k++) dest->axis[j][k]=frame->bones[tag->boneIndex].matrix[k][j]; } dest->origin[0]=frame->bones[tag->boneIndex].matrix[0][3]; dest->origin[1]=frame->bones[tag->boneIndex].matrix[1][3]; dest->origin[2]=frame->bones[tag->boneIndex].matrix[2][3]; return dest; } } return NULL; } /* ================ R_LerpTag ================ */ int R_LerpTag( orientation_t *tag, qhandle_t handle, int startFrame, int endFrame, float frac, const char *tagName ) { mdvTag_t *start, *end; mdvTag_t start_space, end_space; int i; float frontLerp, backLerp; const model_t *model; model = R_GetModelByHandle( handle ); if ( !model->mdv[0] ) { if(model->type == MOD_MDR) { start = R_GetAnimTag((mdrHeader_t *) model->modelData, startFrame, tagName, &start_space); end = R_GetAnimTag((mdrHeader_t *) model->modelData, endFrame, tagName, &end_space); } else if( model->type == MOD_IQM ) { return R_IQMLerpTag( tag, model->modelData, startFrame, endFrame, frac, tagName ); } else { start = end = NULL; } } else { start = R_GetTag( model->mdv[0], startFrame, tagName ); end = R_GetTag( model->mdv[0], endFrame, tagName ); } if ( !start || !end ) { AxisClear( tag->axis ); VectorClear( tag->origin ); return qfalse; } frontLerp = frac; backLerp = 1.0f - frac; for ( i = 0 ; i < 3 ; i++ ) { tag->origin[i] = start->origin[i] * backLerp + end->origin[i] * frontLerp; tag->axis[0][i] = start->axis[0][i] * backLerp + end->axis[0][i] * frontLerp; tag->axis[1][i] = start->axis[1][i] * backLerp + end->axis[1][i] * frontLerp; tag->axis[2][i] = start->axis[2][i] * backLerp + end->axis[2][i] * frontLerp; } VectorNormalize( tag->axis[0] ); VectorNormalize( tag->axis[1] ); VectorNormalize( tag->axis[2] ); return qtrue; } /* ==================== R_ModelBounds ==================== */ void R_ModelBounds( qhandle_t handle, vec3_t mins, vec3_t maxs ) { const model_t *model; model = R_GetModelByHandle( handle ); if(model->type == MOD_BRUSH) { VectorCopy( model->bmodel->bounds[0], mins ); VectorCopy( model->bmodel->bounds[1], maxs ); return; } else if (model->type == MOD_MESH) { mdvModel_t *header; mdvFrame_t *frame; header = model->mdv[0]; frame = header->frames; VectorCopy( frame->bounds[0], mins ); VectorCopy( frame->bounds[1], maxs ); return; } else if (model->type == MOD_MDR) { mdrHeader_t *header; mdrFrame_t *frame; header = (mdrHeader_t *)model->modelData; frame = (mdrFrame_t *) ((byte *)header + header->ofsFrames); VectorCopy( frame->bounds[0], mins ); VectorCopy( frame->bounds[1], maxs ); return; } else if(model->type == MOD_IQM) { iqmData_t *iqmData; iqmData = model->modelData; if(iqmData->bounds) { VectorCopy(iqmData->bounds, mins); VectorCopy(iqmData->bounds + 3, maxs); return; } } VectorClear( mins ); VectorClear( maxs ); }