mirror of
https://github.com/Q3Rally-Team/q3rally.git
synced 2024-11-29 23:22:55 +00:00
0d5fb492cd
Fix GCC 6 misleading-indentation warning add SECURITY.md OpenGL2: Restore adding fixed ambient light when HDR is enabled Few LCC memory fixes. fix a few potential buffer overwrite in Game VM Enable compiler optimization on all macOS architectures Don't allow qagame module to create "botlib.log" at ANY filesystem location Make FS_BuildOSPath for botlib.log consistent with typical usage tiny readme thing Remove extra plus sign from Huff_Compress() Fix VMs being able to change CVAR_PROTECTED cvars Don't register fs_game cvar everywhere just to get the value Don't let VMs change engine latch cvars immediately Fix fs_game '..' reading outside of home and base path Fix VMs forcing engine latch cvar to update to latched value Revert my recent cvar latch changes Revert "Don't let VMs change engine latch cvars immediately" Partially revert "Fix fs_game '..' reading outside of home and base path" Revert "Fix VMs forcing engine latch cvar to update to latched value" Fix exploit to bypass filename restrictions on Windows Changes to systemd q3a.service Fix Q_vsnprintf for mingw-w64 Fix timelimit causing an infinite map ending loop Fix invalid access to cluster 0 in AAS_AreaRouteToGoalArea() Fix negative frag/capturelimit causing an infinite map end loop OpenGL2: Fix dark lightmap on shader in mpteam6 Make FS_InvalidGameDir() consider subdirectories invalid [qcommon] Remove dead serialization code [qcommon] Make several zone variables and functions static. Fix MAC_OS_X_VERSION_MIN_REQUIRED for macOS 10.10 and later Increase q3_ui .arena filename list buffer size to 4096 bytes OpenGL2: Fix crash when BSP has deluxe maps and vertex lit surfaces Support Unicode characters greater than 0xFF in cl_consoleKeys Fix macOS app bundle with space in name OpenGL1: Use glGenTextures instead of hardcoded values Remove CON_FlushIn function and where STDIN needs flushing, use tcflush POSIX function Update libogg from 1.3.2 to 1.3.3 Rename (already updated) libogg-1.3.2 to libogg-1.3.3 Update libvorbis from 1.3.5 to 1.3.6 * Fix CVE-2018-5146 - out-of-bounds write on codebook decoding. * Fix CVE-2017-14632 - free() on unitialized data * Fix CVE-2017-14633 - out-of-bounds read Rename (already updated) libvorbis-1.3.5 to libvorbis-1.3.6 Update opus from 1.1.4 to 1.2.1 Rename (already updated) opus-1.1.4 to opus-1.2.1 Update opusfile from 0.8 to 0.9 Rename (already updated) opusfile-0.8 to opusfile-0.9 First swing at a CONTRIBUTING.md Allow loading system OpenAL library on macOS again Remove duplicate setting of FREETYPE_CFLAGS in Makefile Fix exploit to reset player by sending wrong serverId Fix "Going to CS_ZOMBIE for [clientname]" developer message Fix MSG_Read*String*() functions not being able to read last byte from message
438 lines
12 KiB
C
438 lines
