/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_shade.c #include "tr_local.h" /* THIS ENTIRE FILE IS BACK END This file deals with applying shaders to surface data in the tess struct. */ /* ================== R_DrawElements ================== */ void R_DrawElements( int numIndexes, const glIndex_t *indexes ) { qglDrawElements( GL_TRIANGLES, numIndexes, GL_INDEX_TYPE, indexes ); } /* ============================================================= SURFACE SHADERS ============================================================= */ shaderCommands_t tess; static qboolean setArraysOnce; /* ================= R_BindAnimatedImage ================= */ void R_BindAnimatedImage( const textureBundle_t *bundle ) { int64_t index; double v; if ( bundle->isVideoMap ) { ri.CIN_RunCinematic(bundle->videoMapHandle); ri.CIN_UploadCinematic(bundle->videoMapHandle); return; } if ( bundle->isScreenMap && backEnd.viewParms.frameSceneNum == 1 ) { GL_BindTexNum( FBO_ScreenTexture() ); return; } if ( bundle->numImageAnimations <= 1 ) { GL_Bind( bundle->image[0] ); return; } // it is necessary to do this messy calc to make sure animations line up // exactly with waveforms of the same frequency //v = tess.shaderTime * bundle->imageAnimationSpeed * FUNCTABLE_SIZE; //index = v; //index >>= FUNCTABLE_SIZE2; v = tess.shaderTime * bundle->imageAnimationSpeed; // fix for frameloss bug -EC- index = v; if ( index < 0 ) { index = 0; // may happen with shader time offsets } index %= bundle->numImageAnimations; GL_Bind( bundle->image[ index ] ); } /* ================ DrawTris Draws triangle outlines for debugging ================ */ static void DrawTris( const shaderCommands_t *input ) { if ( r_showtris->integer == 1 && backEnd.drawConsole ) return; if ( tess.numIndexes == 0 ) return; GL_ProgramDisable(); tess.dlightUpdateParams = qtrue; GL_ClientState( 0, CLS_NONE ); qglDisable( GL_TEXTURE_2D ); #ifdef USE_PMLIGHT if ( tess.dlightPass ) qglColor4f( 1.0f, 0.33f, 0.2f, 1.0f ); else #endif qglColor4f( 1, 1, 1, 1 ); GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE ); qglDepthRange( 0, 0 ); qglVertexPointer( 3, GL_FLOAT, sizeof( input->xyz[0] ), input->xyz ); if ( qglLockArraysEXT ) { qglLockArraysEXT( 0, input->numVertexes ); } R_DrawElements( input->numIndexes, input->indexes ); if ( qglUnlockArraysEXT ) { qglUnlockArraysEXT(); } qglEnable( GL_TEXTURE_2D ); qglDepthRange( 0, 1 ); } /* ================ DrawNormals Draws vertex normals for debugging ================ */ static void DrawNormals( const shaderCommands_t *input ) { int i; GL_ClientState( 0, CLS_NONE ); qglDisable( GL_TEXTURE_2D ); qglColor4f( 1, 1, 1, 1 ); qglDepthRange( 0, 0 ); // never occluded GL_State( GLS_DEPTHMASK_TRUE ); for ( i = tess.numVertexes-1; i >= 0; i-- ) { VectorMA( tess.xyz[i], 2.0, tess.normal[i], tess.xyz[i*2 + 1] ); VectorCopy( tess.xyz[i], tess.xyz[i*2] ); } qglVertexPointer( 3, GL_FLOAT, sizeof( tess.xyz[0] ), tess.xyz ); if ( qglLockArraysEXT ) { qglLockArraysEXT( 0, tess.numVertexes * 2 ); } qglDrawArrays( GL_LINES, 0, tess.numVertexes * 2 ); if ( qglUnlockArraysEXT ) { qglUnlockArraysEXT(); } qglEnable( GL_TEXTURE_2D ); qglDepthRange( 0, 1 ); } /* ============== RB_BeginSurface We must set some things up before beginning any tesselation, because a surface may be forced to perform a RB_End due to overflow. ============== */ void RB_BeginSurface( shader_t *shader, int fogNum ) { shader_t *state; #ifdef USE_PMLIGHT if ( !tess.dlightPass && shader->isStaticShader && !shader->remappedShader ) #else if ( shader->isStaticShader ) #endif tess.allowVBO = qtrue; else tess.allowVBO = qfalse; if ( shader->remappedShader ) { state = shader->remappedShader; } else { state = shader; } #ifdef USE_PMLIGHT if ( tess.fogNum != fogNum || tess.cullType != state->cullType ) { tess.dlightUpdateParams = qtrue; } #endif #ifdef USE_TESS_NEEDS_NORMAL #ifdef USE_PMLIGHT tess.needsNormal = state->needsNormal || tess.dlightPass || r_shownormals->integer; #else tess.needsNormal = state->needsNormal || r_shownormals->integer; #endif #endif #ifdef USE_TESS_NEEDS_ST2 tess.needsST2 = state->needsST2; #endif tess.numIndexes = 0; tess.numVertexes = 0; tess.shader = state; tess.fogNum = fogNum; #ifdef USE_LEGACY_DLIGHTS tess.dlightBits = 0; // will be OR'd in by surface functions #endif tess.xstages = state->stages; tess.numPasses = state->numUnfoggedPasses; tess.shaderTime = backEnd.refdef.floatTime - tess.shader->timeOffset; if ( tess.shader->clampTime && tess.shaderTime >= tess.shader->clampTime ) { tess.shaderTime = tess.shader->clampTime; } } /* =================== DrawMultitextured output = t0 * t1 or t0 + t1 t0 = most upstream according to spec t1 = most downstream according to spec =================== */ static void DrawMultitextured( const shaderCommands_t *input, int stage ) { const shaderStage_t *pStage; pStage = tess.xstages[ stage ]; GL_State( pStage->stateBits ); if ( !setArraysOnce ) { R_ComputeColors( pStage ); R_ComputeTexCoords( 0, &pStage->bundle[0] ); R_ComputeTexCoords( 1, &pStage->bundle[1] ); GL_ClientState( 0, CLS_TEXCOORD_ARRAY | CLS_COLOR_ARRAY ); qglTexCoordPointer( 2, GL_FLOAT, 0, input->svars.texcoordPtr[0] ); qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, input->svars.colors[0].rgba ); GL_ClientState( 1, CLS_TEXCOORD_ARRAY ); qglTexCoordPointer( 2, GL_FLOAT, 0, input->svars.texcoordPtr[1] ); } // // base // GL_SelectTexture( 0 ); R_BindAnimatedImage( &pStage->bundle[0] ); // // lightmap/secondary pass // GL_SelectTexture( 1 ); qglEnable( GL_TEXTURE_2D ); R_BindAnimatedImage( &pStage->bundle[1] ); if ( r_lightmap->integer ) { GL_TexEnv( GL_REPLACE ); } else { GL_TexEnv( pStage->mtEnv ); } R_DrawElements( input->numIndexes, input->indexes ); // // disable texturing on TEXTURE1, then select TEXTURE0 // if ( r_vbo->integer ) { // some drivers may try to load texcoord[1] data even with multi-texturing disabled // (and actually gpu shaders doesn't care about conventional GL_TEXTURE_2D states) // which doesn't cause problems while data pointer is the same or represents fixed-size set // but when we switch to/from vbo - texcoord[1] data may point on larger set (it's ok) // or smaller set - which will cause out-of-bounds index access/crash during non-multitexture rendering // GL_ClientState( 1, GLS_NONE ); } qglDisable( GL_TEXTURE_2D ); GL_SelectTexture( 0 ); } #ifdef USE_LEGACY_DLIGHTS /* =================== ProjectDlightTexture Perform dynamic lighting with another rendering pass =================== */ static void ProjectDlightTexture_scalar( void ) { int i, l; vec3_t origin; float *texCoords; float *colors; byte clipBits[SHADER_MAX_VERTEXES]; float texCoordsArray[SHADER_MAX_VERTEXES][2]; float colorArray[SHADER_MAX_VERTEXES][4]; glIndex_t hitIndexes[SHADER_MAX_INDEXES]; int numIndexes; float scale; float radius; float modulate = 0.0f; const dlight_t *dl; if ( !backEnd.refdef.num_dlights ) { return; } for ( l = 0 ; l < backEnd.refdef.num_dlights ; l++ ) { if ( !( tess.dlightBits & ( 1 << l ) ) ) { continue; // this surface definitely doesn't have any of this light } texCoords = texCoordsArray[0]; colors = colorArray[0]; dl = &backEnd.refdef.dlights[l]; VectorCopy( dl->transformed, origin ); radius = dl->radius; scale = 1.0f / radius; for ( i = 0 ; i < tess.numVertexes ; i++, texCoords += 2, colors += 4 ) { int clip = 0; vec3_t dist; VectorSubtract( origin, tess.xyz[i], dist ); backEnd.pc.c_dlightVertexes++; texCoords[0] = 0.5f + dist[0] * scale; texCoords[1] = 0.5f + dist[1] * scale; if ( !r_dlightBacks->integer && // dist . tess.normal[i] ( dist[0] * tess.normal[i][0] + dist[1] * tess.normal[i][1] + dist[2] * tess.normal[i][2] ) < 0.0f ) { clip = 63; } else { if ( texCoords[0] < 0.0f ) { clip |= 1; } else if ( texCoords[0] > 1.0f ) { clip |= 2; } if ( texCoords[1] < 0.0f ) { clip |= 4; } else if ( texCoords[1] > 1.0f ) { clip |= 8; } // modulate the strength based on the height and color if ( dist[2] > radius ) { clip |= 16; modulate = 0.0f; } else if ( dist[2] < -radius ) { clip |= 32; modulate = 0.0f; } else { //*((int*)&dist[2]) &= 0x7FFFFFFF; dist[2] = fabsf( dist[2] ); if ( dist[2] < radius * 0.5f ) { modulate = 1.0f; } else { modulate = 2.0f * (radius - dist[2]) * scale; } } } clipBits[i] = clip; colors[0] = dl->color[0] * modulate; colors[1] = dl->color[1] * modulate; colors[2] = dl->color[2] * modulate; colors[3] = 1.0f; } // build a list of triangles that need light numIndexes = 0; for ( i = 0 ; i < tess.numIndexes ; i += 3 ) { int a, b, c; a = tess.indexes[i]; b = tess.indexes[i+1]; c = tess.indexes[i+2]; if ( clipBits[a] & clipBits[b] & clipBits[c] ) { continue; // not lighted } hitIndexes[numIndexes] = a; hitIndexes[numIndexes+1] = b; hitIndexes[numIndexes+2] = c; numIndexes += 3; } if ( !numIndexes ) { continue; } GL_ClientState( 1, CLS_NONE ); GL_ClientState( 0, CLS_TEXCOORD_ARRAY | CLS_COLOR_ARRAY ); qglTexCoordPointer( 2, GL_FLOAT, 0, texCoordsArray[0] ); qglColorPointer( 4, GL_FLOAT, 0, colorArray ); GL_Bind( tr.dlightImage ); // include GLS_DEPTHFUNC_EQUAL so alpha tested surfaces don't add light // where they aren't rendered if ( dl->additive ) { GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL ); } else { GL_State( GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL ); } R_DrawElements( numIndexes, hitIndexes ); backEnd.pc.c_totalIndexes += numIndexes; backEnd.pc.c_dlightIndexes += numIndexes; } } static void ProjectDlightTexture( void ) { ProjectDlightTexture_scalar(); } #endif // USE_LEGACY_DLIGHTS /* =================== RB_FogPass