mirror of
https://github.com/nzp-team/vhlt.git
synced 2024-11-22 03:41:20 +00:00
293 lines
7.2 KiB
C
293 lines
7.2 KiB
C
#ifndef MATHLIB_H__
|
|
#define MATHLIB_H__
|
|
#include "cmdlib.h" //--vluzacn
|
|
|
|
#if _MSC_VER >= 1000
|
|
#pragma once
|
|
#endif
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#ifdef STDC_HEADERS
|
|
#include <math.h>
|
|
#include <float.h>
|
|
#endif
|
|
|
|
#if !defined(qmax)
|
|
#define qmax(a,b) (((a) > (b)) ? (a) : (b)) // changed 'max' to 'qmax'. --vluzacn
|
|
#endif
|
|
|
|
#if !defined(qmin)
|
|
#define qmin(a,b) (((a) < (b)) ? (a) : (b)) // changed 'min' to 'qmin'. --vluzacn
|
|
#endif
|
|
|
|
#define Q_PI 3.14159265358979323846
|
|
|
|
extern const vec3_t vec3_origin;
|
|
|
|
// HLCSG_HLBSP_DOUBLEPLANE: We could use smaller epsilon for hlcsg and hlbsp (hlcsg and hlbsp use double as vec_t), which will totally eliminate all epsilon errors. But we choose this big epsilon to tolerate the imprecision caused by Hammer. Basically, this is a balance between precision and flexibility.
|
|
#ifdef ZHLT_LARGERANGE
|
|
#define NORMAL_EPSILON 0.00001
|
|
#define ON_EPSILON 0.04 // we should ensure that (float)BOGUS_RANGE < (float)(BOGUA_RANGE + 0.2 * ON_EPSILON)
|
|
#define EQUAL_EPSILON 0.004
|
|
#else
|
|
#define NORMAL_EPSILON 0.00001
|
|
#define ON_EPSILON 0.01
|
|
#define EQUAL_EPSILON 0.001
|
|
#endif
|
|
|
|
|
|
//
|
|
// Vector Math
|
|
//
|
|
|
|
|
|
#define DotProduct(x,y) ( (x)[0] * (y)[0] + (x)[1] * (y)[1] + (x)[2] * (y)[2])
|
|
#define CrossProduct(a, b, dest) \
|
|
{ \
|
|
(dest)[0] = (a)[1] * (b)[2] - (a)[2] * (b)[1]; \
|
|
(dest)[1] = (a)[2] * (b)[0] - (a)[0] * (b)[2]; \
|
|
(dest)[2] = (a)[0] * (b)[1] - (a)[1] * (b)[0]; \
|
|
}
|
|
|
|
#define VectorMidpoint(a,b,c) { (c)[0]=((a)[0]+(b)[0])/2; (c)[1]=((a)[1]+(b)[1])/2; (c)[2]=((a)[2]+(b)[2])/2; }
|
|
|
|
#define VectorFill(a,b) { (a)[0]=(b); (a)[1]=(b); (a)[2]=(b);}
|
|
#define VectorAvg(a) ( ( (a)[0] + (a)[1] + (a)[2] ) / 3 )
|
|
|
|
#define VectorSubtract(a,b,c) { (c)[0]=(a)[0]-(b)[0]; (c)[1]=(a)[1]-(b)[1]; (c)[2]=(a)[2]-(b)[2]; }
|
|
#define VectorAdd(a,b,c) { (c)[0]=(a)[0]+(b)[0]; (c)[1]=(a)[1]+(b)[1]; (c)[2]=(a)[2]+(b)[2]; }
|
|
#define VectorMultiply(a,b,c) { (c)[0]=(a)[0]*(b)[0]; (c)[1]=(a)[1]*(b)[1]; (c)[2]=(a)[2]*(b)[2]; }
|
|
#define VectorDivide(a,b,c) { (c)[0]=(a)[0]/(b)[0]; (c)[1]=(a)[1]/(b)[1]; (c)[2]=(a)[2]/(b)[2]; }
|
|
|
|
#define VectorSubtractVec(a,b,c) { (c)[0]=(a)[0]-(b); (c)[1]=(a)[1]-(b); (c)[2]=(a)[2]-(b); }
|
|
