/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ #include "tr_local.h" /* ================= R_CullTriSurf Returns true if the grid is completely culled away. Also sets the clipped hint bit in tess ================= */ static qboolean R_CullTriSurf( srfTriangles_t *cv ) { int boxCull; boxCull = R_CullLocalBox( cv->bounds ); if ( boxCull == CULL_OUT ) { return qtrue; } return qfalse; } /* ================= R_CullGrid Returns true if the grid is completely culled away. Also sets the clipped hint bit in tess ================= */ static qboolean R_CullGrid( srfGridMesh_t *cv ) { int boxCull; int sphereCull; if ( r_nocurves->integer ) { return qtrue; } if ( tr.currentEntityNum != REFENTITYNUM_WORLD ) { sphereCull = R_CullLocalPointAndRadius( cv->localOrigin, cv->meshRadius ); } else { sphereCull = R_CullPointAndRadius( cv->localOrigin, cv->meshRadius ); } // check for trivial reject if ( sphereCull == CULL_OUT ) { tr.pc.c_sphere_cull_patch_out++; return qtrue; } // check bounding box if necessary else if ( sphereCull == CULL_CLIP ) { tr.pc.c_sphere_cull_patch_clip++; boxCull = R_CullLocalBox( cv->meshBounds ); if ( boxCull == CULL_OUT ) { tr.pc.c_box_cull_patch_out++; return qtrue; } else if ( boxCull == CULL_IN ) { tr.pc.c_box_cull_patch_in++; } else { tr.pc.c_box_cull_patch_clip++; } } else { tr.pc.c_sphere_cull_patch_in++; } return qfalse; } /* ================ R_CullSurface Tries to back face cull surfaces before they are lighted or added to the sorting list. This will also allow mirrors on both sides of a model without recursion. ================ */ static qboolean R_CullSurface( const surfaceType_t *surface, shader_t *shader ) { srfSurfaceFace_t *sface; float d; if ( r_nocull->integer ) { return qfalse; } if ( *surface == SF_GRID ) { return R_CullGrid( (srfGridMesh_t *)surface ); } if ( *surface == SF_TRIANGLES ) { return R_CullTriSurf( (srfTriangles_t *)surface ); } if ( *surface != SF_FACE ) { return qfalse; } if ( shader->cullType == CT_TWO_SIDED ) { return qfalse; } // face culling if ( !r_facePlaneCull->integer ) { return qfalse; } sface = ( srfSurfaceFace_t * ) surface; d = DotProduct (tr.or.viewOrigin, sface->plane.normal); // don't cull exactly on the plane, because there are levels of rounding // through the BSP, ICD, and hardware that may cause pixel gaps if an // epsilon isn't allowed here if ( shader->cullType == CT_FRONT_SIDED ) { if ( d < sface->plane.dist - 8 ) { return qtrue; } } else { if ( d > sface->plane.dist + 8 ) { return qtrue; } } return qfalse; } #ifdef USE_PMLIGHT qboolean R_LightCullBounds( const dlight_t* dl, const vec3_t mins, const vec3_t maxs ) { if ( dl->linear ) { if (dl->transformed[0] - dl->radius > maxs[0] && dl->transformed2[0] - dl->radius > maxs[0] ) return qtrue; if (dl->transformed[0] + dl->radius < mins[0] && dl->transformed2[0] + dl->radius < mins[0] ) return qtrue; if (dl->transformed[1] - dl->radius > maxs[1] && dl->transformed2[1] - dl->radius > maxs[1] ) return qtrue; if (dl->transformed[1] + dl->radius < mins[1] && dl->transformed2[1] + dl->radius < mins[1] ) return qtrue; if (dl->transformed[2] - dl->radius > maxs[2] && dl->transformed2[2] - dl->radius > maxs[2] ) return qtrue; if (dl->transformed[2] + dl->radius < mins[2] && dl->transformed2[2] + dl->radius < mins[2] ) return qtrue; return qfalse; } if (dl->transformed[0] - dl->radius > maxs[0]) return qtrue; if (dl->transformed[0] + dl->radius < mins[0]) return qtrue; if (dl->transformed[1] - dl->radius > maxs[1]) return qtrue; if (dl->transformed[1] + dl->radius < mins[1]) return qtrue; if (dl->transformed[2] - dl->radius > maxs[2]) return qtrue; if (dl->transformed[2] + dl->radius < mins[2]) return qtrue; return qfalse; } static qboolean R_LightCullFace( const srfSurfaceFace_t* face, const dlight_t* dl ) { float d = DotProduct( dl->transformed, face->plane.normal ) - face->plane.dist; if ( dl->linear ) { float d2 = DotProduct( dl->transformed2, face->plane.normal ) - face->plane.dist; if ( (d < -dl->radius) && (d2 < -dl->radius) ) return qtrue; if ( (d > dl->radius) && (d2 > dl->radius) ) return qtrue; } else { if ( (d < -dl->radius) || (d > dl->radius) ) return qtrue; } return qfalse; } static qboolean R_LightCullSurface( const surfaceType_t* surface, const dlight_t* dl ) { switch (*surface) { case SF_FACE: return R_LightCullFace( (const srfSurfaceFace_t*)surface, dl ); case SF_GRID: { const srfGridMesh_t* grid = (const srfGridMesh_t*)surface; return R_LightCullBounds( dl, grid->meshBounds[0], grid->meshBounds[1] ); } case SF_TRIANGLES: { const srfTriangles_t* tris = (const srfTriangles_t*)surface; return R_LightCullBounds( dl, tris->bounds[0], tris->bounds[1] ); } default: return qfalse; }; } #endif // USE_PMLIGHT #ifdef USE_LEGACY_DLIGHTS static int R_DlightFace( srfSurfaceFace_t *face, int dlightBits ) { float d; int i; const dlight_t *dl; for ( i = 0; i < tr.refdef.num_dlights; i++ ) { if ( ! ( dlightBits & ( 1 << i ) ) ) { continue; } dl = &tr.refdef.dlights[i]; d = DotProduct( dl->transformed, face->plane.normal ) - face->plane.dist; if ( d < -dl->radius || d > dl->radius ) { // dlight doesn't reach the plane dlightBits &= ~( 1 << i ); } } if ( !dlightBits ) { tr.pc.c_dlightSurfacesCulled++; } face->dlightBits = dlightBits; return dlightBits; } static int R_DlightGrid( srfGridMesh_t *grid, int dlightBits ) { int i; const dlight_t *dl; for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) { if ( ! ( dlightBits & ( 1 << i ) ) ) { continue; } dl = &tr.refdef.dlights[i]; if ( dl->origin[0] - dl->radius > grid->meshBounds[1][0] || dl->origin[0] + dl->radius < grid->meshBounds[0][0] || dl->origin[1] - dl->radius > grid->meshBounds[1][1] || dl->origin[1] + dl->radius < grid->meshBounds[0][1] || dl->origin[2] - dl->radius > grid->meshBounds[1][2] || dl->origin[2] + dl->radius < grid->meshBounds[0][2] ) { // dlight doesn't reach the bounds dlightBits &= ~( 1 << i ); } } if ( !dlightBits ) { tr.pc.c_dlightSurfacesCulled++; } grid->dlightBits = dlightBits; return dlightBits; } static int R_DlightTrisurf( srfTriangles_t *surf, int dlightBits ) { // FIXME: more dlight culling to trisurfs... surf->dlightBits = dlightBits; return dlightBits; #if 0 int i; const dlight_t *dl; for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) { if ( ! ( dlightBits & ( 1 << i ) ) ) { continue; } dl = &tr.refdef.dlights[i]; if ( dl->origin[0] - dl->radius > grid->meshBounds[1][0] || dl->origin[0] + dl->radius < grid->meshBounds[0][0] || dl->origin[1] - dl->radius > grid->meshBounds[1][1] || dl->origin[1] + dl->radius < grid->meshBounds[0][1] || dl->origin[2] - dl->radius > grid->meshBounds[1][2] || dl->origin[2] + dl->radius < grid->meshBounds[0][2] ) { // dlight doesn't reach the bounds dlightBits &= ~( 1 << i ); } } if ( !dlightBits ) { tr.pc.c_dlightSurfacesCulled++; } grid->dlightBits = dlightBits; return dlightBits; #endif } /* ==================== R_DlightSurface The given surface is going to be drawn, and it touches a leaf that is touched by one or more dlights, so try to