mirror of
https://github.com/nzp-team/fteqw.git
synced 2024-11-23 04:11:53 +00:00
2e1a70e319
maplist command now generates links. implemented skin objects for q3. added a csqc builtin for it. also supports compositing skins. playing demos inside zips/pk3s/paks should now work. bumped default rate cvar. added cl_transfer to attempt to connect to a new server without disconnecting first. rewrote fog command. alpha and mindist arguments are now supported. fog change also happens over a short time period. added new args to the showpic console command. can now create clickable items for touchscreen/absmouse users. fixed menus to properly support right-aligned text. this finally fixes variable-width fonts. rewrote console tab completion suggestions display. now clickable links. strings obtained from qc are now marked as const. this has required quite a few added consts all over the place. probably crappy attempt at adding joypad support to the sdl port. no idea if it works. changed key bind event code. buttons now track which event they should trigger when released, instead of being the same one the whole time. this allows +forward etc clickable buttons on screen. Also simplified modifier keys - they no longer trigger random events when pressing the modifier key itself. Right modifiers can now be bound separately from left modifiers. Right will use left's binding if not otherwise bound. Bind assumes left if there's no prefix. multiplayer->setup->network menu no longer crashes. added rgb colours to the translation view (but not to the colour-changing keys). added modelviewer command to view models. added menu_mods menu to switch mods in a more friendly way. will be shown by default if multiple manifests exist in the binarydir. clamped classic tracer density. scrag particles no longer look quite so buggy. added ifdefs to facilitate a potential winrt port. the engine should now have no extra dependencies, but still needs system code+audio drivers to be written. if it can't set a renderer, it'll now try to use *every* renderer until it finds one that works. added experimental mapcluster server mode (that console command). New maps will be started up as required. rewrote skeletal blending code a bit. added cylinder geomtypes. fix cfg_save writing to the wrong path bug. VFS_CLOSE now returns a boolean. false means there was some sort of fatal error (either crc when reading was bad, or the write got corrupted or something). Typically ignorable, depends how robust you want to be. win32 tls code now supports running as a server. added connect tls://address support, as well as equivalent sv_addport support. exposed basic model loading api to plugins. d3d11 backend now optionally supports tessellation hlsl. no suitable hlsl provided by default. !!tess to enable. attempted to add gamma ramp support for d3d11. added support for shader blobs to speed up load times. r_shaderblobs 1 to enable. almost vital for d3d11. added vid_srgb cvar. shadowless lights are no longer disabled if shadows are not supported. attempt to add support for touchscreens in win7/8. Wrote gimmicky lua support, using lua instead of ssqc. define VM_LUA to enable. updated saved game code. can again load saved games from vanilla-like engines. changed scale clamping. 0.0001 should no longer appear as 1. changed default mintic from 0.03 to 0.013 to match vanilla qw. I don't know why it was at 0.03. probably a typo. git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@4623 fc73d0e0-1445-4013-8a0c-d673dee63da5
1013 lines
26 KiB
C
1013 lines
26 KiB
C
/*
|
|
Copyright (C) 1996-1997 Id Software, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*/
|
|
|
|
#include "quakedef.h"
|
|
|
|
#ifdef _WIN32
|
|
#include "winquake.h"
|
|
#else
|
|
#include "unistd.h"
|
|
#endif
|
|
|
|
#define PACKET_HEADER 8
|
|
|
|
/*
|
|
|
|
packet header
|
|
-------------
|
|
31 sequence
|
|
1 does this message contain a reliable payload
|
|
31 acknowledge sequence
|
|
1 acknowledge receipt of even/odd message
|
|
16 qport (only from client)
|
|
15 fragoffset (extension)
|
|
1 lastfrag (extension)
|
|
|
|
The remote connection never knows if it missed a reliable message, the
|
|
local side detects that it has been dropped by seeing a sequence acknowledge
|
|
higher thatn the last reliable sequence, but without the correct even/odd
|
|
bit for the reliable set.
|
|
|
|
If the sender notices that a reliable message has been dropped, it will be
|
|
retransmitted. It will not be retransmitted again until a message after
|
|
the retransmit has been acknowledged and the reliable still failed to get there.
|
|
|
|
if the sequence number is -1, the packet should be handled without a netcon
|
|
|
|
The reliable message can be added to at any time by doing
|
|
MSG_Write* (&netchan->message, <data>).
|
|
|
|
If the message buffer is overflowed, either by a single message, or by
|
|
multiple frames worth piling up while the last reliable transmit goes
|
|
unacknowledged, the netchan signals a fatal error.
