ioquake3 resync to revision 3534 from 3522.

Make Team Arena prevTeamMember command loop around player list
Prevent Q_IsColorString from asserting on negative ascii chars
Add .gitignore for misc/msvc12
OpenGL2: r_cubemapping 2 for box cubemap parallax.
Add r_parallaxMapShadows.
Fix PRINT_ERROR print level missing from CL_RefPrintf
OpenGL2: Fix compiling lightall GLSL on OpenGL 2.1
Add current (custom) resolution to Q3 UI video mode list
Override video mode list in Team Arena UI
OpenGL2: Disable r_cubeMapping if not OpenGL 3.0+
Fix rendering IQM models between model frames
Fix warnings that IQM blendWeights may not be initialized
This commit is contained in:
zturtleman 2019-05-21 02:42:43 +00:00
parent 7deab10e2c
commit 83cd2f1ae9
17 changed files with 643 additions and 195 deletions

View file

@ -44,7 +44,7 @@ ifndef BUILD_DEFINES
endif
# ioquake3 svn version that this is based on
IOQ3_REVISION = 3522
IOQ3_REVISION = 3534
#############################################################################
#

View file

@ -151,7 +151,7 @@ void CG_SelectNextPlayer( void ) {
void CG_SelectPrevPlayer( void ) {
CG_CheckOrderPending();
if (cg_currentSelectedPlayer.integer > 0 && cg_currentSelectedPlayer.integer < numSortedTeamPlayers) {
if (cg_currentSelectedPlayer.integer > 0 && cg_currentSelectedPlayer.integer <= numSortedTeamPlayers) {
cg_currentSelectedPlayer.integer--;
} else {
cg_currentSelectedPlayer.integer = numSortedTeamPlayers;

View file

@ -3088,8 +3088,10 @@ static __attribute__ ((format (printf, 2, 3))) void QDECL CL_RefPrintf( int prin
Com_Printf ("%s", msg);
} else if ( print_level == PRINT_WARNING ) {
Com_Printf (S_COLOR_YELLOW "%s", msg); // yellow
} else if ( print_level == PRINT_ERROR ) {
Com_Printf (S_COLOR_RED "%s", msg); // red
} else if ( print_level == PRINT_DEVELOPER ) {
Com_DPrintf (S_COLOR_RED "%s", msg); // red
Com_DPrintf (S_COLOR_RED "%s", msg); // red - developer only
}
}

View file

@ -430,6 +430,7 @@ static int resToRatio[ MAX_RESOLUTIONS ];
static char resbuf[ MAX_STRING_CHARS ];
static const char* detectedResolutions[ MAX_RESOLUTIONS ];
static char currentResolution[ 20 ];
static const char** resolutions = builtinResolutions;
static qboolean resolutionsDetected = qfalse;
@ -559,7 +560,7 @@ GraphicsOptions_GetResolutions
*/
static void GraphicsOptions_GetResolutions( void )
{
Q_strncpyz(resbuf, UI_Cvar_VariableString("r_availableModes"), sizeof(resbuf));
trap_Cvar_VariableStringBuffer("r_availableModes", resbuf, sizeof(resbuf));
if(*resbuf)
{
char* s = resbuf;
@ -573,11 +574,26 @@ static void GraphicsOptions_GetResolutions( void )
}
detectedResolutions[ i ] = NULL;
if( i > 0 )
// add custom resolution if not in mode list
if ( i < ARRAY_LEN(detectedResolutions)-1 )
{
resolutions = detectedResolutions;
resolutionsDetected = qtrue;
Com_sprintf( currentResolution, sizeof ( currentResolution ), "%dx%d", uis.glconfig.vidWidth, uis.glconfig.vidHeight );
for( i = 0; detectedResolutions[ i ]; i++ )
{
if ( strcmp( detectedResolutions[ i ], currentResolution ) == 0 )
break;
}
if ( detectedResolutions[ i ] == NULL )
{
detectedResolutions[ i++ ] = currentResolution;
detectedResolutions[ i ] = NULL;
}
}
resolutions = detectedResolutions;
resolutionsDetected = qtrue;
}
}

View file

@ -24,6 +24,28 @@ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
// q_shared.c -- stateless support routines that are included in each code dll
#include "q_shared.h"
// ^[0-9a-zA-Z]
qboolean Q_IsColorString(const char *p) {
if (!p)
return qfalse;
if (p[0] != Q_COLOR_ESCAPE)
return qfalse;
if (p[1] == 0)
return qfalse;
// isalnum expects a signed integer in the range -1 (EOF) to 255, or it might assert on undefined behaviour
// a dereferenced char pointer has the range -128 to 127, so we just need to rangecheck the negative part
if (p[1] < 0)
return qfalse;
if (isalnum(p[1]) == 0)
return qfalse;
return qtrue;
}
float Com_Clamp( float min, float max, float value ) {
if ( value < min ) {
return min;

View file

@ -387,6 +387,8 @@ typedef vec_t vec3_t[3];
typedef vec_t vec4_t[4];
typedef vec_t vec5_t[5];
typedef vec_t quat_t[4];
typedef int fixed4_t;
typedef int fixed8_t;
typedef int fixed16_t;
@ -460,7 +462,7 @@ extern vec4_t colorMdGrey;
extern vec4_t colorDkGrey;
#define Q_COLOR_ESCAPE '^'
#define Q_IsColorString(p) ((p) && *(p) == Q_COLOR_ESCAPE && *((p)+1) && isalnum(*((p)+1))) // ^[0-9a-zA-Z]
qboolean Q_IsColorString(const char *p); // ^[0-9a-zA-Z]
#define COLOR_BLACK '0'
#define COLOR_RED '1'
@ -633,6 +635,8 @@ typedef struct {
#define Byte4Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
#define QuatCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
#define SnapVector(v) {v[0]=((int)(v[0]));v[1]=((int)(v[1]));v[2]=((int)(v[2]));}
// just in case you don't want to use the macros
vec_t _DotProduct( const vec3_t v1, const vec3_t v2 );

View file

@ -589,6 +589,12 @@ typedef struct {
drawVert_t *verts;
} srfTriangles_t;
typedef struct {
vec3_t translate;
quat_t rotate;
vec3_t scale;
} iqmTransform_t;
// inter-quake-model
typedef struct {
int num_vertexes;
@ -623,8 +629,9 @@ typedef struct {
char *jointNames;
int *jointParents;
float *jointMats;
float *poseMats;
float *bindJoints; // [num_joints * 12]
float *invBindJoints; // [num_joints * 12]
iqmTransform_t *poses; // [num_frames * num_poses]
float *bounds;
} iqmData_t;

