/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_surf.c #include "tr_local.h" /* THIS ENTIRE FILE IS BACK END backEnd.currentEntity will be valid. Tess_Begin has already been called for the surface's shader. The modelview matrix will be set. It is safe to actually issue drawing commands here if you don't want to use the shader system. */ //============================================================================ /* ============== RB_CheckOverflow ============== */ void RB_CheckOverflow( int verts, int indexes ) { if (tess.numVertexes + verts < SHADER_MAX_VERTEXES && tess.numIndexes + indexes < SHADER_MAX_INDEXES) { return; } RB_EndSurface(); if ( verts >= SHADER_MAX_VERTEXES ) { ri.Error( ERR_DROP, "RB_CheckOverflow: verts > MAX (%d > %d)", verts, SHADER_MAX_VERTEXES ); } if ( indexes >= SHADER_MAX_INDEXES ) { ri.Error( ERR_DROP, "RB_CheckOverflow: indices > MAX (%d > %d)", indexes, SHADER_MAX_INDEXES ); } RB_BeginSurface( tess.shader, tess.fogNum ); } /* ============== RB_AddQuadStampExt ============== */ void RB_AddQuadStampExt( const vec3_t origin, const vec3_t left, const vec3_t up, color4ub_t color, float s1, float t1, float s2, float t2 ) { vec3_t normal; int ndx; VBO_Flush(); RB_CHECKOVERFLOW( 4, 6 ); tess.surfType = SF_TRIANGLES; ndx = tess.numVertexes; // triangle indexes for a simple quad tess.indexes[ tess.numIndexes + 0 ] = ndx + 0; tess.indexes[ tess.numIndexes + 1 ] = ndx + 1; tess.indexes[ tess.numIndexes + 2 ] = ndx + 3; tess.indexes[ tess.numIndexes + 3 ] = ndx + 3; tess.indexes[ tess.numIndexes + 4 ] = ndx + 1; tess.indexes[ tess.numIndexes + 5 ] = ndx + 2; tess.xyz[ndx][0] = origin[0] + left[0] + up[0]; tess.xyz[ndx][1] = origin[1] + left[1] + up[1]; tess.xyz[ndx][2] = origin[2] + left[2] + up[2]; tess.xyz[ndx+1][0] = origin[0] - left[0] + up[0]; tess.xyz[ndx+1][1] = origin[1] - left[1] + up[1]; tess.xyz[ndx+1][2] = origin[2] - left[2] + up[2]; tess.xyz[ndx+2][0] = origin[0] - left[0] - up[0]; tess.xyz[ndx+2][1] = origin[1] - left[1] - up[1]; tess.xyz[ndx+2][2] = origin[2] - left[2] - up[2]; tess.xyz[ndx+3][0] = origin[0] + left[0] - up[0]; tess.xyz[ndx+3][1] = origin[1] + left[1] - up[1]; tess.xyz[ndx+3][2] = origin[2] + left[2] - up[2]; // constant normal all the way around VectorSubtract( vec3_origin, backEnd.viewParms.or.axis[0], normal ); tess.normal[ndx][0] = tess.normal[ndx+1][0] = tess.normal[ndx+2][0] = tess.normal[ndx+3][0] = normal[0]; tess.normal[ndx][1] = tess.normal[ndx+1][1] = tess.normal[ndx+2][1] = tess.normal[ndx+3][1] = normal[1]; tess.normal[ndx][2] = tess.normal[ndx+1][2] = tess.normal[ndx+2][2] = tess.normal[ndx+3][2] = normal[2]; // standard square texture coordinates tess.texCoords[0][ndx+0][0] = tess.texCoords[1][ndx+0][0] = s1; tess.texCoords[0][ndx+0][1] = tess.texCoords[1][ndx+0][1] = t1; tess.texCoords[0][ndx+1][0] = tess.texCoords[1][ndx+1][0] = s2; tess.texCoords[0][ndx+1][1] = tess.texCoords[1][ndx+1][1] = t1; tess.texCoords[0][ndx+2][0] = tess.texCoords[1][ndx+2][0] = s2; tess.texCoords[0][ndx+2][1] = tess.texCoords[1][ndx+2][1] = t2; tess.texCoords[0][ndx+3][0] = tess.texCoords[1][ndx+3][0] = s1; tess.texCoords[0][ndx+3][1] = tess.texCoords[1][ndx+3][1] = t2; // constant color all the way around // should this be identity and let the shader specify from entity? tess.vertexColors[ndx + 0].u32 = tess.vertexColors[ndx + 1].u32 = tess.vertexColors[ndx + 2].u32 = tess.vertexColors[ndx + 3].u32 = color.u32; tess.numVertexes += 4; tess.numIndexes += 6; } void RB_AddQuadStamp2( float x, float y, float w, float h, float s1, float t1, float s2, float t2, color4ub_t color ) { int numIndexes; int numVerts; VBO_Flush(); RB_CHECKOVERFLOW( 4, 6 ); tess.surfType = SF_TRIANGLES; numIndexes = tess.numIndexes; numVerts = tess.numVertexes; tess.numVertexes += 4; tess.numIndexes += 6; tess.indexes[numIndexes + 0] = numVerts + 3; tess.indexes[numIndexes + 1] = numVerts + 0; tess.indexes[numIndexes + 2] = numVerts + 2; tess.indexes[numIndexes + 3] = numVerts + 2; tess.indexes[numIndexes + 4] = numVerts + 0; tess.indexes[numIndexes + 