|
|
|
|
Reliable messages are always placed first in a packet, then the unreliable
|
|
message is included if there is sufficient room.
|
|
|
|
To the receiver, there is no distinction between the reliable and unreliable
|
|
parts of the message, they are just processed out as a single larger message.
|
|
|
|
Illogical packet sequence numbers cause the packet to be dropped, but do
|
|
not kill the connection. This, combined with the tight window of valid
|
|
reliable acknowledgement numbers provides protection against malicious
|
|
address spoofing.
|
|
|
|
The qport field is a workaround for bad address translating routers that
|
|
sometimes remap the client's source port on a packet during gameplay.
|
|
|
|
If the base part of the net address matches and the qport matches, then the
|
|
channel matches even if the IP port differs. The IP port should be updated
|
|
to the new value before sending out any replies.
|
|
|
|
fragmentation works like IP, offset and morefrags. offset is *8 (decode: (offset&~1)<<2 to avoid stomping on the morefrags flag, this allows really jumbo packets with 18 bits of length)
|
|
|
|
*/
|
|
|
|
int net_drop;
|
|
cvar_t showpackets = SCVAR("showpackets", "0");
|
|
cvar_t showdrop = SCVAR("showdrop", "0");
|
|
cvar_t qport = SCVAR("qport", "0");
|
|
cvar_t net_mtu = CVARD("net_mtu", "1440", "Specifies a maximum udp payload size, above which packets will be fragmented. If routers all worked properly this could be some massive value, and some massive value may work really nicely for lans. Use smaller values than the default if you're connecting through nested tunnels through routers that fail with IP fragmentation.");
|
|
|
|
cvar_t pext_replacementdeltas = CVAR("pext_replacementdeltas", "1");
|
|
cvar_t pext_nqpredinfo = CVAR("debug_pext_nqpredinfo", "0");
|
|
|
|
/*returns the entire bitmask of supported+enabled extensions*/
|
|
unsigned int Net_PextMask(int maskset, qboolean fornq)
|
|
{
|
|
unsigned int mask = 0;
|
|
if (maskset == 1) /*FTEX*/
|
|
{
|
|
#ifdef PEXT_SCALE
|
|
mask |= PEXT_SCALE;
|
|
#endif
|
|
#ifdef PEXT_LIGHTSTYLECOL
|
|
mask |= PEXT_LIGHTSTYLECOL;
|
|
#endif
|
|
#ifdef PEXT_TRANS
|
|
mask |= PEXT_TRANS;
|
|
#endif
|
|
#ifdef PEXT_VIEW2
|
|
mask |= PEXT_VIEW2;
|
|
#endif
|
|
#ifdef PEXT_ACCURATETIMINGS
|
|
mask |= PEXT_ACCURATETIMINGS;
|
|
#endif
|
|
#ifdef PEXT_ZLIBDL
|
|
mask |= PEXT_ZLIBDL;
|
|
#endif
|
|
#ifdef PEXT_FATNESS
|
|
mask |= PEXT_FATNESS;
|
|
#endif
|
|
#ifdef PEXT_HLBSP
|
|
mask |= PEXT_HLBSP;
|
|
#endif
|
|
|
|
#ifdef PEXT_Q2BSP
|
|
mask |= PEXT_Q2BSP;
|
|
#endif
|
|
#ifdef PEXT_Q3BSP
|
|
mask |= PEXT_Q3BSP;
|
|
#endif
|
|
|
|
#ifdef PEXT_TE_BULLET
|
|
mask |= PEXT_TE_BULLET;
|
|
#endif
|
|
#ifdef PEXT_HULLSIZE
|
|
mask |= PEXT_HULLSIZE;
|
|
#endif
|
|
#ifdef PEXT_SETVIEW
|
|
mask |= PEXT_SETVIEW;
|
|
#endif
|
|
#ifdef PEXT_MODELDBL
|
|
mask |= PEXT_MODELDBL;
|
|
#endif
|
|
#ifdef PEXT_SOUNDDBL
|
|
mask |= PEXT_SOUNDDBL;
|
|
#endif
|
|
#ifdef PEXT_VWEAP
|
|
mask |= PEXT_VWEAP;
|
|
#endif
|
|
#ifdef PEXT_FLOATCOORDS
|
|
mask |= PEXT_FLOATCOORDS;
|
|
#endif
|
|
mask |= PEXT_SPAWNSTATIC2;
|
|
mask |= PEXT_COLOURMOD;
|
|
mask |= PEXT_SPLITSCREEN;
|
|
mask |= PEXT_HEXEN2;
|
|
mask |= PEXT_CUSTOMTEMPEFFECTS;
|
|
mask |= PEXT_256PACKETENTITIES;
|
|
mask |= PEXT_ENTITYDBL;
|
|
mask |= PEXT_ENTITYDBL2;
|
|
mask |= PEXT_SHOWPIC;
|
|
mask |= PEXT_SETATTACHMENT;
|
|
#ifdef PEXT_CHUNKEDDOWNLOADS
|
|
mask |= PEXT_CHUNKEDDOWNLOADS;
|
|
#endif
|
|
#ifdef PEXT_CSQC
|
|
mask |= PEXT_CSQC;
|
|
#endif
|
|
#ifdef PEXT_DPFLAGS
|
|
mask |= PEXT_DPFLAGS;
|
|
#endif
|
|
|
|
if (fornq)
|
|
{
|
|
//only ones that are tested
|
|
mask &=
|
|
#ifdef PEXT_CSQC
|
|
PEXT_CSQC |
|
|
#endif
|
|
#ifdef PEXT_Q2BSP
|
|
PEXT_Q2BSP |
|
|
#endif
|
|
#ifdef PEXT_Q3BSP
|
|
PEXT_Q3BSP |
|
|
#endif
|
|
PEXT_FLOATCOORDS | PEXT_HLBSP;
|
|
|
|
//these all depend fully upon the player/entity deltas, and don't make sense for NQ. Implement PEXT2_REPLACEMENTDELTAS instead.