View file

@ -2,6 +2,7 @@
===========================================================================
Copyright (C) 2011 Thilo Schulz <thilo@tjps.eu>
Copyright (C) 2011 Matthias Bentrup <matthias.bentrup@googlemail.com>
Copyright (C) 2011-2019 Zack Middleton <zturtleman@gmail.com>
This file is part of Quake III Arena source code.
@ -44,7 +45,7 @@ static qboolean IQM_CheckRange( iqmHeader_t *header, int offset,
}
// "multiply" 3x4 matrices, these are assumed to be the top 3 rows
// of a 4x4 matrix with the last row = (0 0 0 1)
static void Matrix34Multiply( float *a, float *b, float *out ) {
static void Matrix34Multiply( const float *a, const float *b, float *out ) {
out[ 0] = a[0] * b[0] + a[1] * b[4] + a[ 2] * b[ 8];
out[ 1] = a[0] * b[1] + a[1] * b[5] + a[ 2] * b[ 9];
out[ 2] = a[0] * b[2] + a[1] * b[6] + a[ 2] * b[10];
@ -58,23 +59,7 @@ static void Matrix34Multiply( float *a, float *b, float *out ) {
out[10] = a[8] * b[2] + a[9] * b[6] + a[10] * b[10];
out[11] = a[8] * b[3] + a[9] * b[7] + a[10] * b[11] + a[11];
}
static void InterpolateMatrix( float *a, float *b, float lerp, float *mat ) {
float unLerp = 1.0f - lerp;
mat[ 0] = a[ 0] * unLerp + b[ 0] * lerp;
mat[ 1] = a[ 1] * unLerp + b[ 1] * lerp;
mat[ 2] = a[ 2] * unLerp + b[ 2] * lerp;
mat[ 3] = a[ 3] * unLerp + b[ 3] * lerp;
mat[ 4] = a[ 4] * unLerp + b[ 4] * lerp;
mat[ 5] = a[ 5] * unLerp + b[ 5] * lerp;
mat[ 6] = a[ 6] * unLerp + b[ 6] * lerp;
mat[ 7] = a[ 7] * unLerp + b[ 7] * lerp;
mat[ 8] = a[ 8] * unLerp + b[ 8] * lerp;
mat[ 9] = a[ 9] * unLerp + b[ 9] * lerp;
mat[10] = a[10] * unLerp + b[10] * lerp;
mat[11] = a[11] * unLerp + b[11] * lerp;
}
static void JointToMatrix( vec4_t rot, vec3_t scale, vec3_t trans,
static void JointToMatrix( const quat_t rot, const vec3_t scale, const vec3_t trans,
float *mat ) {
float xx = 2.0f * rot[0] * rot[0];
float yy = 2.0f * rot[1] * rot[1];
@ -99,8 +84,7 @@ static void JointToMatrix( vec4_t rot, vec3_t scale, vec3_t trans,
mat[10] = scale[2] * (1.0f - (xx + yy));
mat[11] = trans[2];
}
static void Matrix34Invert( float *inMat, float *outMat )
{
static void Matrix34Invert( const float *inMat, float *outMat ) {
vec3_t trans;
float invSqrLen, *v;
@ -120,6 +104,61 @@ static void Matrix34Invert( float *inMat, float *outMat )
outMat[ 7] = -DotProduct(outMat + 4, trans);
outMat[11] = -DotProduct(outMat + 8, trans);
}
static void QuatSlerp(const quat_t from, const quat_t _to, float fraction, quat_t out) {
float angle, cosAngle, sinAngle, backlerp, lerp;
quat_t to;
// cos() of angle
cosAngle = from[0] * _to[0] + from[1] * _to[1] + from[2] * _to[2] + from[3] * _to[3];
// negative handling is needed for taking shortest path (required for model joints)
if ( cosAngle < 0.0f ) {
cosAngle = -cosAngle;
to[0] = - _to[0];
to[1] = - _to[1];
to[2] = - _to[2];
to[3] = - _to[3];
} else {
QuatCopy( _to, to );
}
if ( cosAngle < 0.999999f ) {
// spherical lerp (slerp)
angle = acosf( cosAngle );
sinAngle = sinf( angle );
backlerp = sinf( ( 1.0f - fraction ) * angle ) / sinAngle;
lerp = sinf( fraction * angle ) / sinAngle;
} else {
// linear lerp
backlerp = 1.0f - fraction;
lerp = fraction;
}
out[0] = from[0] * backlerp + to[0] * lerp;
out[1] = from[1] * backlerp + to[1] * lerp;
out[2] = from[2] * backlerp + to[2] * lerp;
out[3] = from[3] * backlerp + to[3] * lerp;
}
static vec_t QuatNormalize2( const quat_t v, quat_t out) {
float length, ilength;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2] + v[3]*v[3];
if (length) {
/* writing it this way allows gcc to recognize that rsqrt can be used */
ilength = 1/(float)sqrt (length);
/* sqrt(length) = length * (1 / sqrt(length)) */
length *= ilength;
out[0] = v[0]*ilength;
out[1] = v[1]*ilength;
out[2] = v[2]*ilength;
out[3] = v[3]*ilength;
} else {
out[0] = out[1] = out[2] = out[3] = 0;
}
return length;
}
/*
=================
@ -139,7 +178,7 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
unsigned short *framedata;
char *str;
int i, j, k;
float jointInvMats[IQM_MAX_JOINTS * 12] = {0.0f};
iqmTransform_t *transform;
float *mat, *matInv;
size_t size, joint_names;
byte *dataPtr;
@ -559,10 +598,11 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
if( header->num_joints ) {
size += joint_names; // joint names
size += header->num_joints * sizeof(int); // joint parents
size += header->num_joints * 12 * sizeof( float ); // joint mats
size += header->num_joints * 12 * sizeof(float); // bind joint matricies
size += header->num_joints * 12 * sizeof(float); // inverse bind joint matricies
}
if( header->num_poses ) {
size += header->num_poses * header->num_frames * 12 * sizeof( float ); // pose mats
size += header->num_poses * header->num_frames * sizeof(iqmTransform_t); // pose transforms
}
if( header->ofs_bounds ) {
size += header->num_frames * 6 * sizeof(float); // model bounds
@ -633,12 +673,15 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
iqmData->jointParents = (int*)dataPtr;
dataPtr += header->num_joints * sizeof(int); // joint parents
iqmData->jointMats = (float*)dataPtr;
dataPtr += header->num_joints * 12 * sizeof( float ); // joint mats
iqmData->bindJoints = (float*)dataPtr;
dataPtr += header->num_joints * 12 * sizeof(float); // bind joint matricies
iqmData->invBindJoints = (float*)dataPtr;
dataPtr += header->num_joints * 12 * sizeof(float); // inverse bind joint matricies
}
if( header->num_poses ) {
iqmData->poseMats = (float*)dataPtr;
dataPtr += header->num_poses * header->num_frames * 12 * sizeof( float ); // pose mats
iqmData->poses = (iqmTransform_t*)dataPtr;
dataPtr += header->num_poses * header->num_frames * sizeof(iqmTransform_t); // pose transforms
}
if( header->ofs_bounds ) {
iqmData->bounds = (float*)dataPtr;
@ -804,22 +847,23 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
iqmData->jointParents[i] = joint->parent;
}
// calculate joint matrices and their inverses
// joint inverses are needed only until the pose matrices are calculated
mat = iqmData->jointMats;
matInv = jointInvMats;
// calculate bind joint matrices and their inverses
mat = iqmData->bindJoints;
matInv = iqmData->invBindJoints;
joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
for( i = 0; i < header->num_joints; i++, joint++ ) {
float baseFrame[12], invBaseFrame[12];
QuatNormalize2( joint->rotate, joint->rotate );
JointToMatrix( joint->rotate, joint->scale, joint->translate, baseFrame );
Matrix34Invert( baseFrame, invBaseFrame );
if ( joint->parent >= 0 )
{
Matrix34Multiply( iqmData->jointMats + 12 * joint->parent, baseFrame, mat );
Matrix34Multiply( iqmData->bindJoints + 12 * joint->parent, baseFrame, mat );
mat += 12;
Matrix34Multiply( invBaseFrame, jointInvMats + 12 * joint->parent, matInv );
Matrix34Multiply( invBaseFrame, iqmData->invBindJoints + 12 * joint->parent, matInv );
matInv += 12;
}
else
@ -834,16 +878,15 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
if( header->num_poses )
{
// calculate pose matrices
// calculate pose transforms
transform = iqmData->poses;
framedata = (unsigned short *)((byte *)header + header->ofs_frames);
mat = iqmData->poseMats;
for( i = 0; i < header->num_frames; i++ ) {
pose = (iqmPose_t *)((byte *)header + header->ofs_poses);
for( j = 0; j < header->num_poses; j++, pose++ ) {
for( j = 0; j < header->num_poses; j++, pose++, transform++ ) {
vec3_t translate;
vec4_t rotate;
quat_t rotate;
vec3_t scale;
float mat1[12], mat2[12];
translate[0] = pose->channeloffset[0];
if( pose->mask & 0x001)
@ -878,18 +921,9 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
if( pose->mask & 0x200)
scale[2] += *framedata++ * pose->channelscale[9];
// construct transformation matrix
JointToMatrix( rotate, scale, translate, mat1 );
if( pose->parent >= 0 ) {
Matrix34Multiply( iqmData->jointMats + 12 * pose->parent,
mat1, mat2 );
} else {
Com_Memcpy( mat2, mat1, sizeof(mat1) );
}
Matrix34Multiply( mat2, jointInvMats + 12 * j, mat );
mat += 12;
VectorCopy( translate, transform->translate );
QuatNormalize2( rotate, transform->rotate );
VectorCopy( scale, transform->scale );
}
}
}
@ -1128,37 +1162,59 @@ void R_AddIQMSurfaces( trRefEntity_t *ent ) {
static void ComputePoseMats( iqmData_t *data, int frame, int oldframe,
float backlerp, float *mat ) {
float *mat1, *mat2;
int *joint = data->jointParents;
int i;
float backlerp, float *poseMats ) {
iqmTransform_t relativeJoints[IQM_MAX_JOINTS];
iqmTransform_t *relativeJoint;
const iqmTransform_t *pose;
const iqmTransform_t *oldpose;
const int *jointParent;
const float *invBindMat;
float *poseMat, lerp;
int i;
relativeJoint = relativeJoints;
// copy or lerp animation frame pose
if ( oldframe == frame ) {
mat1 = data->poseMats + 12 * data->num_poses * frame;
for( i = 0; i < data->num_poses; i++, joint++ ) {
if( *joint >= 0 ) {
Matrix34Multiply( mat + 12 * *joint,
mat1 + 12*i, mat + 12*i );
} else {
Com_Memcpy( mat + 12*i, mat1 + 12*i, 12 * sizeof(float) );
}
pose = &data->poses[frame * data->num_poses];
for ( i = 0; i < data->num_poses; i++, pose++, relativeJoint++ ) {
VectorCopy( pose->translate, relativeJoint->translate );
QuatCopy( pose->rotate, relativeJoint->rotate );
VectorCopy( pose->scale, relativeJoint->scale );
}
} else {
mat1 = data->poseMats + 12 * data->num_poses * frame;
mat2 = data->poseMats + 12 * data->num_poses * oldframe;
for( i = 0; i < data->num_poses; i++, joint++ ) {
if( *joint >= 0 ) {
float tmpMat[12];
InterpolateMatrix( mat1 + 12*i, mat2 + 12*i,
backlerp, tmpMat );
Matrix34Multiply( mat + 12 * *joint,
tmpMat, mat + 12*i );
} else {
InterpolateMatrix( mat1 + 12*i, mat2 + 12*i,
backlerp, mat + 12*i );
}
} else {
lerp = 1.0f - backlerp;
pose = &data->poses[frame * data->num_poses];
oldpose = &data->poses[oldframe * data->num_poses];
for ( i = 0; i < data->num_poses; i++, oldpose++, pose++, relativeJoint++ ) {
relativeJoint->translate[0] = oldpose->translate[0] * backlerp + pose->translate[0] * lerp;
relativeJoint->translate[1] = oldpose->translate[1] * backlerp + pose->translate[1] * lerp;
relativeJoint->translate[2] = oldpose->translate[2] * backlerp + pose->translate[2] * lerp;
relativeJoint->scale[0] = oldpose->scale[0] * backlerp + pose->scale[0] * lerp;
relativeJoint->scale[1] = oldpose->scale[1] * backlerp + pose->scale[1] * lerp;
relativeJoint->scale[2] = oldpose->scale[2] * backlerp + pose->scale[2] * lerp;
QuatSlerp( oldpose->rotate, pose->rotate, lerp, relativeJoint->rotate );
}
}
// multiply by inverse of bind pose and parent 'pose mat' (bind pose transform matrix)
relativeJoint = relativeJoints;
jointParent = data->jointParents;
invBindMat = data->invBindJoints;
poseMat = poseMats;
for ( i = 0; i < data->num_poses; i++, relativeJoint++, jointParent++, invBindMat += 12, poseMat += 12 ) {
float mat1[12], mat2[12];
JointToMatrix( relativeJoint->rotate, relativeJoint->scale, relativeJoint->translate, mat1 );
if ( *jointParent >= 0 ) {
Matrix34Multiply( &data->bindJoints[(*jointParent)*12], mat1, mat2 );
Matrix34Multiply( mat2, invBindMat, mat1 );
Matrix34Multiply( &poseMats[(*jointParent)*12], mat1, poseMat );
} else {
Matrix34Multiply( mat1, invBindMat, poseMat );
}
}
}
@ -1169,7 +1225,7 @@ static void ComputeJointMats( iqmData_t *data, int frame, int oldframe,
int i;
if ( data->num_poses == 0 ) {
Com_Memcpy( mat, data->jointMats, data->num_joints * 12 * sizeof(float) );
Com_Memcpy( mat, data->bindJoints, data->num_joints * 12 * sizeof(float) );
return;
}
@ -1181,7 +1237,7 @@ static void ComputeJointMats( iqmData_t *data, int frame, int oldframe,
Com_Memcpy(outmat, mat1, sizeof(outmat));
Matrix34Multiply( outmat, data->jointMats + 12*i, mat1 );
Matrix34Multiply( outmat, data->bindJoints + 12*i, mat1 );
}
}
@ -1246,19 +1302,20 @@ void RB_IQMSurfaceAnim( surfaceType_t *surface ) {
float *nrmMat = &influenceNrmMat[9*i];
int j;
float blendWeights[4];
int numWeights;
for ( numWeights = 0; numWeights < 4; numWeights++ ) {
if ( data->blendWeightsType == IQM_FLOAT )
blendWeights[numWeights] = data->influenceBlendWeights.f[4*influence + numWeights];
else
blendWeights[numWeights] = (float)data->influenceBlendWeights.b[4*influence + numWeights] / 255.0f;
if ( blendWeights[numWeights] <= 0.0f )
break;
if ( data->blendWeightsType == IQM_FLOAT ) {
blendWeights[0] = data->influenceBlendWeights.f[4*influence + 0];
blendWeights[1] = data->influenceBlendWeights.f[4*influence + 1];
blendWeights[2] = data->influenceBlendWeights.f[4*influence + 2];
blendWeights[3] = data->influenceBlendWeights.f[4*influence + 3];
} else {
blendWeights[0] = (float)data->influenceBlendWeights.b[4*influence + 0] / 255.0f;
blendWeights[1] = (float)data->influenceBlendWeights.b[4*influence + 1] / 255.0f;
blendWeights[2] = (float)data->influenceBlendWeights.b[4*influence + 2] / 255.0f;
blendWeights[3] = (float)data->influenceBlendWeights.b[4*influence + 3] / 255.0f;
}
if ( numWeights == 0 ) {
if ( blendWeights[0] <= 0.0f ) {
// no blend joint, use identity matrix.
vtxMat[0] = identityMatrix[0];
vtxMat[1] = identityMatrix[1];
@ -1288,7 +1345,11 @@ void RB_IQMSurfaceAnim( surfaceType_t *surface ) {
vtxMat[10] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 10];
vtxMat[11] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 11];
for( j = 1; j < numWeights; j++ ) {
for( j = 1; j < 3; j++ ) {
if ( blendWeights[j] <= 0.0f ) {
break;
}
vtxMat[0] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 0];
vtxMat[1] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 1];
vtxMat[2] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 2];