5] = numVerts + 1; tess.vertexColors[numVerts + 0].u32 = tess.vertexColors[numVerts + 1].u32 = tess.vertexColors[numVerts + 2].u32 = tess.vertexColors[numVerts + 3].u32 = color.u32; tess.xyz[numVerts + 0][0] = x; tess.xyz[numVerts + 0][1] = y; tess.xyz[numVerts + 0][2] = 0; tess.xyz[numVerts + 1][0] = x + w; tess.xyz[numVerts + 1][1] = y; tess.xyz[numVerts + 1][2] = 0; tess.xyz[numVerts + 2][0] = x + w; tess.xyz[numVerts + 2][1] = y + h; tess.xyz[numVerts + 2][2] = 0; tess.xyz[numVerts + 3][0] = x; tess.xyz[numVerts + 3][1] = y + h; tess.xyz[numVerts + 3][2] = 0; tess.texCoords[0][numVerts + 0][0] = s1; tess.texCoords[0][numVerts + 0][1] = t1; tess.texCoords[0][numVerts + 1][0] = s2; tess.texCoords[0][numVerts + 1][1] = t1; tess.texCoords[0][numVerts + 2][0] = s2; tess.texCoords[0][numVerts + 2][1] = t2; tess.texCoords[0][numVerts + 3][0] = s1; tess.texCoords[0][numVerts + 3][1] = t2; } /* ============== RB_AddQuadStamp ============== */ void RB_AddQuadStamp( const vec3_t origin, const vec3_t left, const vec3_t up, color4ub_t color ) { RB_AddQuadStampExt( origin, left, up, color, 0, 0, 1, 1 ); } /* ============== RB_SurfaceSprite ============== */ static void RB_SurfaceSprite( void ) { vec3_t left, up; float radius; // calculate the xyz locations for the four corners radius = backEnd.currentEntity->e.radius; if ( backEnd.currentEntity->e.rotation == 0.0 ) { VectorScale( backEnd.viewParms.or.axis[1], radius, left ); VectorScale( backEnd.viewParms.or.axis[2], radius, up ); } else { float s, c; float ang; ang = M_PI * backEnd.currentEntity->e.rotation / 180.0; s = sin( ang ); c = cos( ang ); VectorScale( backEnd.viewParms.or.axis[1], c * radius, left ); VectorMA( left, -s * radius, backEnd.viewParms.or.axis[2], left ); VectorScale( backEnd.viewParms.or.axis[2], c * radius, up ); VectorMA( up, s * radius, backEnd.viewParms.or.axis[1], up ); } if ( backEnd.viewParms.portalView == PV_MIRROR ) { VectorSubtract( vec3_origin, left, left ); } RB_AddQuadStamp( backEnd.currentEntity->e.origin, left, up, backEnd.currentEntity->e.shader ); } /* ============= RB_SurfacePolychain ============= */ static void RB_SurfacePolychain( const srfPoly_t *p ) { int i; int numv; VBO_Flush(); RB_CHECKOVERFLOW( p->numVerts, 3*(p->numVerts - 2) ); tess.surfType = SF_POLY; // fan triangles into the tess array numv = tess.numVertexes; for ( i = 0; i < p->numVerts; i++ ) { VectorCopy( p->verts[i].xyz, tess.xyz[numv] ); tess.texCoords[0][numv][0] = p->verts[i].st[0]; tess.texCoords[0][numv][1] = p->verts[i].st[1]; tess.vertexColors[numv].u32 = p->verts[ i ].modulate.u32; numv++; } // generate fan indexes into the tess array for ( i = 0; i < p->numVerts-2; i++ ) { tess.indexes[tess.numIndexes + 0] = tess.numVertexes; tess.indexes[tess.numIndexes + 1] = tess.numVertexes + i + 1; tess.indexes[tess.numIndexes + 2] = tess.numVertexes + i + 2; tess.numIndexes += 3; } tess.numVertexes = numv; } /* ============= RB_SurfaceTriangles ============= */ static void RB_SurfaceTriangles( const srfTriangles_t *srf ) { int i; const drawVert_t *dv; float *xyz, *normal; float *texCoords0; float *texCoords1; uint32_t *color; #ifdef USE_LEGACY_DLIGHTS int dlightBits; #endif #ifdef USE_LEGACY_DLIGHTS if ( tess.allowVBO && srf->vboItemIndex && !srf->dlightBits ) { #else if ( tess.allowVBO && srf->vboItemIndex ) { #endif // transition to vbo render list if ( tess.vboIndex == 0 ) { RB_EndSurface(); RB_BeginSurface( tess.shader, tess.fogNum ); // set some dummy parameters for RB_EndSurface tess.numIndexes = 1; tess.numVertexes = 0; VBO_ClearQueue(); } tess.surfType = SF_TRIANGLES; tess.vboIndex = srf->vboItemIndex; VBO_QueueItem( srf->vboItemIndex ); return; // no need to tesselate anything } VBO_Flush(); RB_CHECKOVERFLOW( srf->numVerts, srf->numIndexes ); #ifdef USE_LEGACY_DLIGHTS dlightBits = srf->dlightBits; tess.dlightBits |= dlightBits; #endif tess.surfType = SF_TRIANGLES; for ( i = 0 ; i < srf->numIndexes ; i += 3 ) { tess.indexes[ tess.numIndexes + i + 0 ] = tess.numVertexes + srf->indexes[ i + 0 ]; tess.indexes[ tess.numIndexes + i + 1 ] = tess.numVertexes + srf->indexes[ i + 1 ]; tess.indexes[ tess.numIndexes + i + 2 ] = tess.numVertexes + srf->indexes[ i + 2 ]; } tess.numIndexes += srf->numIndexes; dv = srf->verts; xyz = tess.xyz[ tess.numVertexes ]; normal = tess.normal[ tess.numVertexes ]; texCoords0 = tess.texCoords[0][ tess.numVertexes ]; texCoords1 = tess.texCoords[1][ tess.numVertexes ]; color = &tess.vertexColors[ tess.numVertexes ].u32; for ( i = 0; i < srf->numVerts; i++, dv++, xyz += 4, normal += 4, texCoords0 += 2, color++ ) { xyz[0] = dv->xyz[0]; xyz[1] = dv->xyz[1]; xyz[2] = dv->xyz[2]; #ifdef USE_TESS_NEEDS_NORMAL if ( tess.needsNormal ) #endif { normal[0] = dv->normal[0]; normal[1] = dv->normal[1]; normal[2] = dv->normal[2]; } texCoords0[0] = dv->st[0]; texCoords0[1] = dv->st[1]; #ifdef USE_TESS_NEEDS_ST2 if ( tess.needsST2 ) #endif { texCoords1[0] = dv->lightmap[0]; texCoords1[1] = dv->lightmap[1]; texCoords1 += 2; } *color = dv->color.u32; } #ifdef USE_LEGACY_DLIGHTS for ( i = 0 ; i < srf->numVerts ; i++ ) { tess.vertexDlightBits[ tess.numVertexes + i] = dlightBits; } #endif tess.numVertexes += srf->numVerts; } /* ============== RB_SurfaceBeam ============== */ static void RB_SurfaceBeam( void ) { #define NUM_BEAM_SEGS 6 const refEntity_t *e; int i; vec3_t perpvec; vec3_t direction, normalized_direction; vec3_t points[NUM_BEAM_SEGS+1][2]; // [startPoint,endPoint] vec3_t oldorigin, origin; e = &backEnd.currentEntity->e; oldorigin[0] = e->oldorigin[0]; oldorigin[1] = e->oldorigin[1]; oldorigin[2] = e->oldorigin[2]; origin[0] = e->origin[0]; origin[1] = e->origin[1]; origin[2] = e->origin[2]; normalized_direction[0] = direction[0] = oldorigin[0] - origin[0]; normalized_direction[1] = direction[1] = oldorigin[1] - origin[1]; normalized_direction[2] = direction[2] = oldorigin[2] - origin[2]; if ( VectorNormalize( normalized_direction ) == 0 ) return; PerpendicularVector( perpvec, normalized_direction ); VectorScale( perpvec, 4, perpvec ); for ( i = 0; i <= NUM_BEAM_SEGS; i++ ) { RotatePointAroundVector( points[i][0], normalized_direction, perpvec, (360.0/NUM_BEAM_SEGS)*i ); VectorAdd( points[i][0], direction, points[i][1] ); } qglDisable( GL_TEXTURE_2D ); GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE ); qglColor4f( 1, 0, 0, 1 ); GL_ClientState( 0, CLS_NONE ); qglVertexPointer( 3, GL_FLOAT, 0, &points[0][0] ); qglDrawArrays( GL_TRIANGLE_STRIP, 0, (NUM_BEAM_SEGS+1)*2 ); qglEnable( GL_TEXTURE_2D ); } //================================================================================ static void DoRailCore( const vec3_t start, const vec3_t end, const vec3_t up, float len, float spanWidth ) { float spanWidth2; int vbase; float t = len / 256.0f; RB_CHECKOVERFLOW( 4, 6 ); vbase = tess.numVertexes; spanWidth2 = -spanWidth; // FIXME: use quad stamp? VectorMA( start, spanWidth, up, tess.xyz[tess.numVertexes] ); tess.texCoords[0][tess.numVertexes][0] = 0; tess.texCoords[0][tess.numVertexes][1] = 0; tess.vertexColors[tess.numVertexes].rgba[0] = backEnd.currentEntity->e.shader.rgba[0] * 0.25; tess.vertexColors[tess.numVertexes].rgba[1] = backEnd.currentEntity->e.shader.rgba[1] * 0.25; tess.vertexColors[tess.numVertexes].rgba[2] = backEnd.currentEntity->e.shader.rgba[2] * 0.25; tess.numVertexes++; VectorMA( start, spanWidth2, up, tess.xyz[tess.numVertexes] ); tess.texCoords[0][tess.numVertexes][0] = 0; tess.texCoords[0][tess.numVertexes][1] = 1; tess.vertexColors[tess.numVertexes].rgba[0] = backEnd.currentEntity->e.shader.rgba[0]; tess.vertexColors[tess.numVertexes].rgba[1] = backEnd.currentEntity->e.shader.rgba[1]; tess.vertexColors[tess.numVertexes].rgba[2] = backEnd.currentEntity->e.shader.rgba[2]; tess.numVertexes++; VectorMA( end, spanWidth, up, tess.xyz[tess.numVertexes] ); tess.texCoords[0][tess.numVertexes][0] = t; tess.texCoords[0][tess.numVertexes][1] = 0; tess.vertexColors[tess.numVertexes].rgba[0] = backEnd.currentEntity->e.shader.rgba[0]; tess.vertexColors[tess.numVertexes].rgba[1] = backEnd.currentEntity->e.shader.rgba[1]; tess.vertexColors[tess.numVertexes].rgba[2] = backEnd.currentEntity->e.shader.rgba[2]; tess.numVertexes++; VectorMA( end, spanWidth2, up, tess.xyz[tess.numVertexes] ); tess.texCoords[0][tess.numVertexes][0] = t; tess.texCoords[0][tess.numVertexes][1] = 