|
|
mask &= ~(PEXT_SCALE|PEXT_TRANS|PEXT_ACCURATETIMINGS|PEXT_FATNESS|PEXT_HULLSIZE|PEXT_MODELDBL|PEXT_ENTITYDBL|PEXT_ENTITYDBL2|PEXT_COLOURMOD|PEXT_SPAWNSTATIC2|PEXT_256PACKETENTITIES|PEXT_SETATTACHMENT|PEXT_DPFLAGS);
|
|
}
|
|
}
|
|
else if (maskset == 2)
|
|
{
|
|
mask |= PEXT2_PRYDONCURSOR;
|
|
#ifdef PEXT2_VOICECHAT
|
|
mask |= PEXT2_VOICECHAT;
|
|
#endif
|
|
mask |= PEXT2_SETANGLEDELTA;
|
|
|
|
if (pext_replacementdeltas.ival)
|
|
mask |= PEXT2_REPLACEMENTDELTAS;
|
|
if (fornq && pext_nqpredinfo.ival)
|
|
mask |= PEXT2_PREDINFO;
|
|
|
|
if (MAX_CLIENTS != QWMAX_CLIENTS)
|
|
mask |= PEXT2_MAXPLAYERS;
|
|
|
|
//kinda depenant
|
|
if (mask & PEXT2_PREDINFO)
|
|
mask |= PEXT2_REPLACEMENTDELTAS;
|
|
|
|
if (fornq)
|
|
{
|
|
//only ones that are tested
|
|
mask &= PEXT2_VOICECHAT | PEXT2_REPLACEMENTDELTAS | PEXT2_PREDINFO;
|
|
}
|
|
else
|
|
mask &= ~PEXT2_PREDINFO;
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
Netchan_Init
|
|
|
|
===============
|
|
*/
|
|
void Netchan_Init (void)
|
|
{
|
|
int port;
|
|
|
|
Cvar_Register (&pext_nqpredinfo, "Protocol Extensions");
|
|
Cvar_Register (&pext_replacementdeltas, "Protocol Extensions");
|
|
Cvar_Register (&showpackets, "Networking");
|
|
Cvar_Register (&showdrop, "Networking");
|
|
Cvar_Register (&qport, "Networking");
|
|
Cvar_Register (&net_mtu, "Networking");
|
|
|
|
// pick a port value that should be nice and random
|
|
#ifdef _WIN32
|
|
port = (time(NULL)) & 0xffff;
|
|
#elif defined(NACL)
|
|
port = ((int)(getpid()) * time(NULL)) & 0xffff;
|
|
#else
|
|
port = ((int)(getpid()+getuid()*1000) * time(NULL)) & 0xffff;
|
|
#endif
|
|
|
|
Cvar_SetValue (&qport, port);
|
|
}
|
|
|
|
/*
|
|
===============
|
|
Netchan_OutOfBand
|
|
|
|
Sends an out-of-band datagram
|
|
================
|
|
*/
|
|
void Netchan_OutOfBand (netsrc_t sock, netadr_t *adr, int length, qbyte *data)
|
|
{
|
|
sizebuf_t send;
|
|
qbyte send_buf[MAX_QWMSGLEN + PACKET_HEADER];
|
|
|
|
// write the packet header
|
|
memset(&send, 0, sizeof(send));
|
|
send.data = send_buf;
|
|
send.maxsize = sizeof(send_buf);
|
|
send.cursize = 0;
|
|
|
|
MSG_WriteLong (&send, -1); // -1 sequence means out of band
|
|
SZ_Write (&send, data, length);
|
|
|
|
// send the datagram
|
|
//zoid, no input in demo playback mode
|
|
#ifndef SERVERONLY
|
|
if (!cls.demoplayback)
|
|
#endif
|
|
NET_SendPacket (sock, send.cursize, send.data, adr);
|
|
}
|
|
|
|
/*
|
|
===============
|
|
Netchan_OutOfBandPrint
|
|
|
|
Sends a text message in an out-of-band datagram
|
|
================
|
|
*/
|
|
void VARGS Netchan_OutOfBandPrint (netsrc_t sock, netadr_t *adr, char *format, ...)