View file

@ -143,6 +143,35 @@ float RayIntersectDisplaceMap(vec2 dp, vec2 ds, sampler2D normalMap)
return bestDepth;
}
float LightRay(vec2 dp, vec2 ds, sampler2D normalMap)
{
const int linearSearchSteps = 16;
// current size of search window
float size = 1.0 / float(linearSearchSteps);
// current height from initial texel depth
float height = 0.0;
float startDepth = SampleDepth(normalMap, dp);
// find a collision or escape
for(int i = 0; i < linearSearchSteps - 1; ++i)
{
height += size;
if (startDepth < height)
return 1.0;
float t = SampleDepth(normalMap, dp + ds * height);
if (startDepth > t + height)
return 0.0;
}
return 1.0;
}
#endif
vec3 CalcDiffuse(vec3 diffuseAlbedo, float NH, float EH, float roughness)
@ -193,6 +222,37 @@ float CalcLightAttenuation(float point, float normDist)
return attenuation;
}
#if defined(USE_BOX_CUBEMAP_PARALLAX)
vec4 hitCube(vec3 ray, vec3 pos, vec3 invSize, float lod, samplerCube tex)
{
// find any hits on cubemap faces facing the camera
vec3 scale = (sign(ray) - pos) / ray;
// find the nearest hit
float minScale = min(min(scale.x, scale.y), scale.z);
// if the nearest hit is behind the camera, ignore
// should not be necessary as long as pos is inside the cube
//if (minScale < 0.0)
//return vec4(0.0);
// calculate the hit position, that's our texture coordinates
vec3 tc = pos + ray * minScale;
// if the texture coordinates are outside the cube, ignore
// necessary since we're not fading out outside the cube
if (any(greaterThan(abs(tc), vec3(1.00001))))
return vec4(0.0);
// fade out when approaching the cubemap edges
//vec3 fade3 = abs(pos);
//float fade = max(max(fade3.x, fade3.y), fade3.z);
//fade = clamp(1.0 - fade, 0.0, 1.0);
//return vec4(textureCubeLod(tex, tc, lod).rgb * fade, fade);
return vec4(textureCubeLod(tex, tc, lod).rgb, 1.0);
}
#endif
void main()
{
@ -222,7 +282,7 @@ void main()
vec2 texCoords = var_TexCoords.xy;
#if defined(USE_PARALLAXMAP)
vec3 offsetDir = viewDir * tangentToWorld;
vec3 offsetDir = E * tangentToWorld;
offsetDir.xy *= -u_NormalScale.a / offsetDir.z;
@ -289,6 +349,13 @@ void main()
#endif
#endif
#if defined(USE_PARALLAXMAP) && defined(USE_PARALLAXMAP_SHADOWS)
offsetDir = L * tangentToWorld;
offsetDir.xy *= u_NormalScale.a / offsetDir.z;
lightColor *= LightRay(texCoords, offsetDir.xy, u_NormalMap);
#endif
#if !defined(USE_LIGHT_VECTOR)
ambientColor = lightColor;
float surfNL = clamp(dot(var_Normal.xyz, L), 0.0, 1.0);
@ -374,7 +441,11 @@ void main()
// from http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
vec3 parallax = u_CubeMapInfo.xyz + u_CubeMapInfo.w * viewDir;
#if defined(USE_BOX_CUBEMAP_PARALLAX)
vec3 cubeLightColor = hitCube(R * u_CubeMapInfo.w, parallax, u_CubeMapInfo.www, ROUGHNESS_MIPS * roughness, u_CubeMap).rgb * u_EnableTextures.w;
#else
vec3 cubeLightColor = textureCubeLod(u_CubeMap, R + parallax, ROUGHNESS_MIPS * roughness).rgb * u_EnableTextures.w;
#endif
// normalize cubemap based on last roughness mip (~diffuse)
// multiplying cubemap values by lighting below depends on either this or the cubemap being normalized at generation
@ -423,6 +494,12 @@ void main()
// enable when point lights are supported as primary lights
//lightColor *= CalcLightAttenuation(float(u_PrimaryLightDir.w > 0.0), u_PrimaryLightDir.w / sqrLightDist);
#if defined(USE_PARALLAXMAP) && defined(USE_PARALLAXMAP_SHADOWS)
offsetDir = L2 * tangentToWorld;
offsetDir.xy *= u_NormalScale.a / offsetDir.z;
lightColor *= LightRay(texCoords, offsetDir.xy, u_NormalMap);
#endif
gl_FragColor.rgb += lightColor * reflectance * NL2;
#endif

View file

@ -1122,6 +1122,9 @@ void GLSL_InitGPUShaders(void)
Q_strcat(extradefines, 1024, "#define USE_PARALLAXMAP\n");
if (r_parallaxMapping->integer > 1)
Q_strcat(extradefines, 1024, "#define USE_RELIEFMAP\n");
if (r_parallaxMapShadows->integer)
Q_strcat(extradefines, 1024, "#define USE_PARALLAXMAP_SHADOWS\n");
}
}
@ -1129,9 +1132,15 @@ void GLSL_InitGPUShaders(void)
Q_strcat(extradefines, 1024, "#define USE_SPECULARMAP\n");
if (r_cubeMapping->integer)
{
Q_strcat(extradefines, 1024, "#define USE_CUBEMAP\n");
if (r_cubeMapping->integer == 2)
Q_strcat(extradefines, 1024, "#define USE_BOX_CUBEMAP_PARALLAX\n");
}
else if (r_deluxeSpecular->value > 0.000001f)
{
Q_strcat(extradefines, 1024, va("#define r_deluxeSpecular %f\n", r_deluxeSpecular->value));
}
switch (r_glossType->integer)
{