throw out more dlights if possible. ==================== */ static int R_DlightSurface( msurface_t *surf, int dlightBits ) { if ( *surf->data == SF_FACE ) { dlightBits = R_DlightFace( (srfSurfaceFace_t *)surf->data, dlightBits ); } else if ( *surf->data == SF_GRID ) { dlightBits = R_DlightGrid( (srfGridMesh_t *)surf->data, dlightBits ); } else if ( *surf->data == SF_TRIANGLES ) { dlightBits = R_DlightTrisurf( (srfTriangles_t *)surf->data, dlightBits ); } else { dlightBits = 0; } if ( dlightBits ) { tr.pc.c_dlightSurfaces++; } return dlightBits; } #endif // USE_LEGACY_DLIGHTS /* ====================== R_AddWorldSurface ====================== */ static void R_AddWorldSurface( msurface_t *surf, int dlightBits ) { if ( surf->viewCount == tr.viewCount ) { return; // already in this view } surf->viewCount = tr.viewCount; // FIXME: bmodel fog? // try to cull before dlighting or adding if ( R_CullSurface( surf->data, surf->shader ) ) { return; } #ifdef USE_PMLIGHT #ifdef USE_LEGACY_DLIGHTS if ( r_dlightMode->integer ) #endif { surf->vcVisible = tr.viewCount; R_AddDrawSurf( surf->data, surf->shader, surf->fogIndex, 0 ); return; } #endif // USE_PMLIGHT #ifdef USE_LEGACY_DLIGHTS // check for dlighting if ( dlightBits ) { dlightBits = R_DlightSurface( surf, dlightBits ); dlightBits = ( dlightBits != 0 ); } R_AddDrawSurf( surf->data, surf->shader, surf->fogIndex, dlightBits ); #endif // USE_LEGACY_DLIGHTS } /* ============================================================= PM LIGHTING ============================================================= */ #ifdef USE_PMLIGHT static void R_AddLitSurface( msurface_t *surf, const dlight_t *light ) { // since we're not worried about offscreen lights casting into the frustum (ATM !!!) // only add the "lit" version of this surface if it was already added to the view //if ( surf->viewCount != tr.viewCount ) // return; // surfaces that were faceculled will still have the current viewCount in vcBSP // because that's set to indicate that it's BEEN vis tested at all, to avoid // repeated vis tests, not whether it actually PASSED the vis test or not // only light surfaces that are GENUINELY visible, as opposed to merely in a visible LEAF if ( surf->vcVisible != tr.viewCount ) { return; } if ( surf->shader->lightingStage < 0 ) { return; } if ( surf->lightCount == tr.lightCount ) return; surf->lightCount = tr.lightCount; if ( R_LightCullSurface( surf->data, light ) ) { tr.pc.c_lit_culls++; return; } R_AddLitSurf( surf->data, surf->shader, surf->fogIndex ); } static void R_RecursiveLightNode( const mnode_t* node ) { qboolean children[2]; msurface_t** mark; msurface_t* surf; float d; int c; do { // if the node wasn't marked as potentially visible, exit if ( node->visframe != tr.visCount ) return; if ( node->contents != CONTENTS_NODE ) break; children[0] = children[1] = qfalse; d = DotProduct( tr.light->origin, node->plane->normal ) - node->plane->dist; if ( d > -tr.light->radius ) { children[0] = qtrue; } if ( d < tr.light->radius ) { children[1] = qtrue; } if ( tr.light->linear ) { d = DotProduct( tr.light->origin2, node->plane->normal ) - node->plane->dist; if ( d > -tr.light->radius ) { children[0] = qtrue; } if ( d < tr.light->radius ) { children[1] = qtrue; } } if ( children[0] && children[1] ) { R_RecursiveLightNode( node->children[0] ); node = node->children[1]; } else if ( children[0] ) { node = node->children[0]; } else if ( children[1] ) { node = node->children[1]; } else { return; } } while ( 1 ); tr.pc.c_lit_leafs++; // add