|
|
{
|
|
va_list argptr;
|
|
static char string[8192]; // ??? why static?
|
|
|
|
va_start (argptr, format);
|
|
vsnprintf (string,sizeof(string)-1, format,argptr);
|
|
va_end (argptr);
|
|
|
|
|
|
Netchan_OutOfBand (sock, adr, strlen(string), (qbyte *)string);
|
|
}
|
|
#ifndef CLIENTONLY
|
|
void VARGS Netchan_OutOfBandTPrintf (netsrc_t sock, netadr_t *adr, int language, translation_t text, ...)
|
|
{
|
|
va_list argptr;
|
|
static char string[8192]; // ??? why static?
|
|
|
|
const char *format = langtext(text, language);
|
|
|
|
string[0] = A2C_PRINT;
|
|
|
|
va_start (argptr, text);
|
|
vsnprintf (string+1,sizeof(string)-1, format,argptr);
|
|
va_end (argptr);
|
|
|
|
|
|
Netchan_OutOfBand (sock, adr, strlen(string), (qbyte *)string);
|
|
}
|
|
#endif
|
|
/*
|
|
==============
|
|
Netchan_Setup
|
|
|
|
called to open a channel to a remote system
|
|
==============
|
|
*/
|
|
void Netchan_Setup (netsrc_t sock, netchan_t *chan, netadr_t *adr, int qport)
|
|
{
|
|
memset (chan, 0, sizeof(*chan));
|
|
|
|
chan->sock = sock;
|
|
chan->remote_address = *adr;
|
|
chan->last_received = realtime;
|
|
#ifdef NQPROT
|
|
chan->nqreliable_allowed = true;
|
|
#endif
|
|
|
|
chan->message.data = chan->message_buf;
|
|
chan->message.allowoverflow = true;
|
|
chan->message.maxsize = MAX_QWMSGLEN;
|
|
|
|
chan->qport = qport;
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
Netchan_CanPacket
|
|
|
|
Returns true if the bandwidth choke isn't active
|
|
================
|
|
*/
|
|
#define MAX_BACKUP 200
|
|
qboolean Netchan_CanPacket (netchan_t *chan, int rate)
|
|
{
|
|
if (chan->remote_address.type == NA_LOOPBACK)
|
|
return true; //don't ever drop packets due to possible routing problems when there is no routing.
|
|
if (!rate)
|
|
return true;
|
|
if (chan->cleartime < realtime + 0.25)//(MAX_BACKUP/(float)rate))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void Netchan_Block (netchan_t *chan, int bytes, int rate)
|
|
{
|
|
if (rate)
|
|
{
|
|
if (chan->cleartime < realtime-0.25) //0.25 allows it to be a little bursty.
|
|
chan->cleartime = realtime + (bytes/(float)rate);
|
|
else
|
|
chan->cleartime += bytes/(float)rate;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
Netchan_CanReliable
|
|
|
|
Returns true if the bandwidth choke isn't
|
|
================
|
|
*/
|
|
qboolean Netchan_CanReliable (netchan_t *chan, int rate)
|
|
{
|
|
if (chan->reliable_length)
|
|
return false; // waiting for ack
|
|
return Netchan_CanPacket (chan, rate);
|
|
}
|
|
|
|
#ifdef SERVERONLY
|
|
qboolean ServerPaused(void);
|
|
#endif
|
|
|
|
#ifdef NQPROT
|
|
nqprot_t NQNetChan_Process(netchan_t *chan)
|
|
{
|
|
int header;
|
|
int sequence;
|
|
int drop;
|
|
|
|
chan->bytesin += net_message.cursize;
|
|
MSG_BeginReading (chan->netprim);
|
|
|
|
header = LongSwap(MSG_ReadLong());
|
|
if (net_message.cursize != (header & NETFLAG_LENGTH_MASK))
|
|
return NQP_ERROR; //size was wrong, couldn't have been ours.