#define VectorAddVec(a,b,c) { (c)[0]=(a)[0]+(b); (c)[1]=(a)[1]+(b); (c)[2]=(a)[2]+(b); }
|
|
#define VecSubtractVector(a,b,c) { (c)[0]=(a)-(b)[0]; (c)[1]=(a)-(b)[1]; (c)[2]=(a)-(b)[2]; }
|
|
#define VecAddVector(a,b,c) { (c)[0]=(a)+(b)[0]; (c)[1]=(a)[(b)[1]; (c)[2]=(a)+(b)[2]; }
|
|
|
|
#define VectorMultiplyVec(a,b,c) { (c)[0]=(a)[0]*(b);(c)[1]=(a)[1]*(b);(c)[2]=(a)[2]*(b); }
|
|
#define VectorDivideVec(a,b,c) { (c)[0]=(a)[0]/(b);(c)[1]=(a)[1]/(b);(c)[2]=(a)[2]/(b); }
|
|
|
|
#define VectorScale(a,b,c) { (c)[0]=(a)[0]*(b);(c)[1]=(a)[1]*(b);(c)[2]=(a)[2]*(b); }
|
|
|
|
#define VectorCopy(a,b) { (b)[0]=(a)[0]; (b)[1]=(a)[1]; (b)[2]=(a)[2]; }
|
|
#define VectorClear(a) { (a)[0] = (a)[1] = (a)[2] = 0.0; }
|
|
|
|
#define VectorMaximum(a) ( qmax( (a)[0], qmax( (a)[1], (a)[2] ) ) )
|
|
#define VectorMinimum(a) ( qmin( (a)[0], qmin( (a)[1], (a)[2] ) ) )
|
|
|
|
#define VectorInverse(a) \
|
|
{ \
|
|
(a)[0] = -((a)[0]); \
|
|
(a)[1] = -((a)[1]); \
|
|
(a)[2] = -((a)[2]); \
|
|
}
|
|
#define VectorRound(a) floor((a) + 0.5)
|
|
#ifdef ZHLT_VectorMA_FIX
|
|
#define VectorMA(a, scale, b, dest) \
|
|
{ \
|
|
(dest)[0] = (a)[0] + (scale) * (b)[0]; \
|
|
(dest)[1] = (a)[1] + (scale) * (b)[1]; \
|
|
(dest)[2] = (a)[2] + (scale) * (b)[2]; \
|
|
}
|
|
#else
|
|
#define VectorMA(a, scale, b, dest) \
|
|
{ \
|
|
(dest)[0] = (a)[0] + scale * (b)[0]; \
|
|
(dest)[1] = (a)[1] + scale * (b)[1]; \
|
|
(dest)[2] = (a)[2] + scale * (b)[2]; \
|
|
}
|
|
#endif
|
|
#define VectorLength(a) sqrt((double) ((double)((a)[0] * (a)[0]) + (double)( (a)[1] * (a)[1]) + (double)( (a)[2] * (a)[2])) )
|
|
#define VectorCompareMinimum(a,b,c) { (c)[0] = qmin((a)[0], (b)[0]); (c)[1] = qmin((a)[1], (b)[1]); (c)[2] = qmin((a)[2], (b)[2]); }
|
|
#define VectorCompareMaximum(a,b,c) { (c)[0] = qmax((a)[0], (b)[0]); (c)[1] = qmax((a)[1], (b)[1]); (c)[2] = qmax((a)[2], (b)[2]); }
|
|
|
|
inline vec_t VectorNormalize(vec3_t v)
|
|
{
|
|
double length;
|
|
|
|
length = DotProduct(v, v);
|
|
length = sqrt(length);
|
|
if (length < NORMAL_EPSILON)
|
|
{
|
|
VectorClear(v);
|
|
return 0.0;
|
|
}
|
|
|
|
v[0] /= length;
|
|
v[1] /= length;
|
|
v[2] /= length;
|
|
|
|
return length;
|
|
}
|
|
|
|
inline bool VectorCompare(const vec3_t v1, const vec3_t v2)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
if (fabs(v1[i] - v2[i]) > EQUAL_EPSILON)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
//
|
|
// Portable bit rotation
|
|
//
|
|
|
|
|
|
#ifdef SYSTEM_POSIX
|
|
#undef rotl
|
|
#undef rotr
|
|
|
|
inline unsigned int rotl(unsigned value, unsigned int amt)