12 KiB
C
/* Copyright (c) 2007-2008 CSIRO
|
|
Copyright (c) 2007-2009 Xiph.Org Foundation
|
|
Written by Jean-Marc Valin */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "mathops.h"
|
|
#include "cwrs.h"
|
|
#include "vq.h"
|
|
#include "arch.h"
|
|
#include "os_support.h"
|
|
#include "bands.h"
|
|
#include "rate.h"
|
|
#include "pitch.h"
|
|
|
|
#ifndef OVERRIDE_vq_exp_rotation1
|
|
static void exp_rotation1(celt_norm *X, int len, int stride, opus_val16 c, opus_val16 s)
|
|
{
|
|
int i;
|
|
opus_val16 ms;
|
|
celt_norm *Xptr;
|
|
Xptr = X;
|
|
ms = NEG16(s);
|
|
for (i=0;i<len-stride;i++)
|
|
{
|
|
celt_norm x1, x2;
|
|
x1 = Xptr[0];
|
|
x2 = Xptr[stride];
|
|
Xptr[stride] = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x2), s, x1), 15));
|
|
*Xptr++ = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x1), ms, x2), 15));
|
|
}
|
|
Xptr = &X[len-2*stride-1];
|
|
for (i=len-2*stride-1;i>=0;i--)
|
|
{
|
|
celt_norm x1, x2;
|
|
x1 = Xptr[0];
|
|
x2 = Xptr[stride];
|
|
Xptr[stride] = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x2), s, x1), 15));
|
|
*Xptr-- = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x1), ms, x2), 15));
|
|
}
|
|
}
|
|
#endif /* OVERRIDE_vq_exp_rotation1 */
|
|
|
|
void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread)
|
|
{
|
|
static const int SPREAD_FACTOR[3]={15,10,5};
|
|
int i;
|
|
opus_val16 c, s;
|
|
opus_val16 gain, theta;
|
|
int stride2=0;
|
|
int factor;
|
|
|
|
if (2*K>=len || spread==SPREAD_NONE)
|
|
return;
|
|
factor = SPREAD_FACTOR[spread-1];
|
|
|
|
gain = celt_div((opus_val32)MULT16_16(Q15_ONE,len),(opus_val32)(len+factor*K));
|
|
theta = HALF16(MULT16_16_Q15(gain,gain));
|
|
|
|
c = celt_cos_norm(EXTEND32(theta));
|
|
s = celt_cos_norm(EXTEND32(SUB16(Q15ONE,theta))); /* sin(theta) */
|
|
|
|
if (len>=8*stride)
|
|
{
|
|
stride2 = 1;
|
|
/* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
|
|
It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
|
|
while ((stride2*stride2+stride2)*stride + (stride>>2) < len)
|
|
stride2++;
|
|
}
|
|
/*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
|
|
extract_collapse_mask().*/
|
|
len = celt_udiv(len, stride);
|
|
for (i=0;i<stride;i++)
|
|
{
|
|
if (dir < 0)
|
|
{
|
|
if (stride2)
|
|
exp_rotation1(X+i*len, len, stride2, s, c);
|
|
exp_rotation1(X+i*len, len, 1, c, s);
|
|
} else {
|
|
exp_rotation1(X+i*len, len, 1, c, -s);
|
|
if (stride2)
|
|
exp_rotation1(X+i*len, len, stride2, s, -c);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Takes the pitch vector and the decoded residual vector, computes the gain
|
|
that will give ||p+g*y||=1 and mixes the residual with the pitch. */
|
|
static void normalise_residual(int * OPUS_RESTRICT iy, celt_norm * OPUS_RESTRICT X,
|
|
int N, opus_val32 Ryy, opus_val16 gain)
|
|
{
|
|
int i;
|
|
#ifdef FIXED_POINT
|
|
int k;
|
|
#endif
|
|
opus_val32 t;
|
|
