/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ #include "tr_local.h" /* for a projection shadow: point[x] += light vector * ( z - shadow plane ) point[y] += point[z] = shadow plane 1 0 light[x] / light[z] */ typedef struct { int i2; int facing; } edgeDef_t; #define MAX_EDGE_DEFS 32 static edgeDef_t edgeDefs[SHADER_MAX_VERTEXES][MAX_EDGE_DEFS]; static int numEdgeDefs[SHADER_MAX_VERTEXES]; static int facing[SHADER_MAX_INDEXES/3]; static void R_AddEdgeDef( int i1, int i2, int f ) { int c; c = numEdgeDefs[ i1 ]; if ( c == MAX_EDGE_DEFS ) { return; // overflow } edgeDefs[ i1 ][ c ].i2 = i2; edgeDefs[ i1 ][ c ].facing = f; numEdgeDefs[ i1 ]++; } static void R_CalcShadowEdges( void ) { qboolean sil_edge; int i; int c, c2; int j, k; int i2; color4ub_t *colors; tess.numIndexes = 0; // an edge is NOT a silhouette edge if its face doesn't face the light, // or if it has a reverse paired edge that also faces the light. // A well behaved polyhedron would have exactly two faces for each edge, // but lots of models have dangling edges or overfanned edges for ( i = 0; i < tess.numVertexes; i++ ) { c = numEdgeDefs[ i ]; for ( j = 0 ; j < c ; j++ ) { if ( !edgeDefs[ i ][ j ].facing ) { continue; } sil_edge = qtrue; i2 = edgeDefs[ i ][ j ].i2; c2 = numEdgeDefs[ i2 ]; for ( k = 0 ; k < c2 ; k++ ) { if ( edgeDefs[ i2 ][ k ].i2 == i && edgeDefs[ i2 ][ k ].facing ) { sil_edge = qfalse; break; } } // if it doesn't share the edge with another front facing // triangle, it is a sil edge if ( sil_edge ) { if ( tess.numIndexes > ARRAY_LEN( tess.indexes ) - 6 ) { i = tess.numVertexes; break; } #ifdef USE_VULKAN tess.indexes[ tess.numIndexes + 0 ] = i; tess.indexes[ tess.numIndexes + 1 ] = i2; tess.indexes[ tess.numIndexes + 2 ] = i + tess.numVertexes; tess.indexes[ tess.numIndexes + 3 ] = i2; tess.indexes[ tess.numIndexes + 4 ] = i2 + tess.numVertexes; tess.indexes[ tess.numIndexes + 5 ] = i + tess.numVertexes; #else tess.indexes[ tess.numIndexes + 0 ] = i; tess.indexes[ tess.numIndexes + 1 ] = i + tess.numVertexes; tess.indexes[ tess.numIndexes + 2 ] = i2; tess.indexes[ tess.numIndexes + 3 ] = i2; tess.indexes[ tess.numIndexes + 4 ] = i + tess.numVertexes; tess.indexes[ tess.numIndexes + 5 ] = i2 + tess.numVertexes; #endif tess.numIndexes += 6; } } } #ifdef USE_VULKAN tess.numVertexes *= 2; colors = &tess.svars.colors[0][0]; // we need at least 2x SHADER_MAX_VERTEXES there for ( i = 0; i < tess.numVertexes; i++ ) { Vector4Set( colors[i].rgba, 50, 50, 50, 255 ); } #endif } /* ================= RB_ShadowTessEnd triangleFromEdge[ v1 ][ v2 ] set triangle from edge( v1, v2, tri ) if ( facing[ triangleFromEdge[ v1 ][ v2 ] ] && !facing[ triangleFromEdge[ v2 ][ v1 ] ) { } ================= */ void RB_ShadowTessEnd( void ) { int i; int numTris; vec3_t lightDir; #ifdef USE_VULKAN uint32_t pipeline[2]; #else GLboolean rgba[4]; #endif if ( glConfig.stencilBits < 4 ) { return; } #ifdef USE_PMLIGHT if ( r_dlightMode->integer == 2 && r_shadows->integer == 2 ) VectorCopy( backEnd.currentEntity->shadowLightDir, lightDir ); else #endif VectorCopy( backEnd.currentEntity->lightDir, lightDir ); // clamp projection by height if ( lightDir[2] > 0.1 ) { float s = 0.1 / lightDir[2]; VectorScale( lightDir, s, lightDir ); } // project vertexes away from light direction for ( i = 0; i < tess.numVertexes; i++ ) { VectorMA( tess.xyz[i], -512, lightDir, tess.xyz[i+tess.numVertexes] ); } // decide which triangles face the light Com_Memset( numEdgeDefs, 0, tess.numVertexes * sizeof( numEdgeDefs[0] ) ); numTris = tess.numIndexes / 3; for ( i = 0 ; i < numTris ; i++ ) { int i1, i2, i3; vec3_t d1, d2, normal; float *v1, *v2, *v3; float d; i1 = tess.indexes[ i*3 + 0 ]; i2 = tess.indexes[ i*3 + 1 ]; i3 = tess.indexes[ i*3 + 2 ]; v1 = tess.xyz[ i1 ]; v2 = tess.xyz[ i2 ]; v3 = tess.xyz[ i3 ]; VectorSubtract( v2, v1, d1 ); VectorSubtract( v3, v1, d2 ); CrossProduct( d1, d2, normal ); d = DotProduct( normal, lightDir ); if ( d > 0 ) { facing[ i ] = 1; } else { facing[ i ] = 0; } // create the edges R_AddEdgeDef( i1, i2, facing[ i ] ); R_AddEdgeDef( i2, i3, facing[ i ] ); R_AddEdgeDef( i3, i1, facing[ i ] ); } R_CalcShadowEdges(); // draw the silhouette edges #ifdef USE_VULKAN GL_Bind( tr.whiteImage ); // mirrors have the culling order reversed if ( backEnd.viewParms.portalView == PV_MIRROR ) { pipeline[0] = vk.shadow_volume_pipelines[0][1]; pipeline[1] = vk.shadow_volume_pipelines[1][1]; } else { pipeline[0] = vk.shadow_volume_pipelines[0][0]; pipeline[1] = vk.shadow_volume_pipelines[1][0]; } vk_bind_pipeline( pipeline[0] ); // back-sided vk_bind_index(); vk_bind_geometry( TESS_XYZ | TESS_RGBA0 ); vk_draw_geometry( DEPTH_RANGE_NORMAL, qtrue ); vk_bind_pipeline( pipeline[1] ); // front-sided vk_draw_geometry( DEPTH_RANGE_NORMAL, qtrue ); tess.numVertexes /= 2; #else GL_ClientState( 1, CLS_NONE ); GL_ClientState( 0, CLS_NONE ); qglVertexPointer( 3, GL_FLOAT, sizeof( tess.xyz[0] ), tess.xyz ); if ( qglLockArraysEXT ) qglLockArraysEXT( 0, tess.numVertexes*2 ); // draw the silhouette edges qglDisable( GL_TEXTURE_2D ); //GL_Bind( tr.whiteImage ); GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ZERO ); qglColor4f( 0.2f, 0.2f, 0.2f, 1.0f ); // don't write to the color buffer qglGetBooleanv( GL_COLOR_WRITEMASK, rgba ); qglColorMask( GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE ); qglEnable( GL_STENCIL_TEST ); qglStencilFunc( GL_ALWAYS, 1, 255 ); GL_Cull( CT_BACK_SIDED ); qglStencilOp( GL_KEEP, GL_KEEP, GL_INCR ); R_DrawElements( tess.numIndexes, tess.indexes ); GL_Cull( CT_FRONT_SIDED ); qglStencilOp( GL_KEEP, GL_KEEP, GL_DECR ); R_DrawElements( tess.numIndexes, tess.indexes ); if ( qglUnlockArraysEXT ) qglUnlockArraysEXT(); // re-enable writing to the color buffer qglColorMask(rgba[0], rgba[1], rgba[2], rgba[3]); qglEnable( GL_TEXTURE_2D ); #endif backEnd.doneShadows = qtrue; tess.numIndexes = 0; } /* ================= RB_ShadowFinish Darken