/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_flares.c #include "tr_local.h" /* ============================================================================= LIGHT FLARES A light flare is an effect that takes place inside the eye when bright light sources are visible. The size of the flare relative to the screen is nearly constant, irrespective of distance, but the intensity should be proportional to the projected area of the light source. A surface that has been flagged as having a light flare will calculate the depth buffer value that its midpoint should have when the surface is added. After all opaque surfaces have been rendered, the depth buffer is read back for each flare in view. If the point has not been obscured by a closer surface, the flare should be drawn. Surfaces that have a repeated texture should never be flagged as flaring, because there will only be a single flare added at the midpoint of the polygon. To prevent abrupt popping, the intensity of the flare is interpolated up and down as it changes visibility. This involves scene to scene state, unlike almost all other aspects of the renderer, and is complicated by the fact that a single frame may have multiple scenes. RB_RenderFlares() will be called once per view (twice in a mirrored scene, potentially up to five or more times in a frame with 3D status bar icons). ============================================================================= */ // flare states maintain visibility over multiple frames for fading // layers: view, mirror, menu typedef struct flare_s { struct flare_s *next; // for active chain int addedFrame; uint32_t testCount; portalView_t portalView; int frameSceneNum; void *surface; int fogNum; int fadeTime; qboolean visible; // state of last test float drawIntensity; // may be non 0 even if !visible due to fading int windowX, windowY; float eyeZ; float drawZ; vec3_t origin; vec3_t color; } flare_t; static flare_t r_flareStructs[ MAX_FLARES ]; static flare_t *r_activeFlares, *r_inactiveFlares; /* ================== R_ClearFlares ================== */ void R_ClearFlares( void ) { int i; if ( !vk.fragmentStores ) return; Com_Memset( r_flareStructs, 0, sizeof( r_flareStructs ) ); r_activeFlares = NULL; r_inactiveFlares = NULL; for ( i = 0 ; i < MAX_FLARES ; i++ ) { r_flareStructs[i].next = r_inactiveFlares; r_inactiveFlares = &r_flareStructs[i]; } } static flare_t *R_SearchFlare( void *surface ) { flare_t *f; // see if a flare with a matching surface, scene, and view exists for ( f = r_activeFlares ; f ; f = f->next ) { if ( f->surface == surface && f->frameSceneNum == backEnd.viewParms.frameSceneNum && f->portalView == backEnd.viewParms.portalView ) { return f; } } return NULL; } /* ================== RB_AddFlare This is called at surface tesselation time ================== */ void RB_AddFlare( void *surface, int fogNum, vec3_t point, vec3_t color, vec3_t normal ) { int i; flare_t *f; vec3_t local; float d = 1; vec4_t eye, clip, normalized, window; backEnd.pc.c_flareAdds++; if ( normal && (normal[0] || normal[1] || normal[2] ) ) { VectorSubtract( backEnd.viewParms.or.origin, point, local ); VectorNormalizeFast( local ); d = DotProduct( local, normal ); // If the viewer is behind the flare don't add it. if ( d < 0 ) { return; } } // if the point is off the screen, don't bother adding it // calculate screen coordinates and depth R_TransformModelToClip( point, backEnd.or.modelMatrix, backEnd.viewParms.projectionMatrix, eye, clip ); // check to see if the point is completely off screen for ( i = 0 ; i < 3 ; i++ ) { if ( clip[i] >= clip[3] || clip[i] <= -clip[3] ) { return; } } R_TransformClipToWindow( clip, &backEnd.viewParms, normalized, window ); if ( window[0] < 0 || window[0] >= backEnd.viewParms.viewportWidth || window[1] < 0 || window[1] >= backEnd.viewParms.viewportHeight ) { return; // shouldn't happen, since we check the clip[] above, except for FP rounding } f = R_SearchFlare( surface ); // allocate a new one if ( !f ) { if ( !r_inactiveFlares ) { // the list is completely full return; } f = r_inactiveFlares; r_inactiveFlares = r_inactiveFlares->next; f->next = r_activeFlares; r_activeFlares = f; f->surface = surface; f->frameSceneNum = backEnd.viewParms.frameSceneNum; f->portalView = backEnd.viewParms.portalView; f->visible = qfalse; f->fadeTime = backEnd.refdef.time - 2000; f->testCount = 0; } else { ++f->testCount; } f->addedFrame = backEnd.viewParms.frameCount; f->fogNum = fogNum; VectorCopy( point, f->origin ); VectorCopy( color, f->color ); // fade the intensity of the flare