|
|
|
|
if (header & NETFLAG_CTL)
|
|
return NQP_ERROR; //huh?
|
|
|
|
sequence = LongSwap(MSG_ReadLong());
|
|
|
|
if (header & NETFLAG_ACK)
|
|
{
|
|
if (sequence == chan->reliable_sequence)
|
|
{
|
|
chan->reliable_start += MAX_NQDATAGRAM;
|
|
if (chan->reliable_start >= chan->reliable_length)
|
|
{
|
|
chan->reliable_length = 0; //they got the entire message
|
|
chan->reliable_start = 0;
|
|
}
|
|
chan->incoming_reliable_acknowledged = chan->reliable_sequence;
|
|
chan->reliable_sequence++;
|
|
chan->nqreliable_allowed = true;
|
|
|
|
chan->last_received = realtime;
|
|
}
|
|
else if (sequence < chan->reliable_sequence)
|
|
{
|
|
if (showdrop.ival)
|
|
Con_Printf("Stale ack recieved\n");
|
|
}
|
|
else if (sequence > chan->reliable_sequence)
|
|
{
|
|
if (showdrop.ival)
|
|
Con_Printf("Future ack recieved\n");
|
|
}
|
|
|
|
if (showpackets.value)
|
|
Con_Printf ("in %s a=%i %i\n"
|
|
, chan->sock != NS_SERVER?"s2c":"c2s"
|
|
, sequence
|
|
, 0);
|
|
|
|
return NQP_ERROR; //don't try execing the 'payload'. I hate ack packets.
|
|
}
|
|
|
|
if (header & NETFLAG_UNRELIABLE)
|
|
{
|
|
if (sequence <= chan->incoming_unreliable)
|
|
{
|
|
if (showdrop.ival)
|
|
Con_Printf("Stale datagram recieved (%i<=%i)\n", sequence, chan->incoming_unreliable);
|
|
return NQP_ERROR;
|
|
}
|
|
drop = sequence - chan->incoming_unreliable - 1;
|
|
if (drop > 0)
|
|
{
|
|
if (showdrop.ival)
|
|
Con_Printf("Dropped %i datagrams (%i - %i)\n", drop, chan->incoming_unreliable+1, sequence-1);
|
|
chan->drop_count += drop;
|
|
}
|
|
chan->incoming_unreliable = sequence;
|
|
|
|
|
|
|
|
// chan->frame_latency = chan->frame_latency*OLD_AVG
|
|
// + (chan->outgoing_sequence-sequence_ack)*(1.0-OLD_AVG);
|
|
chan->frame_rate = chan->frame_rate*OLD_AVG
|
|
+ (realtime-chan->last_received)*(1.0-OLD_AVG);
|
|
|
|
chan->last_received = realtime;
|
|
|
|
chan->incoming_acknowledged++;
|
|
chan->good_count++;
|
|
|
|
if (showpackets.value)
|
|
Con_Printf ("in %s u=%i %i\n"
|
|
, chan->sock != NS_SERVER?"s2c":"c2s"
|
|
, chan->incoming_unreliable
|
|
, net_message.cursize);
|
|
return NQP_DATAGRAM;
|
|
}
|
|
if (header & NETFLAG_DATA)
|
|
{
|
|
int runt[2];
|
|
//always reply. a stale sequence probably means our ack got lost.
|
|
runt[0] = BigLong(NETFLAG_ACK | 8);
|
|
runt[1] = BigLong(sequence);
|
|
NET_SendPacket (chan->sock, 8, runt, &net_from);
|
|
if (showpackets.value)
|
|
Con_Printf ("out %s a=%i %i\n"
|
|
, chan->sock == NS_SERVER?"s2c":"c2s"
|
|
, sequence
|
|
, 0);
|
|
|
|
chan->last_received = realtime;
|
|
if (sequence == chan->incoming_reliable_sequence)
|
|
{
|
|
chan->incoming_reliable_sequence++;
|
|
|
|
if (chan->in_fragment_length + net_message.cursize-8 >= sizeof(chan->in_fragment_buf))
|
|
{
|
|
chan->fatal_error = true;
|
|
return NQP_ERROR;
|
|
}
|
|
|
|
memcpy(chan->in_fragment_buf + chan->in_fragment_length, net_message.data+8, net_message.cursize-8);
|
|
chan->in_fragment_length += net_message.cursize-8;
|
|
|
|
if (header & NETFLAG_EOM)
|
|
{
|
|
SZ_Clear(&net_message);
|
|
SZ_Write(&net_message, chan->in_fragment_buf, chan->in_fragment_length);
|
|
chan->in_fragment_length = 0;
|
|
MSG_BeginReading(chan->netprim);
|
|
|
|
if (showpackets.value)
|
|
Con_Printf ("in %s r=%i %i\n"
|
|
, chan->sock != NS_SERVER?"s2c":"c2s"
|
|
, sequence
|
|
, net_message.cursize);
|
|
return NQP_RELIABLE; //we can read it now
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (showdrop.ival)
|
|
Con_Printf("Stale reliable (%i)\n", sequence);
|
|
}
|
|
|
|
return NQP_ERROR;
|
|
}
|
|
|
|
return NQP_ERROR; //not supported.