View file

@ -131,6 +131,7 @@ cvar_t *r_normalMapping;
cvar_t *r_specularMapping;
cvar_t *r_deluxeMapping;
cvar_t *r_parallaxMapping;
cvar_t *r_parallaxMapShadows;
cvar_t *r_cubeMapping;
cvar_t *r_cubemapSize;
cvar_t *r_deluxeSpecular;
@ -284,6 +285,12 @@ static void InitOpenGL( void )
}
}
// check for GLSL function textureCubeLod()
if ( r_cubeMapping->integer && !QGL_VERSION_ATLEAST( 3, 0 ) ) {
ri.Printf( PRINT_WARNING, "WARNING: Disabled r_cubeMapping because it requires OpenGL 3.0\n" );
ri.Cvar_Set( "r_cubeMapping", "0" );
}
// set default state
GL_SetDefaultState();
}
@ -1235,6 +1242,7 @@ void R_Register( void )
r_specularMapping = ri.Cvar_Get( "r_specularMapping", "1", CVAR_ARCHIVE | CVAR_LATCH );
r_deluxeMapping = ri.Cvar_Get( "r_deluxeMapping", "1", CVAR_ARCHIVE | CVAR_LATCH );
r_parallaxMapping = ri.Cvar_Get( "r_parallaxMapping", "0", CVAR_ARCHIVE | CVAR_LATCH );
r_parallaxMapShadows = ri.Cvar_Get( "r_parallaxMapShadows", "0", CVAR_ARCHIVE | CVAR_LATCH );
r_cubeMapping = ri.Cvar_Get( "r_cubeMapping", "0", CVAR_ARCHIVE | CVAR_LATCH );
r_cubemapSize = ri.Cvar_Get( "r_cubemapSize", "128", CVAR_ARCHIVE | CVAR_LATCH );
r_deluxeSpecular = ri.Cvar_Get("r_deluxeSpecular", "0.3", CVAR_ARCHIVE | CVAR_LATCH);

View file

@ -954,6 +954,12 @@ typedef struct srfBspSurface_s
float *heightLodError;
} srfBspSurface_t;
typedef struct {
vec3_t translate;
quat_t rotate;
vec3_t scale;
} iqmTransform_t;
// inter-quake-model
typedef struct {
int num_vertexes;
@ -988,8 +994,9 @@ typedef struct {
char *jointNames;
int *jointParents;
float *jointMats;
float *poseMats;
float *bindJoints; // [num_joints * 12]
float *invBindJoints; // [num_joints * 12]
iqmTransform_t *poses; // [num_frames * num_poses]
float *bounds;
int numVaoSurfaces;
@ -1771,6 +1778,7 @@ extern cvar_t *r_normalMapping;
extern cvar_t *r_specularMapping;
extern cvar_t *r_deluxeMapping;
extern cvar_t *r_parallaxMapping;
extern cvar_t *r_parallaxMapShadows;
extern cvar_t *r_cubeMapping;
extern cvar_t *r_cubemapSize;
extern cvar_t *r_deluxeSpecular;