|
|
{
|
|
unsigned t1, t2;
|
|
|
|
t1 = value >> ((sizeof(unsigned) * CHAR_BIT) - amt);
|
|
|
|
t2 = value << amt;
|
|
return (t1 | t2);
|
|
}
|
|
|
|
inline unsigned int rotr(unsigned value, unsigned int amt)
|
|
{
|
|
unsigned t1, t2;
|
|
|
|
t1 = value << ((sizeof(unsigned) * CHAR_BIT) - amt);
|
|
|
|
t2 = value >> amt;
|
|
return (t1 | t2);
|
|
}
|
|
#endif
|
|
|
|
|
|
//
|
|
// Misc
|
|
//
|
|
|
|
|
|
inline bool isPointFinite(const vec_t* p)
|
|
{
|
|
if (finite(p[0]) && finite(p[1]) && finite(p[2]))
|
|
{
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
//
|
|
// Planetype Math
|
|
//
|
|
|
|
|
|
typedef enum
|
|
{
|
|
plane_x = 0,
|
|
plane_y,
|
|
plane_z,
|
|
plane_anyx,
|
|
plane_anyy,
|
|
plane_anyz
|
|
}
|
|
planetypes;
|
|
|
|
#define last_axial plane_z
|
|
#ifdef HLCSG_FACENORMALEPSILON
|
|
#define DIR_EPSILON 0.0001
|
|
#endif
|
|
|
|
#ifdef ZHLT_PLANETYPE_FIX
|
|
inline planetypes PlaneTypeForNormal(vec3_t normal)
|
|
{
|
|
vec_t ax, ay, az;
|
|
|
|
ax = fabs(normal[0]);
|
|
ay = fabs(normal[1]);
|
|
az = fabs(normal[2]);
|
|
#ifdef HLCSG_FACENORMALEPSILON
|
|
if (ax > 1.0 - DIR_EPSILON && ay < DIR_EPSILON && az < DIR_EPSILON)
|
|
{
|
|
return plane_x;
|
|
}
|
|
|
|
if (ay > 1.0 - DIR_EPSILON && az < DIR_EPSILON && ax < DIR_EPSILON)
|
|
{
|
|
return plane_y;
|
|
}
|
|
|
|
if (az > 1.0 - DIR_EPSILON && ax < DIR_EPSILON && ay < DIR_EPSILON)
|
|
{
|
|
return plane_z;
|
|
}
|
|
#else
|
|
if (ax > 1.0 - NORMAL_EPSILON && ay < NORMAL_EPSILON && az < NORMAL_EPSILON)
|
|
{
|
|
return plane_x;
|
|
}
|
|
|
|
if (ay > 1.0 - NORMAL_EPSILON && az < NORMAL_EPSILON && ax < NORMAL_EPSILON)
|
|
{
|
|
return plane_y;
|
|
}
|
|
|
|
if (az > 1.0 - NORMAL_EPSILON && ax < NORMAL_EPSILON && ay < NORMAL_EPSILON)
|
|
{
|
|
return plane_z;
|
|
}
|
|
#endif
|
|
|
|
if ((ax >= ay) && (ax >= az))
|
|
{
|
|
return plane_anyx;
|
|
}
|
|
if ((ay >= ax) && (ay >= az))
|
|
{
|
|
return plane_anyy;
|
|
}
|
|
return plane_anyz;
|
|
}
|
|
#else
|
|
inline planetypes PlaneTypeForNormal(vec3_t normal)
|
|
{
|
|
vec_t ax, ay, az;
|
|
|
|
ax = fabs(normal[0]);
|
|
if (ax == 1.0)
|
|
{
|
|
return plane_x;
|
|
}
|
|
|
|
ay = fabs(normal[1]);
|
|
if (ay == 1.0)
|
|
{
|
|
return plane_y;
|
|
}
|
|
|
|
az = fabs(normal[2]);
|
|
if (az == 1.0)
|
|
{
|
|
return plane_z;
|
|
}
|
|
|
|
if ((ax > ay) && (ax > az))
|
|
{
|
|
return plane_anyx;
|
|
}
|
|
if ((ay > ax) && (ay > az))
|
|
{
|
|
return plane_anyy;
|
|
}
|
|
return plane_anyz;
|
|
}
|
|
#endif
|
|
|
|
#endif //MATHLIB_H__
|