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
===============
|
|
Netchan_Transmit
|
|
|
|
tries to send an unreliable message to a connection, and handles the
|
|
transmition / retransmition of the reliable messages.
|
|
|
|
A 0 length will still generate a packet and deal with the reliable messages.
|
|
================
|
|
*/
|
|
int Netchan_Transmit (netchan_t *chan, int length, qbyte *data, int rate)
|
|
{
|
|
sizebuf_t send;
|
|
qbyte send_buf[MAX_OVERALLMSGLEN + PACKET_HEADER];
|
|
qboolean send_reliable;
|
|
char remote_adr[MAX_ADR_SIZE];
|
|
unsigned w1, w2;
|
|
int i;
|
|
|
|
#ifdef NQPROT
|
|
if (chan->isnqprotocol)
|
|
{
|
|
int sentsize = 0;
|
|
|
|
send.data = send_buf;
|
|
send.maxsize = MAX_NQMSGLEN + PACKET_HEADER;
|
|
send.cursize = 0;
|
|
|
|
if ((chan->remote_address.type == NA_TCP || chan->remote_address.type == NA_TCPV6 || chan->remote_address.type == NA_TLSV4 || chan->remote_address.type == NA_TLSV6) && chan->reliable_length)
|
|
{
|
|
//if over tcp, everything is assumed to be reliable. pretend it got acked.
|
|
chan->reliable_length = 0; //they got the entire message
|
|
chan->reliable_start = 0;
|
|
chan->incoming_reliable_acknowledged = chan->reliable_sequence;
|
|
chan->reliable_sequence++;
|
|
chan->nqreliable_allowed = true;
|
|
}
|
|
|
|
/*unreliables flood out, but reliables are tied to server sequences*/
|
|
if (chan->nqreliable_resendtime < realtime)
|
|
chan->nqreliable_allowed = true;
|
|
if (chan->nqreliable_allowed)
|
|
{
|
|
//consume the new reliable when we can.
|
|
if (!chan->reliable_length && chan->message.cursize && !chan->nqunreliableonly)
|
|
{
|
|
memcpy (chan->reliable_buf, chan->message_buf, chan->message.cursize);
|
|
chan->reliable_length = chan->message.cursize;
|
|
chan->reliable_start = 0;
|
|
chan->message.cursize = 0;
|
|
}
|
|
|
|
i = chan->reliable_length - chan->reliable_start;
|
|
if (i>0)
|
|
{
|
|
MSG_WriteLong(&send, 0);
|
|
MSG_WriteLong(&send, LongSwap(chan->reliable_sequence));
|
|
if (i > MAX_NQDATAGRAM && chan->remote_address.type != NA_TCP)
|
|
i = MAX_NQDATAGRAM;
|
|
|
|
SZ_Write (&send, chan->reliable_buf+chan->reliable_start, i);
|
|
|
|
if (chan->reliable_start+i == chan->reliable_length)
|
|
{
|
|
if (send.cursize + length < send.maxsize)
|
|
{ //throw the unreliable packet into the same one as the reliable (but not sent reliably)
|
|
// SZ_Write (&send, data, length);
|
|
// length = 0;
|
|
}
|
|
|
|
*(int*)send_buf = BigLong(NETFLAG_DATA | NETFLAG_EOM | send.cursize);
|
|
}
|
|
else
|
|
*(int*)send_buf = BigLong(NETFLAG_DATA | send.cursize);
|
|
NET_SendPacket (chan->sock, send.cursize, send.data, &chan->remote_address);
|
|
chan->bytesout += send.cursize;
|
|
|
|
sentsize += send.cursize;
|
|
|
|
if (showpackets.value)
|
|
Con_Printf ("out %s r s=%i %i\n"
|
|
, chan->sock == NS_SERVER?"s2c":"c2s"
|
|
, chan->reliable_sequence
|
|
, send.cursize);
|
|
send.cursize = 0;
|
|
|
|
chan->nqreliable_allowed = false;
|
|
chan->nqreliable_resendtime = realtime + 0.3; //resend reliables after 0.3 seconds. nq transports suck.