down as the // light surface turns away from the viewer VectorScale( f->color, d, f->color ); // save info needed to test f->windowX = backEnd.viewParms.viewportX + window[0]; f->windowY = backEnd.viewParms.viewportY + window[1]; f->eyeZ = eye[2]; #ifdef USE_REVERSED_DEPTH f->drawZ = (clip[2]+0.20) / clip[3]; #else f->drawZ = (clip[2]-0.20) / clip[3]; #endif } /* ================== RB_AddDlightFlares ================== */ void RB_AddDlightFlares( void ) { dlight_t *l; int i, j, k; fog_t *fog = NULL; if ( !r_flares->integer ) { return; } l = backEnd.refdef.dlights; if ( tr.world ) fog = tr.world->fogs; for ( i = 0 ; i < backEnd.refdef.num_dlights; i++, l++ ) { if ( fog ) { // find which fog volume the light is in for ( j = 1 ; j < tr.world->numfogs ; j++ ) { fog = &tr.world->fogs[j]; for ( k = 0 ; k < 3 ; k++ ) { if ( l->origin[k] < fog->bounds[0][k] || l->origin[k] > fog->bounds[1][k] ) { break; } } if ( k == 3 ) { break; } } if ( j == tr.world->numfogs ) { j = 0; } } else j = 0; RB_AddFlare( (void *)l, j, l->origin, l->color, NULL ); } } /* =============================================================================== FLARE BACK END =============================================================================== */ static float *vk_ortho( float x1, float x2, float y2, float y1, float z1, float z2 ) { static float m[16] = { 0 }; m[0] = 2.0f / (x2 - x1); m[5] = 2.0f / (y2 - y1); m[10] = 1.0f / (z1 - z2); m[12] = -(x2 + x1) / (x2 - x1); m[13] = -(y2 + y1) / (y2 - y1); m[14] = z1 / (z1 - z2); m[15] = 1.0f; return m; } /* ================== RB_TestFlare ================== */ static void RB_TestFlare( flare_t *f ) { qboolean visible; float fade; float *m; uint32_t offset; backEnd.pc.c_flareTests++; /* We don't have equivalent of glReadPixels() in vulkan and explicit depth buffer reading may be very slow and require surface conversion. So we will use storage buffer and exploit early depth tests by rendering test dot in orthographic projection at projected flare coordinates window-x, window-y and world-z: if test dot is not covered by any world geometry - it will invoke fragment shader which will fill storage buffer at desired location, then we discard fragment. In next frame we read storage buffer: if there is a non-zero value then our flare WAS visible (as we're working with 1-frame delay), multisampled image will cause multiple fragment shader invocations. */ // we neeed only single uint32_t but take care of alignment offset = (f - r_flareStructs) * vk.storage_alignment; if ( f->testCount ) { uint32_t *cnt = (uint32_t*)(vk.storage.buffer_ptr + offset); if ( *cnt ) visible = qtrue; else visible = qfalse; f->testCount &= 0xFFFF; } else { visible = qfalse; } // reset test result in storage buffer Com_Memset( vk.storage.buffer_ptr + offset, 0x0, sizeof( uint32_t ) ); m = vk_ortho( backEnd.viewParms.viewportX, backEnd.viewParms.viewportX + backEnd.viewParms.viewportWidth, backEnd.viewParms.viewportY, backEnd.viewParms.viewportY + backEnd.viewParms.viewportHeight, 0, 1 ); vk_update_mvp( m ); tess.xyz[0][0] = f->windowX; tess.xyz[0][1] = f->windowY; tess.xyz[0][2] = -f->drawZ; tess.numVertexes = 1; #ifdef USE_VBO tess.vboIndex = 0; #endif // render test dot vk_bind_pipeline( vk.dot_pipeline ); vk_reset_descriptor( 0 ); vk_update_descriptor( 0, vk.storage.descriptor ); vk_update_descriptor_offset( 0, offset ); vk_bind_geometry( TESS_XYZ ); vk_draw_geometry( DEPTH_RANGE_NORMAL, qfalse ); //Com_Memcpy( vk_world.modelview_transform, modelMatrix_original, sizeof( modelMatrix_original ) ); //vk_update_mvp( NULL ); if ( visible ) { if ( !f->visible ) { f->visible = qtrue; f->fadeTime = backEnd.refdef.time - 1; } fade = ( ( backEnd.refdef.time - f->fadeTime ) /1000.0f ) * r_flareFade->value; } else { if ( f->visible ) { f->visible = qfalse; f->fadeTime = backEnd.refdef.time - 1; } fade = 1.0f - ( ( backEnd.refdef.time - f->fadeTime ) / 1000.0f ) * r_flareFade->value; } if ( fade < 0 ) { fade = 0; } else if ( fade > 1 ) { fade = 1; } f->drawIntensity = fade; } /* ================== RB_RenderFlare ================== */ static void RB_RenderFlare( flare_t *f ) { float size; vec3_t color; float distance, intensity, factor; byte fogFactors[3] = {255, 255, 255}; color4ub_t c; //if ( f->drawIntensity == 0.0 ) // return; backEnd.pc.c_flareRenders++; // We don't want too big values anyways when dividing by distance. if ( f->eyeZ > -1.0f ) distance = 1.0f; else distance = -f->eyeZ; // calculate the flare size.. size = backEnd.viewParms.viewportWidth * ( r_flareSize->value/640.0f + 8 / distance ); /* * This