1; tess.vertexColors[tess.numVertexes].rgba[0] = backEnd.currentEntity->e.shader.rgba[0]; tess.vertexColors[tess.numVertexes].rgba[1] = backEnd.currentEntity->e.shader.rgba[1]; tess.vertexColors[tess.numVertexes].rgba[2] = backEnd.currentEntity->e.shader.rgba[2]; tess.numVertexes++; tess.indexes[tess.numIndexes++] = vbase; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 3; } static void DoRailDiscs( int numSegs, const vec3_t start, const vec3_t dir, const vec3_t right, const vec3_t up ) { int i; vec3_t pos[4]; vec3_t v; int spanWidth = r_railWidth->integer; float c, s; float scale; if ( numSegs > 1 ) numSegs--; if ( !numSegs ) return; scale = 0.25; for ( i = 0; i < 4; i++ ) { c = cos( DEG2RAD( 45 + i * 90 ) ); s = sin( DEG2RAD( 45 + i * 90 ) ); v[0] = ( right[0] * c + up[0] * s ) * scale * spanWidth; v[1] = ( right[1] * c + up[1] * s ) * scale * spanWidth; v[2] = ( right[2] * c + up[2] * s ) * scale * spanWidth; VectorAdd( start, v, pos[i] ); if ( numSegs > 1 ) { // offset by 1 segment if we're doing a long distance shot VectorAdd( pos[i], dir, pos[i] ); } } for ( i = 0; i < numSegs; i++ ) { int j; RB_CHECKOVERFLOW( 4, 6 ); for ( j = 0; j < 4; j++ ) { VectorCopy( pos[j], tess.xyz[tess.numVertexes] ); tess.texCoords[0][tess.numVertexes][0] = ( j < 2 ); tess.texCoords[0][tess.numVertexes][1] = ( j && j != 3 ); tess.vertexColors[tess.numVertexes].rgba[0] = backEnd.currentEntity->e.shader.rgba[0]; tess.vertexColors[tess.numVertexes].rgba[1] = backEnd.currentEntity->e.shader.rgba[1]; tess.vertexColors[tess.numVertexes].rgba[2] = backEnd.currentEntity->e.shader.rgba[2]; tess.numVertexes++; VectorAdd( pos[j], dir, pos[j] ); } tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 0; tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 1; tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 3; tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 3; tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 1; tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 2; } } /* ** RB_SurfaceRailRinges */ static void RB_SurfaceRailRings( void ) { const refEntity_t *e; int numSegs; int len; vec3_t vec; vec3_t right, up; vec3_t start, end; e = &backEnd.currentEntity->e; VectorCopy( e->oldorigin, start ); VectorCopy( e->origin, end ); // compute variables VectorSubtract( end, start, vec ); len = VectorNormalize( vec ); MakeNormalVectors( vec, right, up ); numSegs = ( len ) / r_railSegmentLength->value; if ( numSegs <= 0 ) { numSegs = 1; } VectorScale( vec, r_railSegmentLength->value, vec ); DoRailDiscs( numSegs, start, vec, right, up ); } /* ** RB_SurfaceRailCore */ static void RB_SurfaceRailCore( void ) { const refEntity_t *e; int len; vec3_t right; vec3_t vec; vec3_t start, end; vec3_t v1, v2; e = &backEnd.currentEntity->e; VectorCopy( e->oldorigin, start ); VectorCopy( e->origin, end ); VectorSubtract( end, start, vec ); len = VectorNormalize( vec ); // compute side vector VectorSubtract( start, backEnd.viewParms.or.origin, v1 ); VectorNormalize( v1 ); VectorSubtract( end, backEnd.viewParms.or.origin, v2 ); VectorNormalize( v2 ); CrossProduct( v1, v2, right ); VectorNormalize( right ); DoRailCore( start, end, right, len, r_railCoreWidth->integer ); } /* ** RB_SurfaceLightningBolt */ static void RB_SurfaceLightningBolt( void ) { const refEntity_t *e; int len; vec3_t right; vec3_t vec; vec3_t start, end; vec3_t v1, v2; int i; e = &backEnd.currentEntity->e; VectorCopy( e->oldorigin, end ); VectorCopy( e->origin, start ); // compute variables VectorSubtract( end, start, vec ); len = VectorNormalize( vec ); // compute side vector VectorSubtract( start, backEnd.viewParms.or.origin, v1 ); VectorNormalize( v1 ); VectorSubtract( end, backEnd.viewParms.or.origin, v2 ); VectorNormalize( v2 ); CrossProduct( v1, v2, right ); VectorNormalize( right ); for ( i = 0 ; i < 4 ; i++ ) { vec3_t