View file

@ -2,6 +2,7 @@
===========================================================================
Copyright (C) 2011 Thilo Schulz <thilo@tjps.eu>
Copyright (C) 2011 Matthias Bentrup <matthias.bentrup@googlemail.com>
Copyright (C) 2011-2019 Zack Middleton <zturtleman@gmail.com>
This file is part of Quake III Arena source code.
@ -44,7 +45,7 @@ static qboolean IQM_CheckRange( iqmHeader_t *header, int offset,
}
// "multiply" 3x4 matrices, these are assumed to be the top 3 rows
// of a 4x4 matrix with the last row = (0 0 0 1)
static void Matrix34Multiply( float *a, float *b, float *out ) {
static void Matrix34Multiply( const float *a, const float *b, float *out ) {
out[ 0] = a[0] * b[0] + a[1] * b[4] + a[ 2] * b[ 8];
out[ 1] = a[0] * b[1] + a[1] * b[5] + a[ 2] * b[ 9];
out[ 2] = a[0] * b[2] + a[1] * b[6] + a[ 2] * b[10];
@ -58,23 +59,7 @@ static void Matrix34Multiply( float *a, float *b, float *out ) {
out[10] = a[8] * b[2] + a[9] * b[6] + a[10] * b[10];
out[11] = a[8] * b[3] + a[9] * b[7] + a[10] * b[11] + a[11];
}
static void InterpolateMatrix( float *a, float *b, float lerp, float *mat ) {
float unLerp = 1.0f - lerp;
mat[ 0] = a[ 0] * unLerp + b[ 0] * lerp;
mat[ 1] = a[ 1] * unLerp + b[ 1] * lerp;
mat[ 2] = a[ 2] * unLerp + b[ 2] * lerp;
mat[ 3] = a[ 3] * unLerp + b[ 3] * lerp;
mat[ 4] = a[ 4] * unLerp + b[ 4] * lerp;
mat[ 5] = a[ 5] * unLerp + b[ 5] * lerp;
mat[ 6] = a[ 6] * unLerp + b[ 6] * lerp;
mat[ 7] = a[ 7] * unLerp + b[ 7] * lerp;
mat[ 8] = a[ 8] * unLerp + b[ 8] * lerp;
mat[ 9] = a[ 9] * unLerp + b[ 9] * lerp;
mat[10] = a[10] * unLerp + b[10] * lerp;
mat[11] = a[11] * unLerp + b[11] * lerp;
}
static void JointToMatrix( vec4_t rot, vec3_t scale, vec3_t trans,
static void JointToMatrix( const quat_t rot, const vec3_t scale, const vec3_t trans,
float *mat ) {
float xx = 2.0f * rot[0] * rot[0];
float yy = 2.0f * rot[1] * rot[1];
@ -99,8 +84,7 @@ static void JointToMatrix( vec4_t rot, vec3_t scale, vec3_t trans,
mat[10] = scale[2] * (1.0f - (xx + yy));
mat[11] = trans[2];
}
static void Matrix34Invert( float *inMat, float *outMat )
{
static void Matrix34Invert( const float *inMat, float *outMat ) {
vec3_t trans;
float invSqrLen, *v;
@ -120,6 +104,61 @@ static void Matrix34Invert( float *inMat, float *outMat )
outMat[ 7] = -DotProduct(outMat + 4, trans);
outMat[11] = -DotProduct(outMat + 8, trans);
}
static void QuatSlerp(const quat_t from, const quat_t _to, float fraction, quat_t out) {
float angle, cosAngle, sinAngle, backlerp, lerp;
quat_t to;
// cos() of angle
cosAngle = from[0] * _to[0] + from[1] * _to[1] + from[2] * _to[2] + from[3] * _to[3];
// negative handling is needed for taking shortest path (required for model joints)
if ( cosAngle < 0.0f ) {
cosAngle = -cosAngle;
to[0] = - _to[0];
to[1] = - _to[1];
to[2] = - _to[2];
to[3] = - _to[3];
} else {
QuatCopy( _to, to );
}
if ( cosAngle < 0.999999f ) {
// spherical lerp (slerp)
angle = acosf( cosAngle );
sinAngle = sinf( angle );
backlerp = sinf( ( 1.0f - fraction ) * angle ) / sinAngle;
lerp = sinf( fraction * angle ) / sinAngle;
} else {
// linear lerp
backlerp = 1.0f - fraction;
lerp = fraction;
}
out[0] = from[0] * backlerp + to[0] * lerp;
out[1] = from[1] * backlerp + to[1] * lerp;
out[2] = from[2] * backlerp + to[2] * lerp;
out[3] = from[3] * backlerp + to[3] * lerp;
}
static vec_t QuatNormalize2( const quat_t v, quat_t out) {
float length, ilength;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2] + v[3]*v[3];
if (length) {
/* writing it this way allows gcc to recognize that rsqrt can be used */
ilength = 1/(float)sqrt (length);
/* sqrt(length) = length * (1 / sqrt(length)) */
length *= ilength;
out[0] = v[0]*ilength;
out[1] = v[1]*ilength;
out[2] = v[2]*ilength;
out[3] = v[3]*ilength;
} else {
out[0] = out[1] = out[2] = out[3] = 0;
}
return length;
}
/*
=================
@ -139,7 +178,7 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
unsigned short *framedata;
char *str;
int i, j, k;
float jointInvMats[IQM_MAX_JOINTS * 12] = {0.0f};
iqmTransform_t *transform;
float *mat, *matInv;
size_t size, joint_names;
byte *dataPtr;
@ -562,10 +601,11 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
if( header->num_joints ) {
size += joint_names; // joint names
size += header->num_joints * sizeof(int); // joint parents
size += header->num_joints * 12 * sizeof( float ); // joint mats
size += header->num_joints * 12 * sizeof(float); // bind joint matricies
size += header->num_joints * 12 * sizeof(float); // inverse bind joint matricies
}
if( header->num_poses ) {
size += header->num_poses * header->num_frames * 12 * sizeof( float ); // pose mats
size += header->num_poses * header->num_frames * sizeof(iqmTransform_t); // pose transforms
}
if( header->ofs_bounds ) {
size += header->num_frames * 6 * sizeof(float); // model bounds
@ -636,12 +676,15 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
iqmData->jointParents = (int*)dataPtr;
dataPtr += header->num_joints * sizeof(int); // joint parents
iqmData->jointMats = (float*)dataPtr;
dataPtr += header->num_joints * 12 * sizeof( float ); // joint mats
iqmData->bindJoints = (float*)dataPtr;
dataPtr += header->num_joints * 12 * sizeof(float); // bind joint matricies
iqmData->invBindJoints = (float*)dataPtr;
dataPtr += header->num_joints * 12 * sizeof(float); // inverse bind joint matricies
}
if( header->num_poses ) {
iqmData->poseMats = (float*)dataPtr;
dataPtr += header->num_poses * header->num_frames * 12 * sizeof( float ); // pose mats
iqmData->poses = (iqmTransform_t*)dataPtr;
dataPtr += header->num_poses * header->num_frames * sizeof(iqmTransform_t); // pose transforms
}
if( header->ofs_bounds ) {
iqmData->bounds = (float*)dataPtr;
@ -807,22 +850,23 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
iqmData->jointParents[i] = joint->parent;
}
// calculate joint matrices and their inverses
// joint inverses are needed only until the pose matrices are calculated
mat = iqmData->jointMats;
matInv = jointInvMats;
// calculate bind joint matrices and their inverses
mat = iqmData->bindJoints;
matInv = iqmData->invBindJoints;
joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
for( i = 0; i < header->num_joints; i++, joint++ ) {
float baseFrame[12], invBaseFrame[12];
QuatNormalize2( joint->rotate, joint->rotate );
JointToMatrix( joint->rotate, joint->scale, joint->translate, baseFrame );
Matrix34Invert( baseFrame, invBaseFrame );
if ( joint->parent >= 0 )
{
Matrix34Multiply( iqmData->jointMats + 12 * joint->parent, baseFrame, mat );
Matrix34Multiply( iqmData->bindJoints + 12 * joint->parent, baseFrame, mat );
mat += 12;
Matrix34Multiply( invBaseFrame, jointInvMats + 12 * joint->parent, matInv );