opus_val16 g;
|
|
|
|
#ifdef FIXED_POINT
|
|
k = celt_ilog2(Ryy)>>1;
|
|
#endif
|
|
t = VSHR32(Ryy, 2*(k-7));
|
|
g = MULT16_16_P15(celt_rsqrt_norm(t),gain);
|
|
|
|
i=0;
|
|
do
|
|
X[i] = EXTRACT16(PSHR32(MULT16_16(g, iy[i]), k+1));
|
|
while (++i < N);
|
|
}
|
|
|
|
static unsigned extract_collapse_mask(int *iy, int N, int B)
|
|
{
|
|
unsigned collapse_mask;
|
|
int N0;
|
|
int i;
|
|
if (B<=1)
|
|
return 1;
|
|
/*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
|
|
exp_rotation().*/
|
|
N0 = celt_udiv(N, B);
|
|
collapse_mask = 0;
|
|
i=0; do {
|
|
int j;
|
|
unsigned tmp=0;
|
|
j=0; do {
|
|
tmp |= iy[i*N0+j];
|
|
} while (++j<N0);
|
|
collapse_mask |= (tmp!=0)<<i;
|
|
} while (++i<B);
|
|
return collapse_mask;
|
|
}
|
|
|
|
opus_val16 op_pvq_search_c(celt_norm *X, int *iy, int K, int N, int arch)
|
|
{
|
|
VARDECL(celt_norm, y);
|
|
VARDECL(int, signx);
|
|
int i, j;
|
|
int pulsesLeft;
|
|
opus_val32 sum;
|
|
opus_val32 xy;
|
|
opus_val16 yy;
|
|
SAVE_STACK;
|
|
|
|
(void)arch;
|
|
ALLOC(y, N, celt_norm);
|
|
ALLOC(signx, N, int);
|
|
|
|
/* Get rid of the sign */
|
|
sum = 0;
|
|
j=0; do {
|
|
signx[j] = X[j]<0;
|
|
/* OPT: Make sure the compiler doesn't use a branch on ABS16(). */
|
|
X[j] = ABS16(X[j]);
|
|
iy[j] = 0;
|
|
y[j] = 0;
|
|
} while (++j<N);
|
|
|
|
xy = yy = 0;
|
|
|
|
pulsesLeft = K;
|
|
|
|
/* Do a pre-search by projecting on the pyramid */
|
|
if (K > (N>>1))
|
|
{
|
|
opus_val16 rcp;
|
|
j=0; do {
|
|
sum += X[j];
|
|
} while (++j<N);
|
|
|
|
/* If X is too small, just replace it with a pulse at 0 */
|
|
#ifdef FIXED_POINT
|
|
if (sum <= K)
|
|
#else
|
|
/* Prevents infinities and NaNs from causing too many pulses
|
|
to be allocated. 64 is an approximation of infinity here. */
|
|
if (!(sum > EPSILON && sum < 64))
|
|
#endif
|
|
{
|
|
X[0] = QCONST16(1.f,14);
|
|
j=1; do
|
|
X[j]=0;
|
|
while (++j<N);
|
|
sum = QCONST16(1.f,14);
|
|
}
|
|
#ifdef FIXED_POINT
|
|
rcp = EXTRACT16(MULT16_32_Q16(K, celt_rcp(sum)));
|
|
#else
|
|
/* Using K+e with e < 1 guarantees we cannot get more than K pulses. */
|
|
rcp = EXTRACT16(MULT16_32_Q16(K+0.8f, celt_rcp(sum)));
|
|
#endif
|
|
j=0; do {
|
|
#ifdef FIXED_POINT
|
|
/* It's really important to round *towards zero* here */
|
|
iy[j] = MULT16_16_Q15(X[j],rcp);
|
|
#else
|
|
iy[j] = (int)floor(rcp*X[j]);
|
|
#endif
|
|
y[j] = (celt_norm)iy[j];
|
|
yy = MAC16_16(yy, y[j],y[j]);
|
|
xy = MAC16_16(xy, X[j],y[j]);
|
|
y[j] *= 2;
|
|
pulsesLeft -= iy[j];
|
|
} while (++j<N);
|
|
}
|
|
celt_assert2(pulsesLeft>=0, "Allocated too many pulses in the quick pass");
|
|
|
|
/* This should never happen, but just in case it does (e.g. on silence)
|
|
we fill the first bin with pulses. */
|
|
#ifdef FIXED_POINT_DEBUG
|
|
celt_assert2(pulsesLeft<=N+3, "Not enough pulses in the quick pass");
|
|
#endif
|
|
if (pulsesLeft > N+3)
|
|
{
|
|
opus_val16 tmp = (opus_val16)pulsesLeft;