|
|
}
|
|
}
|
|
|
|
//send out the unreliable (if still unsent)
|
|
if (length)
|
|
{
|
|
MSG_WriteLong(&send, 0);
|
|
MSG_WriteLong(&send, LongSwap(chan->outgoing_unreliable));
|
|
chan->outgoing_unreliable++;
|
|
|
|
SZ_Write (&send, data, length);
|
|
|
|
*(int*)send_buf = BigLong(NETFLAG_UNRELIABLE | send.cursize);
|
|
NET_SendPacket (chan->sock, send.cursize, send.data, &chan->remote_address);
|
|
sentsize += send.cursize;
|
|
|
|
if (showpackets.value)
|
|
Con_Printf ("out %s u=%i %i\n"
|
|
, chan->sock == NS_SERVER?"s2c":"c2s"
|
|
, chan->outgoing_unreliable-1
|
|
, send.cursize);
|
|
send.cursize = 0;
|
|
}
|
|
chan->bytesout += sentsize;
|
|
Netchan_Block(chan, sentsize, rate);
|
|
return sentsize;
|
|
}
|
|
#endif
|
|
|
|
// check for message overflow
|
|
if (chan->message.overflowed)
|
|
{
|
|
chan->fatal_error = true;
|
|
Con_TPrintf ("%s:Outgoing message overflow\n"
|
|
, NET_AdrToString (remote_adr, sizeof(remote_adr), &chan->remote_address));
|
|
return 0;
|
|
}
|
|
|
|
// if the remote side dropped the last reliable message, resend it
|
|
send_reliable = false;
|
|
|
|
if (chan->incoming_acknowledged > chan->last_reliable_sequence
|
|
&& chan->incoming_reliable_acknowledged != chan->reliable_sequence)
|
|
send_reliable = true;
|
|
|
|
// if the reliable transmit buffer is empty, copy the current message out
|
|
if (!chan->reliable_length && chan->message.cursize)
|
|
{
|
|
memcpy (chan->reliable_buf, chan->message_buf, chan->message.cursize);
|
|
chan->reliable_length = chan->message.cursize;
|
|
chan->message.cursize = 0;
|
|
chan->reliable_sequence ^= 1;
|
|
send_reliable = true;
|
|
}
|
|
|
|
// write the packet header
|
|
send.data = send_buf;
|
|
send.maxsize = MAX_QWMSGLEN + PACKET_HEADER;
|
|
send.cursize = 0;
|
|
|
|
w1 = chan->outgoing_sequence | (send_reliable<<31);
|
|
w2 = chan->incoming_sequence | (chan->incoming_reliable_sequence<<31);
|
|
|
|
chan->outgoing_sequence++;
|
|
|
|
MSG_WriteLong (&send, w1);
|
|
MSG_WriteLong (&send, w2);
|
|
|
|
// send the qport if we are a client
|
|
#ifndef SERVERONLY
|
|
if (chan->sock == NS_CLIENT)
|
|
MSG_WriteShort (&send, cls.qport);
|
|
#endif
|
|
|
|
if (chan->fragmentsize)
|
|
{
|
|
//allow the max size to be bigger
|
|
send.maxsize = MAX_OVERALLMSGLEN + PACKET_HEADER;
|
|
MSG_WriteShort(&send, 0);
|
|
}
|
|
|
|
// copy the reliable message to the packet first
|
|
if (send_reliable)
|
|
{
|
|
SZ_Write (&send, chan->reliable_buf, chan->reliable_length);
|
|
chan->last_reliable_sequence = chan->outgoing_sequence;
|
|
}
|
|
|
|
// add the unreliable part if space is available
|
|
if (send.maxsize - send.cursize >= length)
|
|
SZ_Write (&send, data, length);
|
|
|
|
// send the datagram
|
|
i = chan->outgoing_sequence & (MAX_LATENT-1);
|
|
chan->outgoing_size[i] = send.cursize;
|
|
chan->outgoing_time[i] = realtime;
|
|
|
|
#ifdef HUFFNETWORK
|
|
if (chan->compress)
|
|
{
|
|
//int oldsize = send.cursize;
|
|
Huff_CompressPacket(&send, 8 + ((chan->sock == NS_CLIENT)?2:0) + (chan->fragmentsize?2:0));
|
|
// Con_Printf("%i becomes %i\n", oldsize, send.cursize);
|
|