Blends a fog texture on top of everything else =================== */ static void RB_FogPass( void ) { const fog_t *fog; int i; fog = tr.world->fogs + tess.fogNum; for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i].u32 = fog->colorInt.u32; } RB_CalcFogTexCoords( ( float * ) tess.svars.texcoords[0] ); GL_ClientState( 1, CLS_NONE ); GL_ClientState( 0, CLS_TEXCOORD_ARRAY | CLS_COLOR_ARRAY ); qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.svars.colors[0].rgba ); qglTexCoordPointer( 2, GL_FLOAT, 0, tess.svars.texcoords[0] ); GL_SelectTexture( 0 ); GL_Bind( tr.fogImage ); if ( tess.shader->fogPass == FP_EQUAL ) { GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_DEPTHFUNC_EQUAL ); } else { GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA ); } R_DrawElements( tess.numIndexes, tess.indexes ); } /* =============== R_ComputeColors =============== */ void R_ComputeColors( const shaderStage_t *pStage ) { int i; if ( !tess.numVertexes ) return; // // rgbGen // switch ( pStage->rgbGen ) { case CGEN_IDENTITY: Com_Memset( tess.svars.colors, 0xff, tess.numVertexes * 4 ); break; default: case CGEN_IDENTITY_LIGHTING: Com_Memset( tess.svars.colors, tr.identityLightByte, tess.numVertexes * 4 ); break; case CGEN_LIGHTING_DIFFUSE: RB_CalcDiffuseColor( ( unsigned char * ) tess.svars.colors ); break; case CGEN_EXACT_VERTEX: Com_Memcpy( tess.svars.colors, tess.vertexColors, tess.numVertexes * sizeof( tess.vertexColors[0] ) ); break; case CGEN_CONST: for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i].u32 = pStage->constantColor.u32; } break; case CGEN_VERTEX: if ( tr.identityLight == 1 ) { Com_Memcpy( tess.svars.colors, tess.vertexColors, tess.numVertexes * sizeof( tess.vertexColors[0] ) ); } else { for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i].rgba[0] = tess.vertexColors[i].rgba[0] * tr.identityLight; tess.svars.colors[i].rgba[1] = tess.vertexColors[i].rgba[1] * tr.identityLight; tess.svars.colors[i].rgba[2] = tess.vertexColors[i].rgba[2] * tr.identityLight; tess.svars.colors[i].rgba[3] = tess.vertexColors[i].rgba[3]; } } break; case CGEN_ONE_MINUS_VERTEX: if ( tr.identityLight == 1 ) { for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i].rgba[0] = 255 - tess.vertexColors[i].rgba[0]; tess.svars.colors[i].rgba[1] = 255 - tess.vertexColors[i].rgba[1]; tess.svars.colors[i].rgba[2] = 255 - tess.vertexColors[i].rgba[2]; } } else { for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i].rgba[0] = ( 255 - tess.vertexColors[i].rgba[0] ) * tr.identityLight; tess.svars.colors[i].rgba[1] = ( 255 - tess.vertexColors[i].rgba[1] ) * tr.identityLight; tess.svars.colors[i].rgba[2] = ( 255 - tess.vertexColors[i].rgba[2] ) * tr.identityLight; } } break; case CGEN_FOG: { const fog_t *fog; fog = tr.world->fogs + tess.fogNum; for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i].u32 = fog->colorInt.u32; } } break; case CGEN_WAVEFORM: RB_CalcWaveColor( &pStage->rgbWave, tess.svars.colors[0].rgba ); break; case CGEN_ENTITY: RB_CalcColorFromEntity( tess.svars.colors[0].rgba ); break; case CGEN_ONE_MINUS_ENTITY: RB_CalcColorFromOneMinusEntity( tess.svars.colors[0].rgba ); break; } // // alphaGen // switch ( pStage->alphaGen ) { case AGEN_SKIP: break; case AGEN_IDENTITY: if ( ( pStage->rgbGen == CGEN_VERTEX && tr.identityLight != 1 ) || pStage->rgbGen != CGEN_VERTEX ) { for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i].rgba[3] = 255; } } break; case AGEN_CONST: for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i].rgba[3] = pStage->constantColor.rgba[3]; } break; case AGEN_WAVEFORM: RB_CalcWaveAlpha( &pStage->alphaWave, tess.svars.colors[0].rgba ); break; case AGEN_LIGHTING_SPECULAR: RB_CalcSpecularAlpha( tess.svars.colors[0].rgba ); break; case AGEN_ENTITY: RB_CalcAlphaFromEntity( tess.svars.colors[0].rgba ); break; case AGEN_ONE_MINUS_ENTITY: RB_CalcAlphaFromOneMinusEntity( tess.svars.colors[0].rgba ); break; case AGEN_VERTEX: for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i].rgba[3] = tess.vertexColors[i].rgba[3]; } break; case AGEN_ONE_MINUS_VERTEX: for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i].rgba[3] = 255 - tess.vertexColors[i].rgba[3]; } break; case AGEN_PORTAL: { for ( i = 0; i < tess.numVertexes; i++ ) { unsigned char alpha; float len; vec3_t v; VectorSubtract( tess.xyz[i], backEnd.viewParms.or.origin, v ); len = VectorLength( v ) * tess.shader->portalRangeR; if ( len > 1 ) { alpha = 0xff; } else { alpha = len * 0xff; } tess.svars.colors[i].rgba[3] = alpha; } } break; } // // fog adjustment for colors to fade out as fog increases // if ( tess.fogNum ) { switch ( pStage->adjustColorsForFog ) { case ACFF_MODULATE_RGB: RB_CalcModulateColorsByFog( tess.svars.colors[0].rgba ); break; case ACFF_MODULATE_ALPHA: RB_CalcModulateAlphasByFog( tess.svars.colors[0].rgba ); break; case ACFF_MODULATE_RGBA: RB_CalcModulateRGBAsByFog( tess.svars.colors[0].rgba ); break; case ACFF_NONE: break; } } } /* =============== R_ComputeTexCoords =============== */ void R_ComputeTexCoords( const int b, const textureBundle_t *bundle ) { int i; int tm; vec2_t *src, *dst; if ( !tess.numVertexes ) return; src = dst = tess.svars.texcoords[b]; // // generate the texture coordinates // switch ( bundle->tcGen ) { case TCGEN_IDENTITY: src = tess.texCoords00; break; case TCGEN_TEXTURE: src = tess.texCoords[0]; break; case TCGEN_LIGHTMAP: src = tess.texCoords[1]; break; case TCGEN_VECTOR: for ( i = 0 ; i < tess.numVertexes ; i++ ) { dst[i][0] = DotProduct( tess.xyz[i], bundle->tcGenVectors[0] ); dst[i][1] = DotProduct( tess.xyz[i], bundle->tcGenVectors[1] ); } break; case TCGEN_FOG: RB_CalcFogTexCoords( ( float * ) dst ); break; case TCGEN_ENVIRONMENT_MAPPED: RB_CalcEnvironmentTexCoords( ( float * ) dst ); break; case TCGEN_ENVIRONMENT_MAPPED_FP: RB_CalcEnvironmentTexCoordsFP( ( float * ) dst, bundle->isScreenMap ); break; case TCGEN_BAD: return; } // // alter texture coordinates // for ( tm = 0; tm < bundle->numTexMods ; tm++ ) { switch ( bundle->texMods[tm].type ) { case TMOD_NONE: tm = TR_MAX_TEXMODS; // break out of for loop break; case TMOD_TURBULENT: RB_CalcTurbulentTexCoords( &bundle->texMods[tm].wave, (float *)src, (float *) dst ); src = dst; break; case TMOD_ENTITY_TRANSLATE: RB_CalcScrollTexCoords( backEnd.currentEntity->e.shaderTexCoord, (float *)src, (float *) dst ); src = dst; break; case TMOD_SCROLL: RB_CalcScrollTexCoords( bundle->texMods[tm].scroll, (float *)src, (float *) dst ); src = dst; break; case TMOD_SCALE: RB_CalcScaleTexCoords( bundle->texMods[tm].scale, (float *) src, (float *) dst ); src = dst; break; case TMOD_OFFSET: for ( i = 0; i < tess.numVertexes; i++ ) { dst[i][0] = src[i][0] + bundle->texMods[tm].offset[0]; dst[i][1] = src[i][1] + bundle->texMods[tm].offset[1]; } src = dst; break; case TMOD_SCALE_OFFSET: for ( i = 0; i < tess.numVertexes; i++ ) { dst[i][0] = (src[i][0] * bundle->texMods[tm].scale[0] ) + bundle->texMods[tm].offset[0]; dst[i][1] = (src[i][1] * bundle->texMods[tm].scale[1] ) + bundle->texMods[tm].offset[1]; } src = dst; break; case TMOD_STRETCH: RB_CalcStretchTexCoords( &bundle->texMods[tm].wave, (float *)src, (float *) dst ); src = dst; break; case TMOD_TRANSFORM: RB_CalcTransformTexCoords( &bundle->texMods[tm], (float *)src, (float *) dst ); src = dst; break; case TMOD_ROTATE: RB_CalcRotateTexCoords( bundle->texMods[tm].rotateSpeed, (float *) src, (float *) dst ); src = dst; break; default: ri.Error( ERR_DROP, "ERROR: unknown texmod '%d' in shader '%s'", bundle->texMods[tm].type, tess.shader->name ); break; } } tess.svars.texcoordPtr[ b ] = src; } /* ** RB_IterateStagesGeneric */ static void RB_IterateStagesGeneric( const shaderCommands_t *input ) { const shaderStage_t *pStage; int stage; for ( stage = 0; stage < MAX_SHADER_STAGES; stage++ ) { pStage = tess.xstages[ stage ]; if ( !pStage ) break; // // do multitexture // if ( pStage->mtEnv ) { DrawMultitextured( input, stage ); } else { if ( !setArraysOnce ) { R_ComputeTexCoords( 0, &pStage->bundle[0] ); R_ComputeColors( pStage ); GL_ClientState( 1, CLS_NONE ); GL_ClientState( 0, CLS_TEXCOORD_ARRAY | CLS_COLOR_ARRAY ); qglTexCoordPointer( 2, GL_FLOAT, 0, input->svars.texcoordPtr[0] ); qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, input->svars.colors[0].rgba ); } // // set state // R_BindAnimatedImage( &pStage->bundle[0] ); GL_State( pStage->stateBits ); // // draw // R_DrawElements( input->numIndexes, input->indexes ); if ( pStage->depthFragment ) { GL_State( pStage->stateBits | GLS_DEPTHMASK_TRUE ); GL_ProgramEnable(); R_DrawElements( input->numIndexes, input->indexes ); GL_ProgramDisable(); } } // allow skipping out to show just lightmaps during development if ( r_lightmap->integer && ( pStage->bundle[0].lightmap != LIGHTMAP_INDEX_NONE || pStage->bundle[1].lightmap != LIGHTMAP_INDEX_NONE ) ) break; } } /* ** RB_StageIteratorGeneric */ void RB_StageIteratorGeneric( void ) { const shaderCommands_t *input; shader_t *shader; #ifdef USE_PMLIGHT if ( tess.dlightPass ) { ARB_LightingPass(); return; } GL_ProgramDisable(); #endif // USE_PMLIGHT if ( tess.vboIndex ) { RB_StageIteratorVBO(); return; } VBO_UnBind(); input = &tess; shader = input->shader; RB_DeformTessGeometry(); // // set face culling appropriately // GL_Cull( shader->cullType ); // set polygon offset if necessary if ( shader->polygonOffset ) { qglEnable( GL_POLYGON_OFFSET_FILL ); qglPolygonOffset( r_offsetFactor->value, r_offsetUnits->value ); } // // if there is only a single pass then we can enable color // and texture arrays before we compile, otherwise we need // to avoid compiling those arrays since they will change // during multipass rendering // if ( tess.numPasses > 1 ) { setArraysOnce = qfalse; GL_ClientState( 1, CLS_NONE ); GL_ClientState( 0, CLS_NONE ); } else { // FIXME: we can't do that if going to lighting/fog later? setArraysOnce = qtrue; GL_ClientState( 0, CLS_COLOR_ARRAY | CLS_TEXCOORD_ARRAY ); if ( tess.xstages[0] ) { R_ComputeColors( tess.xstages[0] ); qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.svars.colors[0].rgba ); R_ComputeTexCoords( 0, &tess.xstages[0]->bundle[0] ); qglTexCoordPointer( 2, GL_FLOAT, 0, tess.svars.texcoordPtr[0] ); if ( shader->multitextureEnv ) { GL_ClientState( 1, CLS_TEXCOORD_ARRAY ); R_ComputeTexCoords( 1, &tess.xstages[0]->bundle[1] ); qglTexCoordPointer( 2, GL_FLOAT, 0, tess.svars.texcoordPtr[1] ); } else { GL_ClientState( 1, CLS_NONE ); } } } qglVertexPointer( 3, GL_FLOAT, sizeof( input->xyz[0] ), input->xyz ); // padded for SIMD // // lock XYZ // if ( qglLockArraysEXT ) { qglLockArraysEXT( 0, input->numVertexes ); } // // call shader function // RB_IterateStagesGeneric( input ); // // now do any dynamic lighting needed // #ifdef USE_LEGACY_DLIGHTS #ifdef USE_PMLIGHT if ( !r_dlightMode->integer ) #endif if ( tess.dlightBits && tess.shader->sort <= SS_OPAQUE && !(tess.shader->surfaceFlags & (SURF_NODLIGHT | SURF_SKY) ) ) { ProjectDlightTexture(); } #endif // USE_LEGACY_DLIGHTS // // now do fog // if ( tess.fogNum && tess.shader->fogPass ) { RB_FogPass(); } // // unlock arrays // if ( qglUnlockArraysEXT ) { qglUnlockArraysEXT(); } GL_ClientState( 1, CLS_NONE ); // // reset polygon offset // if ( shader->polygonOffset ) { qglDisable( GL_POLYGON_OFFSET_FILL ); } } /* ** RB_EndSurface */ void RB_EndSurface( void ) { const shaderCommands_t *input; input = &tess; if ( input->numIndexes == 0 ) { VBO_UnBind(); return; } if ( input->numIndexes > SHADER_MAX_INDEXES ) { ri.Error( ERR_DROP, "RB_EndSurface() - SHADER_MAX_INDEXES hit" ); } if ( input->numVertexes > SHADER_MAX_VERTEXES ) { ri.Error( ERR_DROP, "RB_EndSurface() - SHADER_MAX_VERTEXES hit" ); } if ( tess.shader == tr.shadowShader ) { RB_ShadowTessEnd(); return; } // for debugging of sort order issues, stop rendering after a given sort value if ( r_debugSort->integer && r_debugSort->integer < tess.shader->sort && !backEnd.doneSurfaces ) { VBO_UnBind(); return; } // // update performance counters // #ifdef USE_PMLIGHT if ( tess.dlightPass ) { backEnd.pc.c_lit_batches++; backEnd.pc.c_lit_vertices += tess.numVertexes; backEnd.pc.c_lit_indices += tess.numIndexes; } else #endif { backEnd.pc.c_shaders++; backEnd.pc.c_vertexes += tess.numVertexes; backEnd.pc.c_indexes += tess.numIndexes; } backEnd.pc.c_totalIndexes += tess.numIndexes * tess.numPasses; // // call off to shader specific tess end function // tess.shader->optimalStageIteratorFunc(); // // draw debugging stuff // if ( !VBO_Active() ) { if ( r_showtris->integer ) { DrawTris( input ); } if ( r_shownormals->integer ) { DrawNormals( input ); } } // clear shader so we can tell we don't have any unclosed surfaces tess.numIndexes = 0; tess.numVertexes = 0; }