temp; DoRailCore( start, end, right, len, 8 ); RotatePointAroundVector( temp, vec, right, 45 ); VectorCopy( temp, right ); } } /* ** VectorArrayNormalize * * The inputs to this routing seem to always be close to length = 1.0 (about 0.6 to 2.0) * This means that we don't have to worry about zero length or enormously long vectors. */ static void VectorArrayNormalize(vec4_t *normals, unsigned int count) { // assert(count); // given the input, it's safe to call VectorNormalizeFast while ( count-- ) { VectorNormalizeFast(normals[0]); normals++; } } /* ** LerpMeshVertexes */ static void LerpMeshVertexes_scalar(md3Surface_t *surf, float backlerp) { short *oldXyz, *newXyz, *oldNormals, *newNormals; float *outXyz, *outNormal; float oldXyzScale, newXyzScale; float oldNormalScale, newNormalScale; int vertNum; unsigned lat, lng; int numVerts; outXyz = tess.xyz[tess.numVertexes]; outNormal = tess.normal[tess.numVertexes]; newXyz = (short *)((byte *)surf + surf->ofsXyzNormals) + (backEnd.currentEntity->e.frame * surf->numVerts * 4); newNormals = newXyz + 3; newXyzScale = MD3_XYZ_SCALE * (1.0 - backlerp); newNormalScale = 1.0 - backlerp; numVerts = surf->numVerts; if ( backlerp == 0 ) { // // just copy the vertexes // for (vertNum=0 ; vertNum < numVerts ; vertNum++, newXyz += 4, newNormals += 4, outXyz += 4, outNormal += 4) { outXyz[0] = newXyz[0] * newXyzScale; outXyz[1] = newXyz[1] * newXyzScale; outXyz[2] = newXyz[2] * newXyzScale; lat = ( newNormals[0] >> 8 ) & 0xff; lng = ( newNormals[0] & 0xff ); lat *= (FUNCTABLE_SIZE/256); lng *= (FUNCTABLE_SIZE/256); // decode X as cos( lat ) * sin( long ) // decode Y as sin( lat ) * sin( long ) // decode Z as cos( long ) outNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng]; outNormal[1] = tr.sinTable[lat] * tr.sinTable[lng]; outNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK]; } } else { // // interpolate and copy the vertex and normal // oldXyz = (short *)((byte *)surf + surf->ofsXyzNormals) + (backEnd.currentEntity->e.oldframe * surf->numVerts * 4); oldNormals = oldXyz + 3; oldXyzScale = MD3_XYZ_SCALE * backlerp; oldNormalScale = backlerp; for (vertNum=0 ; vertNum < numVerts ; vertNum++, oldXyz += 4, newXyz += 4, oldNormals += 4, newNormals += 4, outXyz += 4, outNormal += 4) { vec3_t uncompressedOldNormal, uncompressedNewNormal; // interpolate the xyz outXyz[0] = oldXyz[0] * oldXyzScale + newXyz[0] * newXyzScale; outXyz[1] = oldXyz[1] * oldXyzScale + newXyz[1] * newXyzScale; outXyz[2] = oldXyz[2] * oldXyzScale + newXyz[2] * newXyzScale; // FIXME: interpolate lat/long instead? lat = ( newNormals[0] >> 8 ) & 0xff; lng = ( newNormals[0] & 0xff ); lat *= 4; lng *= 4; uncompressedNewNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng]; uncompressedNewNormal[1] = tr.sinTable[lat] * tr.sinTable[lng]; uncompressedNewNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK]; lat = ( oldNormals[0] >> 8 ) & 0xff; lng = ( oldNormals[0] & 0xff ); lat *= 4; lng *= 4; uncompressedOldNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng]; uncompressedOldNormal[1] = tr.sinTable[lat] * tr.sinTable[lng]; uncompressedOldNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK]; outNormal[0] = uncompressedOldNormal[0] * oldNormalScale + uncompressedNewNormal[0] * newNormalScale; outNormal[1] = uncompressedOldNormal[1] * oldNormalScale + uncompressedNewNormal[1] * newNormalScale; outNormal[2] = uncompressedOldNormal[2] * oldNormalScale + uncompressedNewNormal[2] * newNormalScale; // VectorNormalize (outNormal); } VectorArrayNormalize((vec4_t *)tess.normal[tess.numVertexes], numVerts); } } static void LerpMeshVertexes(md3Surface_t *surf, float backlerp) { LerpMeshVertexes_scalar( surf, backlerp ); } /* ============= RB_SurfaceMesh ============= */ static void RB_SurfaceMesh(md3Surface_t *surface) { int j; float backlerp; int *triangles; float *texCoords; int indexes; int Bob, Doug; int numVerts; VBO_Flush(); RB_CHECKOVERFLOW( surface->numVerts, surface->numTriangles * 3 ); tess.surfType = SF_MD3; if ( backEnd.currentEntity->e.oldframe == backEnd.currentEntity->e.frame ) { backlerp = 0; } else { backlerp = backEnd.currentEntity->e.backlerp; } LerpMeshVertexes (surface, backlerp); triangles = (int *) ((byte *)surface + surface->ofsTriangles); indexes = surface->numTriangles * 3; Bob = tess.numIndexes; Doug = tess.numVertexes; for (j = 0 ; j < indexes ; j++) { tess.indexes[Bob + j] = Doug + triangles[j]; } tess.numIndexes += indexes; texCoords = (float *) ((byte *)surface + surface->ofsSt); numVerts = surface->numVerts; for ( j = 0; j < numVerts; j++ ) { tess.texCoords[0][Doug + j][0] = texCoords[j*2+0]; tess.texCoords[0][Doug + j][1] = texCoords[j*2+1]; // FIXME: fill in lightmapST for completeness? } tess.numVertexes += surface->numVerts; } /* ============== RB_SurfaceFace ============== */ static void RB_SurfaceFace( const srfSurfaceFace_t *surf ) { int i; unsigned *indices; glIndex_t *tessIndexes; const float *v; const float *normal; int ndx; int Bob; int numPoints; #ifdef USE_LEGACY_DLIGHTS int dlightBits; #endif #ifdef USE_LEGACY_DLIGHTS if ( tess.allowVBO && surf->vboItemIndex && !surf->dlightBits ) { #else if ( tess.allowVBO && surf->vboItemIndex ) { #endif // transition to vbo render list if ( tess.vboIndex == 0 ) { RB_EndSurface(); RB_BeginSurface( tess.shader, tess.fogNum ); // set some dummy parameters for RB_EndSurface tess.numIndexes = 1; tess.numVertexes = 0; VBO_ClearQueue(); } tess.surfType = SF_FACE; tess.vboIndex = surf->vboItemIndex; VBO_QueueItem( surf->vboItemIndex ); return; // no need to tesselate anything } VBO_Flush(); RB_CHECKOVERFLOW( surf->numPoints, surf->numIndices ); tess.surfType = SF_FACE; #ifdef USE_LEGACY_DLIGHTS dlightBits = surf->dlightBits; tess.dlightBits |= dlightBits; #endif indices = ( unsigned * ) ( ( ( char * ) surf ) + surf->ofsIndices ); Bob = tess.numVertexes; tessIndexes = tess.indexes + tess.numIndexes; for ( i = surf->numIndices-1 ; i >= 0 ; i-- ) { tessIndexes[i] = indices[i] + Bob; } tess.numIndexes += surf->numIndices; numPoints = surf->numPoints; #ifdef USE_TESS_NEEDS_NORMAL if ( tess.needsNormal ) #endif { if ( surf->normals ) { // per-vertex normals for non-coplanar faces memcpy( &tess.normal[ tess.numVertexes ], surf->normals, numPoints * sizeof( vec4_t ) ); } else { normal = surf->plane.normal; for ( i = 0, ndx = tess.numVertexes; i < numPoints; i++, ndx++ ) { VectorCopy( normal, tess.normal[ndx] ); } } } for ( i = 0, v = surf->points[0], ndx = tess.numVertexes; i < numPoints; i++, v += VERTEXSIZE, ndx++ ) { VectorCopy( v, tess.xyz[ndx]); tess.texCoords[0][ndx][0] = v[3]; tess.texCoords[0][ndx][1] = v[4]; #ifdef USE_TESS_NEEDS_ST2 if ( tess.needsST2 ) #endif { tess.texCoords[1][ndx][0] = v[5]; tess.texCoords[1][ndx][1] = v[6]; } * ( unsigned int * ) &tess.vertexColors[ndx] = * ( unsigned int * ) &v[7]; #ifdef USE_LEGACY_DLIGHTS tess.vertexDlightBits[ndx] = dlightBits; #endif } tess.numVertexes += surf->numPoints; } static float LodErrorForVolume( vec3_t local, float radius ) { vec3_t world; float d; // never let it go negative if ( r_lodCurveError->value < 0 ) { return 0; } world[0] = local[0] * backEnd.or.axis[0][0] + local[1] * backEnd.or.axis[1][0] + local[2] * backEnd.or.axis[2][0] + backEnd.or.origin[0]; world[1] = local[0] * backEnd.or.axis[0][1] + local[1] * backEnd.or.axis[1][1] + local[2] * backEnd.or.axis[2][1] + backEnd.or.origin[1]; world[2] = local[0] * backEnd.or.axis[0][2] + local[1] * backEnd.or.axis[1][2] + local[2] * backEnd.or.axis[2][2] + backEnd.or.origin[2]; VectorSubtract( world, backEnd.viewParms.or.origin, world ); d = DotProduct( world, backEnd.viewParms.or.axis[0] ); if ( d < 0 ) { d = -d; } d -= radius; if ( d < 1 ) { d = 1; } return r_lodCurveError->value / d; } void RB_SurfaceGridEstimate( srfGridMesh_t *cv, int *numVertexes, int *numIndexes ) { int lodWidth, lodHeight; float lodError; int i, used, rows; int nVertexes = 0; int nIndexes = 0; int irows, vrows; lodError = r_lodCurveError->value; // fixed quality for VBO lodWidth = 1; for ( i = 1 ; i < cv->width-1 ; i++ ) { if ( cv->widthLodError[i] <= lodError ) { lodWidth++; } } lodWidth++; lodHeight = 1; for ( i = 1 ; i < cv->height-1 ; i++ ) { if ( cv->heightLodError[i] <= lodError ) { lodHeight++; } } lodHeight++; used = 0; while ( used < lodHeight - 1 ) { // see how many rows of both verts and indexes we can add without overflowing do { vrows = ( SHADER_MAX_VERTEXES - tess.numVertexes ) / lodWidth; irows = ( SHADER_MAX_INDEXES - tess.numIndexes ) / ( lodWidth * 6 ); // if we don't have enough space for at least one strip, flush the buffer if ( vrows < 2 || irows < 1 ) { nVertexes += tess.numVertexes; nIndexes += tess.numIndexes; tess.numIndexes = 0; tess.numVertexes = 0; } else { break; } } while ( 1 ); rows = irows; if ( vrows < irows + 1 ) { rows = vrows - 1; } if ( used + rows > lodHeight ) { rows = lodHeight - used; } tess.numIndexes += (rows-1)*(lodWidth-1)*6; tess.numVertexes += rows * lodWidth; used += rows - 1; } *numVertexes = nVertexes + tess.numVertexes; *numIndexes = nIndexes + tess.numIndexes; tess.numVertexes = 0; tess.numIndexes = 0; } /* ============= RB_SurfaceGrid Just copy the grid of points and triangulate ============= */ static void RB_SurfaceGrid( srfGridMesh_t *cv ) { int i, j; float *xyz; float *texCoords0; float *texCoords1; float *normal; uint32_t *color; drawVert_t *dv; int rows, irows, vrows; int used; int widthTable[MAX_GRID_SIZE]; int heightTable[MAX_GRID_SIZE]; float lodError; int lodWidth, lodHeight; int numVertexes; #ifdef USE_LEGACY_DLIGHTS int dlightBits; int *vDlightBits; #endif #ifdef USE_LEGACY_DLIGHTS if ( tess.allowVBO && cv->vboItemIndex && !cv->dlightBits ) { #else if ( tess.allowVBO && cv->vboItemIndex ) { #endif // transition to vbo render list if ( tess.vboIndex == 0 ) { RB_EndSurface(); RB_BeginSurface( tess.shader, tess.fogNum ); // set some dummy parameters for RB_EndSurface tess.numIndexes = 1; tess.numVertexes = 0; VBO_ClearQueue(); } tess.surfType = SF_GRID; tess.vboIndex = cv->vboItemIndex; VBO_QueueItem( cv->vboItemIndex ); return; // no need to tesselate anything } VBO_Flush(); #ifdef USE_LEGACY_DLIGHTS dlightBits = cv->dlightBits; tess.dlightBits |= dlightBits; #endif tess.surfType = SF_GRID; // determine the allowable discrepance #ifdef USE_PMLIGHT if ( cv->vboItemIndex && ( tr.mapLoading || ( tess.dlightPass && tess.shader->isStaticShader ) ) ) #else if ( cv->vboItemIndex && tr.mapLoading ) #endif lodError = r_lodCurveError->value; // fixed quality for VBO else lodError = LodErrorForVolume( cv->lodOrigin, cv->lodRadius ); // determine which rows and columns of the subdivision // we are actually going to use widthTable[0] = 0; lodWidth = 1; for ( i = 1 ; i < cv->width-1 ; i++ ) { if ( cv->widthLodError[i] <= lodError ) { widthTable[lodWidth] = i; lodWidth++; } } widthTable[lodWidth] = cv->width-1; lodWidth++; heightTable[0] = 0; lodHeight = 1; for ( i = 1 ; i < cv->height-1 ; i++ ) { if ( cv->heightLodError[i] <= lodError ) { heightTable[lodHeight] = i; lodHeight++; } } heightTable[lodHeight] = cv->height-1; lodHeight++; // very large grids may have more points or indexes than can be fit // in the tess structure, so we may have to issue it in multiple passes used = 0; while ( used < lodHeight - 1 ) { // see how many rows of both verts and indexes we can add without overflowing do { vrows = ( SHADER_MAX_VERTEXES - tess.numVertexes ) / lodWidth; irows = ( SHADER_MAX_INDEXES - tess.numIndexes ) / ( lodWidth * 6 ); // if we don't have enough space for at least one strip, flush the buffer if ( vrows < 2 || irows < 1 ) { if ( tr.mapLoading ) { // estimate and flush if ( cv->vboItemIndex ) { VBO_PushData( cv->vboItemIndex, &tess ); tess.numIndexes = 0; tess.numVertexes = 0; } else { ri.Error( ERR_DROP, "Unexpected grid flush during map loading!