everything that is is a shadow volume. We have to delay this until everything has been shadowed, because otherwise shadows from different body parts would overlap and double darken. ================= */ void RB_ShadowFinish( void ) { #ifdef USE_VULKAN float tmp[16]; int i; #endif static const vec3_t verts[4] = { { -100, 100, -10 }, { 100, 100, -10 }, { -100,-100, -10 }, { 100,-100, -10 } }; if ( !backEnd.doneShadows ) { return; } backEnd.doneShadows = qfalse; if ( r_shadows->integer != 2 ) { return; } if ( glConfig.stencilBits < 4 ) { return; } #ifdef USE_VULKAN GL_Bind( tr.whiteImage ); for ( i = 0; i < 4; i++ ) { VectorCopy( verts[i], tess.xyz[i] ); Vector4Set( tess.svars.colors[0][i].rgba, 153, 153, 153, 255 ); } tess.numVertexes = 4; Com_Memcpy( tmp, vk_world.modelview_transform, 64 ); Com_Memset( vk_world.modelview_transform, 0, 64 ); vk_world.modelview_transform[0] = 1.0f; vk_world.modelview_transform[5] = 1.0f; vk_world.modelview_transform[10] = 1.0f; vk_world.modelview_transform[15] = 1.0f; vk_bind_pipeline( vk.shadow_finish_pipeline ); vk_update_mvp( NULL ); vk_bind_geometry( TESS_XYZ | TESS_RGBA0 /*| TESS_ST0 */ ); vk_draw_geometry( DEPTH_RANGE_NORMAL, qfalse ); Com_Memcpy( vk_world.modelview_transform, tmp, 64 ); tess.numIndexes = 0; tess.numVertexes = 0; #else qglEnable( GL_STENCIL_TEST ); qglStencilFunc( GL_NOTEQUAL, 0, 255 ); qglDisable( GL_CLIP_PLANE0 ); GL_Cull( CT_TWO_SIDED ); qglDisable( GL_TEXTURE_2D ); qglLoadIdentity(); qglColor4f( 0.6f, 0.6f, 0.6f, 1 ); GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ZERO ); //qglColor4f( 1, 0, 0, 1 ); //GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ZERO ); GL_ClientState( 0, CLS_NONE ); qglVertexPointer( 3, GL_FLOAT, 0, verts ); qglDrawArrays( GL_TRIANGLE_STRIP, 0, 4 ); qglColor4f( 1, 1, 1, 1 ); qglDisable( GL_STENCIL_TEST ); qglEnable( GL_TEXTURE_2D ); #endif } /* ================= RB_ProjectionShadowDeform ================= */ void RB_ProjectionShadowDeform( void ) { float *xyz; int i; float h; vec3_t ground; vec3_t light; float groundDist; float d; vec3_t lightDir; xyz = ( float * ) tess.xyz; ground[0] = backEnd.or.axis[0][2]; ground[1] = backEnd.or.axis[1][2]; ground[2] = backEnd.or.axis[2][2]; groundDist = backEnd.or.origin[2] - backEnd.currentEntity->e.shadowPlane; #ifdef USE_PMLIGHT if ( r_dlightMode->integer == 2 && r_shadows->integer == 2 ) VectorCopy( backEnd.currentEntity->shadowLightDir, lightDir ); else #endif VectorCopy( backEnd.currentEntity->lightDir, lightDir ); d = DotProduct( lightDir, ground ); // don't let the shadows get too long or go negative if ( d < 0.5 ) { VectorMA( lightDir, (0.5 - d), ground, lightDir ); d = DotProduct( lightDir, ground ); } d = 1.0 / d; light[0] = lightDir[0] * d; light[1] = lightDir[1] * d; light[2] = lightDir[2] * d; for ( i = 0; i < tess.numVertexes; i++, xyz += 4 ) { h = DotProduct( xyz, ground ) + groundDist; xyz[0] -= light[0] * h; xyz[1] -= light[1] * h; xyz[2] -= light[2] * h; } }