Matrix34Multiply( invBaseFrame, iqmData->invBindJoints + 12 * joint->parent, matInv );
matInv += 12;
}
else
@ -837,16 +881,15 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
if( header->num_poses )
{
// calculate pose matrices
// calculate pose transforms
transform = iqmData->poses;
framedata = (unsigned short *)((byte *)header + header->ofs_frames);
mat = iqmData->poseMats;
for( i = 0; i < header->num_frames; i++ ) {
pose = (iqmPose_t *)((byte *)header + header->ofs_poses);
for( j = 0; j < header->num_poses; j++, pose++ ) {
for( j = 0; j < header->num_poses; j++, pose++, transform++ ) {
vec3_t translate;
vec4_t rotate;
quat_t rotate;
vec3_t scale;
float mat1[12], mat2[12];
translate[0] = pose->channeloffset[0];
if( pose->mask & 0x001)
@ -881,18 +924,9 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
if( pose->mask & 0x200)
scale[2] += *framedata++ * pose->channelscale[9];
// construct transformation matrix
JointToMatrix( rotate, scale, translate, mat1 );
if( pose->parent >= 0 ) {
Matrix34Multiply( iqmData->jointMats + 12 * pose->parent,
mat1, mat2 );
} else {
Com_Memcpy( mat2, mat1, sizeof(mat1) );
}
Matrix34Multiply( mat2, jointInvMats + 12 * j, mat );
mat += 12;
VectorCopy( translate, transform->translate );
QuatNormalize2( rotate, transform->rotate );
VectorCopy( scale, transform->scale );
}
}
}
@ -1306,37 +1340,59 @@ void R_AddIQMSurfaces( trRefEntity_t *ent ) {
static void ComputePoseMats( iqmData_t *data, int frame, int oldframe,
float backlerp, float *mat ) {
float *mat1, *mat2;
int *joint = data->jointParents;
int i;
float backlerp, float *poseMats ) {
iqmTransform_t relativeJoints[IQM_MAX_JOINTS];
iqmTransform_t *relativeJoint;
const iqmTransform_t *pose;
const iqmTransform_t *oldpose;
const int *jointParent;
const float *invBindMat;
float *poseMat, lerp;
int i;
relativeJoint = relativeJoints;
// copy or lerp animation frame pose
if ( oldframe == frame ) {
mat1 = data->poseMats + 12 * data->num_poses * frame;
for( i = 0; i < data->num_poses; i++, joint++ ) {
if( *joint >= 0 ) {
Matrix34Multiply( mat + 12 * *joint,
mat1 + 12*i, mat + 12*i );
} else {
Com_Memcpy( mat + 12*i, mat1 + 12*i, 12 * sizeof(float) );
}
pose = &data->poses[frame * data->num_poses];
for ( i = 0; i < data->num_poses; i++, pose++, relativeJoint++ ) {
VectorCopy( pose->translate, relativeJoint->translate );
QuatCopy( pose->rotate, relativeJoint->rotate );
VectorCopy( pose->scale, relativeJoint->scale );
}
} else {
mat1 = data->poseMats + 12 * data->num_poses * frame;
mat2 = data->poseMats + 12 * data->num_poses * oldframe;
for( i = 0; i < data->num_poses; i++, joint++ ) {
if( *joint >= 0 ) {
float tmpMat[12];
InterpolateMatrix( mat1 + 12*i, mat2 + 12*i,
backlerp, tmpMat );
Matrix34Multiply( mat + 12 * *joint,
tmpMat, mat + 12*i );
} else {
InterpolateMatrix( mat1 + 12*i, mat2 + 12*i,
backlerp, mat + 12*i );
}
} else {
lerp = 1.0f - backlerp;
pose = &data->poses[frame * data->num_poses];
oldpose = &data->poses[oldframe * data->num_poses];
for ( i = 0; i < data->num_poses; i++, oldpose++, pose++, relativeJoint++ ) {
relativeJoint->translate[0] = oldpose->translate[0] * backlerp + pose->translate[0] * lerp;
relativeJoint->translate[1] = oldpose->translate[1] * backlerp + pose->translate[1] * lerp;
relativeJoint->translate[2] = oldpose->translate[2] * backlerp + pose->translate[2] * lerp;
relativeJoint->scale[0] = oldpose->scale[0] * backlerp + pose->scale[0] * lerp;
relativeJoint->scale[1] = oldpose->scale[1] * backlerp + pose->scale[1] * lerp;
relativeJoint->scale[2] = oldpose->scale[2] * backlerp + pose->scale[2] * lerp;
QuatSlerp( oldpose->rotate, pose->rotate, lerp, relativeJoint->rotate );
}
}
// multiply by inverse of bind pose and parent 'pose mat' (bind pose transform matrix)
relativeJoint = relativeJoints;
jointParent = data->jointParents;
invBindMat = data->invBindJoints;
poseMat = poseMats;
for ( i = 0; i < data->num_poses; i++, relativeJoint++, jointParent++, invBindMat += 12, poseMat += 12 ) {
float mat1[12], mat2[12];
JointToMatrix( relativeJoint->rotate, relativeJoint->scale, relativeJoint->translate, mat1 );
if ( *jointParent >= 0 ) {
Matrix34Multiply( &data->bindJoints[(*jointParent)*12], mat1, mat2 );
Matrix34Multiply( mat2, invBindMat, mat1 );
Matrix34Multiply( &poseMats[(*jointParent)*12], mat1, poseMat );
} else {
Matrix34Multiply( mat1, invBindMat, poseMat );
}
}
}
@ -1347,7 +1403,7 @@ static void ComputeJointMats( iqmData_t *data, int frame, int oldframe,
int i;
if ( data->num_poses == 0 ) {
Com_Memcpy( mat, data->jointMats, data->num_joints * 12 * sizeof(float) );
Com_Memcpy( mat, data->bindJoints, data->num_joints * 12 * sizeof(float) );
return;
}
@ -1359,7 +1415,7 @@ static void ComputeJointMats( iqmData_t *data, int frame, int oldframe,
Com_Memcpy(outmat, mat1, sizeof(outmat));
Matrix34Multiply( outmat, data->jointMats + 12*i, mat1 );
Matrix34Multiply( outmat, data->bindJoints + 12*i, mat1 );
}
}
@ -1428,19 +1484,20 @@ void RB_IQMSurfaceAnim( surfaceType_t *surface ) {
float *nrmMat = &influenceNrmMat[9*i];
int j;
float blendWeights[4];
int numWeights;
for ( numWeights = 0; numWeights < 4; numWeights++ ) {
if ( data->blendWeightsType == IQM_FLOAT )
blendWeights[numWeights] = data->influenceBlendWeights.f[4*influence + numWeights];
else
blendWeights[numWeights] = (float)data->influenceBlendWeights.b[4*influence + numWeights] / 255.0f;
if ( blendWeights[numWeights] <= 0.0f )
break;
if ( data->blendWeightsType == IQM_FLOAT ) {
blendWeights[0] = data->influenceBlendWeights.f[4*influence + 0];
blendWeights[1] = data->influenceBlendWeights.f[4*influence + 1];
blendWeights[2] = data->influenceBlendWeights.f[4*influence + 2];
blendWeights[3] = data->influenceBlendWeights.f[4*influence + 3];
} else {
blendWeights[0] = (float)data->influenceBlendWeights.b[4*influence + 0] / 255.0f;
blendWeights[1] = (float)data->influenceBlendWeights.b[4*influence + 1] / 255.0f;
blendWeights[2] = (float)data->influenceBlendWeights.b[4*influence + 2] / 255.0f;
blendWeights[3] = (float)data->influenceBlendWeights.b[4*influence + 3] / 255.0f;
}
if ( numWeights == 0 ) {
if ( blendWeights[0] <= 0.0f ) {
// no blend joint, use identity matrix.
vtxMat[0] = identityMatrix[0];
vtxMat[1] = identityMatrix[1];
@ -1470,7 +1527,11 @@ void RB_IQMSurfaceAnim( surfaceType_t *surface ) {
vtxMat[10] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 10];
vtxMat[11] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 11];
for( j = 1; j < numWeights; j++ ) {
for( j = 1; j < 3; j++ ) {
if ( blendWeights[j] <= 0.0f ) {
break;
}
vtxMat[0] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 0];
vtxMat[1] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 1];
vtxMat[2] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 2];