|
|
yy = MAC16_16(yy, tmp, tmp);
|
|
yy = MAC16_16(yy, tmp, y[0]);
|
|
iy[0] += pulsesLeft;
|
|
pulsesLeft=0;
|
|
}
|
|
|
|
for (i=0;i<pulsesLeft;i++)
|
|
{
|
|
opus_val16 Rxy, Ryy;
|
|
int best_id;
|
|
opus_val32 best_num;
|
|
opus_val16 best_den;
|
|
#ifdef FIXED_POINT
|
|
int rshift;
|
|
#endif
|
|
#ifdef FIXED_POINT
|
|
rshift = 1+celt_ilog2(K-pulsesLeft+i+1);
|
|
#endif
|
|
best_id = 0;
|
|
/* The squared magnitude term gets added anyway, so we might as well
|
|
add it outside the loop */
|
|
yy = ADD16(yy, 1);
|
|
|
|
/* Calculations for position 0 are out of the loop, in part to reduce
|
|
mispredicted branches (since the if condition is usually false)
|
|
in the loop. */
|
|
/* Temporary sums of the new pulse(s) */
|
|
Rxy = EXTRACT16(SHR32(ADD32(xy, EXTEND32(X[0])),rshift));
|
|
/* We're multiplying y[j] by two so we don't have to do it here */
|
|
Ryy = ADD16(yy, y[0]);
|
|
|
|
/* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that
|
|
Rxy is positive because the sign is pre-computed) */
|
|
Rxy = MULT16_16_Q15(Rxy,Rxy);
|
|
best_den = Ryy;
|
|
best_num = Rxy;
|
|
j=1;
|
|
do {
|
|
/* Temporary sums of the new pulse(s) */
|
|
Rxy = EXTRACT16(SHR32(ADD32(xy, EXTEND32(X[j])),rshift));
|
|
/* We're multiplying y[j] by two so we don't have to do it here */
|
|
Ryy = ADD16(yy, y[j]);
|
|
|
|
/* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that
|
|
Rxy is positive because the sign is pre-computed) */
|
|
Rxy = MULT16_16_Q15(Rxy,Rxy);
|
|
/* The idea is to check for num/den >= best_num/best_den, but that way
|
|
we can do it without any division */
|
|
/* OPT: It's not clear whether a cmov is faster than a branch here
|
|
since the condition is more often false than true and using
|
|
a cmov introduces data dependencies across iterations. The optimal
|
|
choice may be architecture-dependent. */
|
|
if (opus_unlikely(MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num)))
|
|
{
|
|
best_den = Ryy;
|
|
best_num = Rxy;
|
|
best_id = j;
|
|
}
|
|
} while (++j<N);
|
|
|
|
/* Updating the sums of the new pulse(s) */
|
|
xy = ADD32(xy, EXTEND32(X[best_id]));
|
|
/* We're multiplying y[j] by two so we don't have to do it here */
|
|
yy = ADD16(yy, y[best_id]);
|
|
|
|
/* Only now that we've made the final choice, update y/iy */
|
|
/* Multiplying y[j] by 2 so we don't have to do it everywhere else */
|
|
y[best_id] += 2;
|
|
iy[best_id]++;
|
|
}
|
|
|
|
/* Put the original sign back */
|
|
j=0;
|
|
do {
|
|
/*iy[j] = signx[j] ? -iy[j] : iy[j];*/
|
|
/* OPT: The is more likely to be compiled without a branch than the code above
|
|
but has the same performance otherwise. */
|
|
iy[j] = (iy[j]^-signx[j]) + signx[j];
|
|
} while (++j<N);
|
|
RESTORE_STACK;
|
|
return yy;
|
|
}
|
|
|
|
unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc,
|
|
opus_val16 gain, int resynth, int arch)
|
|
{
|
|