is an alternative to intensity scaling. It changes the size of the flare on screen instead * with growing distance. See in the description at the top why this is not the way to go. // size will change ~ 1/r. size = backEnd.viewParms.viewportWidth * (r_flareSize->value / (distance * -2.0f)); */ /* * As flare sizes stay nearly constant with increasing distance we must decrease the intensity * to achieve a reasonable visual result. The intensity is ~ (size^2 / distance^2) which can be * got by considering the ratio of * (flaresurface on screen) : (Surface of sphere defined by flare origin and distance from flare) * An important requirement is: * intensity <= 1 for all distances. * * The formula used here to compute the intensity is as follows: * intensity = flareCoeff * size^2 / (distance + size*sqrt(flareCoeff))^2 * As you can see, the intensity will have a max. of 1 when the distance is 0. * The coefficient flareCoeff will determine the falloff speed with increasing distance. */ factor = distance + size * sqrt( r_flareCoeff->value ); intensity = r_flareCoeff->value * size * size / ( factor * factor ); VectorScale( f->color, f->drawIntensity * intensity, color ); // Calculations for fogging if ( tr.world && f->fogNum > 0 && f->fogNum < tr.world->numfogs ) { tess.numVertexes = 1; VectorCopy( f->origin, tess.xyz[0] ); tess.fogNum = f->fogNum; RB_CalcModulateColorsByFog( fogFactors ); // We don't need to render the flare if colors are 0 anyways. if ( !(fogFactors[0] || fogFactors[1] || fogFactors[2]) ) return; } RB_BeginSurface( tr.flareShader, f->fogNum ); c.rgba[0] = color[0] * fogFactors[0]; c.rgba[1] = color[1] * fogFactors[1]; c.rgba[2] = color[2] * fogFactors[2]; c.rgba[3] = 255; RB_AddQuadStamp2( f->windowX - size, f->windowY - size, size * 2, size * 2, 0, 0, 1, 1, c ); RB_EndSurface(); } /* ================== RB_RenderFlares Because flares are simulating an occular effect, they should be drawn after everything (all views) in the entire frame has been drawn. Because of the way portals use the depth buffer to mark off areas, the needed information would be lost after each view, so we are forced to draw flares after each view. The resulting artifact is that flares in mirrors or portals don't dim properly when occluded by something in the main view, and portal flares that should extend past the portal edge will be overwritten. ================== */ void RB_RenderFlares( void ) { flare_t *f; flare_t **prev; qboolean draw; float *m; if ( !r_flares->integer ) { return; } if ( vk.renderPassIndex == RENDER_PASS_SCREENMAP ) { return; } if ( backEnd.isHyperspace ) { return; } // Reset currentEntity to world so that any previously referenced entities // don't have influence on the rendering of these flares (i.e. RF_ renderer flags). backEnd.currentEntity = &tr.worldEntity; backEnd.or = backEnd.viewParms.world; //RB_AddDlightFlares(); // perform z buffer readback on each flare in this view draw = qfalse; prev = &r_activeFlares; while ( ( f = *prev ) != NULL ) { // throw out any flares that weren't added last frame if ( backEnd.viewParms.frameCount - f->addedFrame > 1 ) { *prev = f->next; f->next = r_inactiveFlares; r_inactiveFlares = f; continue; } // don't draw any here that aren't from this scene / portal f->drawIntensity = 0; if ( f->frameSceneNum == backEnd.viewParms.frameSceneNum && f->portalView == backEnd.viewParms.portalView ) { RB_TestFlare( f ); if ( f->testCount == 0 ) { // recently added, wait 1 frame for test result } else if ( f->drawIntensity ) { draw = qtrue; } else { // this flare has completely faded out, so remove it from the chain *prev = f->next; f->next = r_inactiveFlares; r_inactiveFlares = f; continue; } } prev = &f->next; } if ( !draw ) { return; // none visible } #ifdef USE_REVERSED_DEPTH m = vk_ortho( backEnd.viewParms.viewportX, backEnd.viewParms.viewportX + backEnd.viewParms.viewportWidth, backEnd.viewParms.viewportY, backEnd.viewParms.viewportY + backEnd.viewParms.viewportHeight, 1.0, 0.0 ); #else m = vk_ortho( backEnd.viewParms.viewportX, backEnd.viewParms.viewportX + backEnd.viewParms.viewportWidth, backEnd.viewParms.viewportY, backEnd.viewParms.viewportY + backEnd.viewParms.viewportHeight, 0.0, 1.0 ); #endif vk_update_mvp( m ); for ( f = r_activeFlares ; f ; f = f->next ) { if ( f->frameSceneNum == backEnd.viewParms.frameSceneNum && f->portalView == backEnd.viewParms.portalView && f->drawIntensity ) { RB_RenderFlare( f ); } } //Com_Memcpy( vk_world.modelview_transform, modelMatrix_original, sizeof( modelMatrix_original ) ); //vk_update_mvp( NULL ); }