View file

@ -3086,6 +3086,7 @@ static void UI_Update(const char *name) {
trap_Cvar_SetValue( "r_stencilbits", 8 );
trap_Cvar_SetValue( "r_picmip", 0 );
trap_Cvar_SetValue( "r_mode", 4 );
trap_Cvar_Set( "ui_videomode", "800x600" );
trap_Cvar_SetValue( "r_texturebits", 32 );
trap_Cvar_SetValue( "r_fastSky", 0 );
trap_Cvar_SetValue( "r_inGameVideo", 1 );
@ -3103,6 +3104,7 @@ static void UI_Update(const char *name) {
trap_Cvar_Reset( "r_stencilbits" );
trap_Cvar_SetValue( "r_picmip", 1 );
trap_Cvar_SetValue( "r_mode", 3 );
trap_Cvar_Set( "ui_videomode", "640x480" );
trap_Cvar_SetValue( "r_texturebits", 0 );
trap_Cvar_SetValue( "r_fastSky", 0 );
trap_Cvar_SetValue( "r_inGameVideo", 1 );
@ -3120,6 +3122,7 @@ static void UI_Update(const char *name) {
trap_Cvar_Reset( "r_stencilbits" );
trap_Cvar_SetValue( "r_picmip", 1 );
trap_Cvar_SetValue( "r_mode", 3 );
trap_Cvar_Set( "ui_videomode", "640x480" );
trap_Cvar_SetValue( "r_texturebits", 0 );
trap_Cvar_SetValue( "cg_shadows", 0 );
trap_Cvar_SetValue( "r_fastSky", 1 );
@ -3136,6 +3139,7 @@ static void UI_Update(const char *name) {
trap_Cvar_SetValue( "r_depthbits", 16 );
trap_Cvar_SetValue( "r_stencilbits", 0 );
trap_Cvar_SetValue( "r_mode", 3 );
trap_Cvar_Set( "ui_videomode", "640x480" );
trap_Cvar_SetValue( "r_picmip", 2 );
trap_Cvar_SetValue( "r_texturebits", 16 );
trap_Cvar_SetValue( "cg_shadows", 0 );
@ -5079,6 +5083,8 @@ void _UI_Init( qboolean inGameLoad ) {
// cache redundant calulations
trap_GetGlconfig( &uiInfo.uiDC.glconfig );
trap_Cvar_Set("ui_videomode", va( "%dx%d", uiInfo.uiDC.glconfig.vidWidth, uiInfo.uiDC.glconfig.vidHeight ) );
// for 640x480 virtualized screen
uiInfo.uiDC.yscale = uiInfo.uiDC.glconfig.vidHeight * (1.0/480.0);
uiInfo.uiDC.xscale = uiInfo.uiDC.glconfig.vidWidth * (1.0/640.0);
@ -5871,6 +5877,7 @@ static cvarTable_t cvarTable[] = {
{ &ui_realCaptureLimit, "capturelimit", "8", CVAR_SERVERINFO | CVAR_ARCHIVE | CVAR_NORESTART},
{ &ui_serverStatusTimeOut, "ui_serverStatusTimeOut", "7000", CVAR_ARCHIVE},
{ NULL, "ui_videomode", "", CVAR_ROM },
{ NULL, "g_localTeamPref", "", 0 },
};