\n" ); } } else { RB_EndSurface(); RB_BeginSurface( tess.shader, tess.fogNum ); } } else { break; } } while ( 1 ); rows = irows; if ( vrows < irows + 1 ) { rows = vrows - 1; } if ( used + rows > lodHeight ) { rows = lodHeight - used; } numVertexes = tess.numVertexes; xyz = tess.xyz[numVertexes]; normal = tess.normal[numVertexes]; texCoords0 = tess.texCoords[0][numVertexes]; texCoords1 = tess.texCoords[1][numVertexes]; color = &tess.vertexColors[numVertexes].u32; #ifdef USE_LEGACY_DLIGHTS vDlightBits = &tess.vertexDlightBits[numVertexes]; #endif for ( i = 0 ; i < rows ; i++ ) { for ( j = 0 ; j < lodWidth ; j++ ) { dv = cv->verts + heightTable[ used + i ] * cv->width + widthTable[ j ]; xyz[0] = dv->xyz[0]; xyz[1] = dv->xyz[1]; xyz[2] = dv->xyz[2]; texCoords0[0] = dv->st[0]; texCoords0[1] = dv->st[1]; #ifdef USE_TESS_NEEDS_ST2 if ( tess.needsST2 ) #endif { texCoords1[0] = dv->lightmap[0]; texCoords1[1] = dv->lightmap[1]; texCoords1 += 2; } #ifdef USE_TESS_NEEDS_NORMAL if ( tess.needsNormal ) #endif { normal[0] = dv->normal[0]; normal[1] = dv->normal[1]; normal[2] = dv->normal[2]; normal += 4; } *color = dv->color.u32; #ifdef USE_LEGACY_DLIGHTS *vDlightBits++ = dlightBits; #endif xyz += 4; texCoords0 += 2; color++; } } // add the indexes { int numIndexes; int w, h; h = rows - 1; w = lodWidth - 1; numIndexes = tess.numIndexes; for (i = 0 ; i < h ; i++) { for (j = 0 ; j < w ; j++) { int v1, v2, v3, v4; // vertex order to be reckognized as tristrips v1 = numVertexes + i*lodWidth + j + 1; v2 = v1 - 1; v3 = v2 + lodWidth; v4 = v3 + 1; tess.indexes[numIndexes] = v2; tess.indexes[numIndexes+1] = v3; tess.indexes[numIndexes+2] = v1; tess.indexes[numIndexes+3] = v1; tess.indexes[numIndexes+4] = v3; tess.indexes[numIndexes+5] = v4; numIndexes += 6; } } tess.numIndexes = numIndexes; } tess.numVertexes += rows * lodWidth; used += rows - 1; } } /* =========================================================================== NULL MODEL =========================================================================== */ /* =================== RB_SurfaceAxis Draws x/y/z lines from the origin for orientation debugging =================== */ static void RB_SurfaceAxis( void ) { vec3_t xyz[6]; color4ub_t colors[6]; int i; GL_ClientState( 0, CLS_COLOR_ARRAY ); qglDisable( GL_TEXTURE_2D ); GL_State( GLS_DEFAULT ); qglLineWidth( 3 ); Com_Memset( xyz, 0, sizeof( xyz ) ); xyz[1][0] = 16.0; xyz[3][1] = 16.0; xyz[5][2] = 16.0; Com_Memset( colors, 0, sizeof( colors ) ); for ( i = 0; i < 6; i++ ) { colors[i].rgba[3] = 255; } colors[0].rgba[0] = 255; colors[1].rgba[0] = 255; colors[2].rgba[1] = 255; colors[3].rgba[1] = 255; colors[4].rgba[2] = 255; colors[5].rgba[2] = 255; qglVertexPointer( 3, GL_FLOAT, 0, xyz ); qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, colors[0].rgba ); qglDrawArrays( GL_LINES, 0, 6 ); qglLineWidth( 1 ); qglEnable( GL_TEXTURE_2D ); } //=========================================================================== /* ==================== RB_SurfaceEntity Entities that have a single procedurally generated surface ==================== */ static void RB_SurfaceEntity( const surfaceType_t *surfType ) { VBO_Flush(); switch( backEnd.currentEntity->e.reType ) { case RT_SPRITE: RB_SurfaceSprite(); break; case RT_BEAM: RB_SurfaceBeam(); break; case RT_RAIL_CORE: RB_SurfaceRailCore(); break; case RT_RAIL_RINGS: RB_SurfaceRailRings(); break; case RT_LIGHTNING: RB_SurfaceLightningBolt(); break; default: RB_SurfaceAxis(); break; } tess.surfType = SF_ENTITY; } static void RB_SurfaceBad( const surfaceType_t *surfType ) { ri.Printf( PRINT_ALL, "Bad surface tesselated.\n" ); } static void RB_SurfaceFlare( srfFlare_t *surf ) { if ( r_flares->integer ) { VBO_Flush(); tess.surfType = SF_FLARE; RB_AddFlare( surf, tess.fogNum, surf->origin, surf->color, surf->normal ); } } static void RB_SurfaceSkip( void *surf ) { } void (*rb_surfaceTable[SF_NUM_SURFACE_TYPES])( void *) = { (void(*)(void*))RB_SurfaceBad, // SF_BAD, (void(*)(void*))RB_SurfaceSkip, // SF_SKIP, (void(*)(void*))RB_SurfaceFace, // SF_FACE, (void(*)(void*))RB_SurfaceGrid, // SF_GRID, (void(*)(void*))RB_SurfaceTriangles, // SF_TRIANGLES, (void(*)(void*))RB_SurfacePolychain, // SF_POLY, (void(*)(void*))RB_SurfaceMesh, // SF_MD3, (void(*)(void*))RB_MDRSurfaceAnim, // SF_MDR, (void(*)(void*))RB_IQMSurfaceAnim, // SF_IQM, (void(*)(void*))RB_SurfaceFlare, // SF_FLARE, (void(*)(void*))RB_SurfaceEntity // SF_ENTITY };