VARDECL(int, iy);
|
|
opus_val16 yy;
|
|
unsigned collapse_mask;
|
|
SAVE_STACK;
|
|
|
|
celt_assert2(K>0, "alg_quant() needs at least one pulse");
|
|
celt_assert2(N>1, "alg_quant() needs at least two dimensions");
|
|
|
|
/* Covers vectorization by up to 4. */
|
|
ALLOC(iy, N+3, int);
|
|
|
|
exp_rotation(X, N, 1, B, K, spread);
|
|
|
|
yy = op_pvq_search(X, iy, K, N, arch);
|
|
|
|
encode_pulses(iy, N, K, enc);
|
|
|
|
if (resynth)
|
|
{
|
|
normalise_residual(iy, X, N, yy, gain);
|
|
exp_rotation(X, N, -1, B, K, spread);
|
|
}
|
|
|
|
collapse_mask = extract_collapse_mask(iy, N, B);
|
|
RESTORE_STACK;
|
|
return collapse_mask;
|
|
}
|
|
|
|
/** Decode pulse vector and combine the result with the pitch vector to produce
|
|
the final normalised signal in the current band. */
|
|
unsigned alg_unquant(celt_norm *X, int N, int K, int spread, int B,
|
|
ec_dec *dec, opus_val16 gain)
|
|
{
|
|
opus_val32 Ryy;
|
|
unsigned collapse_mask;
|
|
VARDECL(int, iy);
|
|
SAVE_STACK;
|
|
|
|
celt_assert2(K>0, "alg_unquant() needs at least one pulse");
|
|
celt_assert2(N>1, "alg_unquant() needs at least two dimensions");
|
|
ALLOC(iy, N, int);
|
|
Ryy = decode_pulses(iy, N, K, dec);
|
|
normalise_residual(iy, X, N, Ryy, gain);
|
|
exp_rotation(X, N, -1, B, K, spread);
|
|
collapse_mask = extract_collapse_mask(iy, N, B);
|
|
RESTORE_STACK;
|
|
return collapse_mask;
|
|
}
|
|
|
|
#ifndef OVERRIDE_renormalise_vector
|
|
void renormalise_vector(celt_norm *X, int N, opus_val16 gain, int arch)
|
|
{
|
|
int i;
|
|
#ifdef FIXED_POINT
|
|
int k;
|
|
#endif
|
|
opus_val32 E;
|
|
opus_val16 g;
|
|
opus_val32 t;
|
|
celt_norm *xptr;
|
|
E = EPSILON + celt_inner_prod(X, X, N, arch);
|
|
#ifdef FIXED_POINT
|
|
k = celt_ilog2(E)>>1;
|
|
#endif
|
|
t = VSHR32(E, 2*(k-7));
|
|
g = MULT16_16_P15(celt_rsqrt_norm(t),gain);
|
|
|
|
xptr = X;
|
|
for (i=0;i<N;i++)
|
|
{
|
|
*xptr = EXTRACT16(PSHR32(MULT16_16(g, *xptr), k+1));
|
|
xptr++;
|
|
}
|
|
/*return celt_sqrt(E);*/
|
|
}
|
|
#endif /* OVERRIDE_renormalise_vector */
|
|
|
|
int stereo_itheta(const celt_norm *X, const celt_norm *Y, int stereo, int N, int arch)
|
|
{
|
|
int i;
|
|
int itheta;
|
|
opus_val16 mid, side;
|
|
opus_val32 Emid, Eside;
|
|
|
|
Emid = Eside = EPSILON;
|
|
if (stereo)
|
|
{
|
|
for (i=0;i<N;i++)
|
|
{
|
|
celt_norm m, s;
|
|
m = ADD16(SHR16(X[i],1),SHR16(Y[i],1));
|
|
s = SUB16(SHR16(X[i],1),SHR16(Y[i],1));
|
|
Emid = MAC16_16(Emid, m, m);
|
|
Eside = MAC16_16(Eside, s, s);
|
|
}
|
|
} else {
|
|
Emid += celt_inner_prod(X, X, N, arch);
|
|
Eside += celt_inner_prod(Y, Y, N, arch);
|
|
}
|
|
mid = celt_sqrt(Emid);
|
|
side = celt_sqrt(Eside);
|
|
#ifdef FIXED_POINT
|
|
/* 0.63662 = 2/pi */
|
|
itheta = MULT16_16_Q15(QCONST16(0.63662f,15),celt_atan2p(side, mid));
|
|
#else
|
|
itheta = (int)floor(.5f+16384*0.63662f*fast_atan2f(side,mid));
|
|
#endif
|
|
|
|
return itheta;
|
|
}
|