View file

@ -2055,6 +2055,26 @@ qboolean Item_Multi_HandleKey(itemDef_t *item, int key) {
} else if ( current >= max ) {
current = 0;
}
if (multiPtr->videoMode) {
if (multiPtr->cvarValue[current] != -1) {
DC->setCVar("r_mode", va("%i", (int) multiPtr->cvarValue[current] ));
} else {
int w, h;
char *x;
char str[8];
x = strchr( multiPtr->cvarStr[current], 'x' ) + 1;
Q_strncpyz( str, multiPtr->cvarStr[current], MIN( x-multiPtr->cvarStr[current], sizeof( str ) ) );
w = atoi( str );
h = atoi( x );
DC->setCVar("r_mode", "-1");
DC->setCVar("r_customwidth", va("%i", w));
DC->setCVar("r_customheight", va("%i", h));
}
}
if (multiPtr->strDef) {
DC->setCVar(item->cvar, multiPtr->cvarStr[current]);
} else {
@ -5003,6 +5023,7 @@ qboolean ItemParse_cvarStrList( itemDef_t *item, int handle ) {
multiPtr = (multiDef_t*)item->typeData;
multiPtr->count = 0;
multiPtr->strDef = qtrue;
multiPtr->videoMode = qfalse;
if (!trap_PC_ReadToken(handle, &token))
return qfalse;
@ -5051,6 +5072,7 @@ qboolean ItemParse_cvarFloatList( itemDef_t *item, int handle ) {
multiPtr = (multiDef_t*)item->typeData;
multiPtr->count = 0;
multiPtr->strDef = qfalse;
multiPtr->videoMode = qfalse;
if (!trap_PC_ReadToken(handle, &token))
return qfalse;
@ -5227,6 +5249,61 @@ void Item_SetupKeywordHash(void) {
}
}
static const char *builtinResolutions[ ] =
{
"320x240",
"400x300",
"512x384",
"640x480",
"800x600",
"960x720",
"1024x768",
"1152x864",
"1280x1024",
"1600x1200",
"2048x1536",
"856x480",
NULL
};
static const char *knownRatios[ ][2] =
{
{ "1.25:1", "5:4" },
{ "1.33:1", "4:3" },
{ "1.50:1", "3:2" },
{ "1.56:1", "14:9" },
{ "1.60:1", "16:10" },
{ "1.67:1", "5:3" },
{ "1.78:1", "16:9" },
{ NULL , NULL }
};
/*
===============
UI_ResolutionToAspect
===============
*/
static void UI_ResolutionToAspect( const char *resolution, char *aspect, size_t aspectLength ) {
int i, w, h;
char *x;
char str[8];
// calculate resolution's aspect ratio
x = strchr( resolution, 'x' ) + 1;
Q_strncpyz( str, resolution, MIN( x-resolution, sizeof( str ) ) );
w = atoi( str );
h = atoi( x );
Com_sprintf( aspect, aspectLength, "%.2f:1", (float)w / (float)h );
// rename common ratios ("1.33:1" -> "4:3")
for( i = 0; knownRatios[i][0]; i++ ) {
if( !Q_stricmp( aspect, knownRatios[i][0] ) ) {
Q_strncpyz( aspect, knownRatios[i][1], aspectLength );
break;
}
}
}
/*
===============
Item_ApplyHacks
@ -5261,6 +5338,89 @@ static void Item_ApplyHacks( itemDef_t *item ) {
}
}
// Replace mode list and use a temporary ui_videomode cvar for handling custom modes
if ( item->type == ITEM_TYPE_MULTI && item->cvar && !Q_stricmp( item->cvar, "r_mode" ) ) {
multiDef_t *multiPtr = (multiDef_t*)item->typeData;
int i, oldCount;
char resbuf[MAX_STRING_CHARS];
char modeName[32], aspect[8];
item->cvar = "ui_videomode";
multiPtr->strDef = qtrue;
multiPtr->videoMode = qtrue;
oldCount = multiPtr->count;
multiPtr->count = 0;
DC->getCVarString( "r_availableModes", resbuf, sizeof( resbuf ) );
if ( *resbuf ) {
char *s = resbuf, *mode;
while ( s && multiPtr->count < MAX_MULTI_CVARS ) {
mode = s;
s = strchr(s, ' ');
if( s )
*s++ = '\0';
UI_ResolutionToAspect( mode, aspect, sizeof( aspect ) );
Com_sprintf( modeName, sizeof( modeName ), "%s (%s)", mode, aspect );
multiPtr->cvarList[multiPtr->count] = String_Alloc( modeName );
for ( i = 0; builtinResolutions[i]; i++ ) {
if( !Q_stricmp( builtinResolutions[i], mode ) ) {
multiPtr->cvarStr[multiPtr->count] = builtinResolutions[i];
multiPtr->cvarValue[multiPtr->count] = i;
break;
}
}
if ( builtinResolutions[i] == NULL ) {
multiPtr->cvarStr[multiPtr->count] = String_Alloc( mode );
multiPtr->cvarValue[multiPtr->count] = -1;
}
multiPtr->count++;
}
} else {
for ( i = 0; builtinResolutions[i] && multiPtr->count < MAX_MULTI_CVARS; i++ ) {
UI_ResolutionToAspect( builtinResolutions[i], aspect, sizeof( aspect ) );
Com_sprintf( modeName, sizeof( modeName ), "%s (%s)", builtinResolutions[i], aspect );
multiPtr->cvarList[multiPtr->count] = String_Alloc( modeName );
multiPtr->cvarStr[multiPtr->count] = builtinResolutions[i];
multiPtr->cvarValue[multiPtr->count] = i;
multiPtr->count++;
}
}
// Add custom resolution if not in mode list
if ( multiPtr->count < MAX_MULTI_CVARS ) {
char currentResolution[20];
Com_sprintf( currentResolution, sizeof ( currentResolution ), "%dx%d", DC->glconfig.vidWidth, DC->glconfig.vidHeight );
for ( i = 0; i < multiPtr->count; i++ ) {
if ( !Q_stricmp( multiPtr->cvarStr[i], currentResolution ) ) {
break;
}
}
if ( i == multiPtr->count ) {
UI_ResolutionToAspect( currentResolution, aspect, sizeof( aspect ) );
Com_sprintf( modeName, sizeof( modeName ), "%s (%s)", currentResolution, aspect );
multiPtr->cvarList[multiPtr->count] = String_Alloc( modeName );
multiPtr->cvarStr[multiPtr->count] = String_Alloc( currentResolution );
multiPtr->cvarValue[multiPtr->count] = -1;
multiPtr->count++;
}
}
Com_Printf( "Found video mode list with %d modes, replaced list with %d modes\n", oldCount, multiPtr->count );
}
}
/*

View file

@ -203,6 +203,7 @@ typedef struct multiDef_s {
float cvarValue[MAX_MULTI_CVARS];
int count;
qboolean strDef;
qboolean videoMode;
} multiDef_t;
typedef struct modelDef_s {

View file

@ -184,6 +184,11 @@ Cvars for advanced material usage:
1 - Use parallax occlusion mapping.
2 - Use relief mapping. (slower)
* `r_parallaxMapShadows` - Enable self-shadowing on parallax map
supported materials.
0 - No. (default)
1 - Yes.
* `r_baseSpecular` - Set the specular reflectance of materials
which don't include a specular map or
use the specularReflectance keyword.