the individual surfaces c = node->nummarksurfaces; mark = node->firstmarksurface; while ( c-- ) { // the surface may have already been added if it spans multiple leafs surf = *mark; R_AddLitSurface( surf, tr.light ); mark++; } } #endif // USE_PMLIGHT /* ============================================================= BRUSH MODELS ============================================================= */ /* ================= R_AddBrushModelSurfaces ================= */ void R_AddBrushModelSurfaces ( trRefEntity_t *ent ) { bmodel_t *bmodel; int clip; const model_t *pModel; int i; pModel = R_GetModelByHandle( ent->e.hModel ); bmodel = pModel->bmodel; clip = R_CullLocalBox( bmodel->bounds ); if ( clip == CULL_OUT ) { return; } #ifdef USE_PMLIGHT #ifdef USE_LEGACY_DLIGHTS if ( r_dlightMode->integer ) #endif { dlight_t *dl; int s; for ( s = 0; s < bmodel->numSurfaces; s++ ) { R_AddWorldSurface( bmodel->firstSurface + s, 0 ); } R_SetupEntityLighting( &tr.refdef, ent ); R_TransformDlights( tr.viewParms.num_dlights, tr.viewParms.dlights, &tr.or ); for ( i = 0; i < tr.viewParms.num_dlights; i++ ) { dl = &tr.viewParms.dlights[i]; if ( !R_LightCullBounds( dl, bmodel->bounds[0], bmodel->bounds[1] ) ) { tr.lightCount++; tr.light = dl; for ( s = 0; s < bmodel->numSurfaces; s++ ) { R_AddLitSurface( bmodel->firstSurface + s, dl ); } } } return; } #endif // USE_PMLIGHT #ifdef USE_LEGACY_DLIGHTS R_SetupEntityLighting( &tr.refdef, ent ); R_DlightBmodel( bmodel ); for ( i = 0 ; i < bmodel->numSurfaces ; i++ ) { R_AddWorldSurface( bmodel->firstSurface + i, tr.currentEntity->needDlights ); } #endif } /* ============================================================= WORLD MODEL ============================================================= */ /* ================ R_RecursiveWorldNode ================ */ static void R_RecursiveWorldNode( mnode_t *node, unsigned int planeBits, unsigned int dlightBits ) { do { unsigned int newDlights[2]; // if the node wasn't marked as potentially visible, exit if (node->visframe != tr.visCount) { return; } // if the bounding volume is outside the frustum, nothing // inside can be visible OPTIMIZE: don't do this all the way to leafs? if ( !r_nocull->integer ) { int r; if ( planeBits & 1 ) { r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[0]); if (r == 2) { return; // culled } if ( r == 1 ) { planeBits &= ~1; // all descendants will also be in front } } if ( planeBits & 2 ) { r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[1]); if (r == 2) { return; // culled } if ( r == 1 ) { planeBits &= ~2; // all descendants will also be in front } } if ( planeBits & 4 ) { r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[2]); if (r == 2) { return; // culled } if ( r == 1 ) { planeBits &= ~4; // all descendants will also be in front } } if ( planeBits & 8 ) { r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[3]); if (r == 2) { return; // culled } if ( r == 1 ) { planeBits &= ~8; // all descendants will also be in front } } } if ( node->contents != CONTENTS_NODE ) { break; } // node is just a decision point, so go down both sides // since we don't care about sort orders, just go positive to negative // determine which dlights are needed newDlights[0] = 0; newDlights[1] = 0; #ifdef USE_LEGACY_DLIGHTS #ifdef USE_PMLIGHT if ( !r_dlightMode->integer ) #endif if ( dlightBits ) { int i; for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) { const dlight_t *dl; float dist; if ( dlightBits & ( 1 << i ) ) { dl = &tr.refdef.dlights[i]; dist = DotProduct( dl->origin, node->plane->normal ) - node->plane->dist; if ( dist > -dl->radius ) { newDlights[0] |= ( 1 << i ); } if ( dist < dl->radius ) { newDlights[1] |= ( 1 << i ); } } } } #endif // USE_LEGACY_DLIGHTS // recurse down the children, front side first R_RecursiveWorldNode( node->children[0], planeBits, newDlights[0] ); // tail recurse node = node->children[1]; #ifdef USE_LEGACY_DLIGHTS dlightBits = newDlights[1]; #endif } while ( 1 ); { // leaf node, so add mark surfaces int c; msurface_t *surf, **mark; tr.pc.c_leafs++; // add to z buffer bounds if ( node->mins[0] < tr.viewParms.visBounds[0][0] ) { tr.viewParms.visBounds[0][0] = node->mins[0]; } if ( node->mins[1] < tr.viewParms.visBounds[0][1] ) { tr.viewParms.visBounds[0][1] = node->mins[1]; } if ( node->mins[2] < tr.viewParms.visBounds[0][2] ) { tr.viewParms.visBounds[0][2] = node->mins[2]; } if ( node->maxs[0] > tr.viewParms.visBounds[1][0] ) { tr.viewParms.visBounds[1][0] = node->maxs[0]; } if ( node->maxs[1] > tr.viewParms.visBounds[1][1] ) { tr.viewParms.visBounds[1][1] = node->maxs[1]; } if ( node->maxs[2] > tr.viewParms.visBounds[1][2] ) { tr.viewParms.visBounds[1][2] = node->maxs[2]; } // add the individual surfaces mark = node->firstmarksurface; c = node->nummarksurfaces; while (c--) { // the surface may have already been added if it // spans multiple leafs surf = *mark; R_AddWorldSurface( surf, dlightBits ); mark++; } } } /* =============== R_PointInLeaf =============== */ static mnode_t *R_PointInLeaf( const vec3_t p ) { mnode_t *node; float d; const cplane_t *plane; if ( !tr.world ) { ri.Error (ERR_DROP, "R_PointInLeaf: bad model"); } node = tr.world->nodes; while( 1 ) { if (node->contents != CONTENTS_NODE ) { break; } plane = node->plane; d = DotProduct (p,plane->normal) - plane->dist; if (d > 0) { node = node->children[0]; } else { node = node->children[1]; } } return node; } /* ============== R_ClusterPVS ============== */ static const byte *R_ClusterPVS (int cluster) { if ( !tr.world->vis || cluster < 0 || cluster >= tr.world->numClusters ) { return tr.world->novis; } return tr.world->vis + cluster * tr.world->clusterBytes; } /* ================= R_inPVS ================= */ qboolean R_inPVS( const vec3_t p1, const vec3_t p2 ) { const mnode_t *leaf; const byte *vis; leaf = R_PointInLeaf( p1 ); vis = ri.CM_ClusterPVS( leaf->cluster ); leaf = R_PointInLeaf( p2 ); if ( !(vis[leaf->cluster>>3] & (1<<(leaf->cluster&7))) ) { return qfalse; } return qtrue; } /* =============== R_MarkLeaves Mark the leaves and nodes that are in the PVS for the current cluster =============== */ static void R_MarkLeaves (void) { const byte *vis; mnode_t *leaf, *parent; int i; int cluster; // lockpvs lets designers walk around to determine the // extent of the current pvs if ( r_lockpvs->integer ) { return; } // current viewcluster leaf = R_PointInLeaf( tr.viewParms.pvsOrigin ); cluster = leaf->cluster; // if the cluster is the same and the area visibility matrix // hasn't changed, we don't need to mark everything again // if r_showcluster was just turned on, remark everything if ( tr.viewCluster == cluster && !tr.refdef.areamaskModified && !r_showcluster->modified ) { return; } if ( r_showcluster->modified || r_showcluster->integer ) { r_showcluster->modified = qfalse; if ( r_showcluster->integer ) { ri.Printf( PRINT_ALL, "cluster:%i area:%i\n", cluster, leaf->area ); } } tr.visCount++; tr.viewCluster = cluster; if ( r_novis->integer || tr.viewCluster == -1 ) { for (i=0 ; i