// Huff_DecompressPacket(&send, (chan->sock == NS_CLIENT)?10:8);
|
|
}
|
|
#endif
|
|
|
|
//zoid, no input in demo playback mode
|
|
#ifndef SERVERONLY
|
|
if (!cls.demoplayback)
|
|
#endif
|
|
{
|
|
int hsz = 10 + ((chan->sock == NS_CLIENT)?2:0); /*header size, if fragmentation is in use*/
|
|
|
|
if (!chan->fragmentsize || send.cursize < chan->fragmentsize - hsz)
|
|
NET_SendPacket (chan->sock, send.cursize, send.data, &chan->remote_address);
|
|
else
|
|
{
|
|
int offset = chan->fragmentsize - hsz, no;
|
|
qboolean more;
|
|
/*switch on the 'more flags' bit, and send the first part*/
|
|
send.data[hsz - 2] |= 0x1;
|
|
offset &= ~7;
|
|
NET_SendPacket (chan->sock, offset + hsz, send.data, &chan->remote_address);
|
|
|
|
/*send the additional parts, adding new headers within the previous packet*/
|
|
while(offset < send.cursize-hsz)
|
|
{
|
|
no = offset + chan->fragmentsize - hsz;
|
|
if (no < send.cursize-hsz)
|
|
{
|
|
no &= ~7;
|
|
more = true;
|
|
}
|
|
else
|
|
{
|
|
no = send.cursize-hsz;
|
|
more = false;
|
|
}
|
|
|
|
*(int*)&send.data[(offset) + 0] = LittleLong(w1);
|
|
*(int*)&send.data[(offset) + 4] = LittleLong(w2);
|
|
#ifndef SERVERONLY
|
|
if (chan->sock == NS_CLIENT)
|
|
*(short*)&send.data[offset + hsz-4] = LittleShort(cls.qport);
|
|
#endif
|
|
*(short*)&send.data[offset + hsz-2] = LittleShort((offset>>2) | (more?1:0));
|
|
|
|
NET_SendPacket (chan->sock, (no - offset) + hsz, send.data + offset, &chan->remote_address);
|
|
offset = no;
|
|
}
|
|
}
|
|
}
|
|
|
|
chan->bytesout += send.cursize;
|
|
Netchan_Block(chan, send.cursize, rate);
|
|
#ifdef SERVERONLY
|
|
if (ServerPaused())
|
|
chan->cleartime = realtime;
|
|
#endif
|
|
|
|
if (showpackets.value)
|
|
Con_Printf ("%s --> s=%i(%i) a=%i(%i) %i\n"
|
|
, chan->sock == NS_SERVER?"s2c":"c2s"
|
|
, chan->outgoing_sequence
|
|
, send_reliable
|
|
, chan->incoming_sequence
|
|
, chan->incoming_reliable_sequence
|
|
, send.cursize);
|
|
return send.cursize;
|
|
|
|
}
|
|
|
|
/*
|
|
=================
|
|
Netchan_Process
|
|
|
|
called when the current net_message is from remote_address
|
|
modifies net_message so that it points to the packet payload
|
|
=================
|
|
*/
|
|
qboolean Netchan_Process (netchan_t *chan)
|
|
{
|
|
unsigned sequence, sequence_ack;
|
|
unsigned reliable_ack, reliable_message;
|
|
char adr[MAX_ADR_SIZE];
|
|
int offset;
|
|
|
|
if (
|
|
#ifndef SERVERONLY
|
|
!cls.demoplayback &&
|
|
#endif
|
|
!NET_CompareAdr (&net_from, &chan->remote_address))
|
|
return false;
|
|
|
|
chan->bytesin += net_message.cursize;
|
|
|
|
// get sequence numbers
|
|
MSG_BeginReading (chan->netprim);
|
|
sequence = MSG_ReadLong ();
|
|
sequence_ack = MSG_ReadLong ();
|
|
|
|
// skip over the qport if we are a server (its handled elsewhere)
|
|
#ifndef CLIENTONLY
|
|
if (chan->sock == NS_SERVER)
|
|
MSG_ReadShort ();
|
|
#endif
|
|
|
|
if (chan->fragmentsize)
|
|
offset = (unsigned short)MSG_ReadShort();
|
|
else
|
|
offset = 0;
|
|
|
|
reliable_message = sequence >> 31;
|
|
reliable_ack = sequence_ack >> 31;
|
|
|
|
sequence &= ~(1<<31);
|
|
sequence_ack &= ~(1<<31);
|
|
|
|
if (showpackets.value)
|
|
Con_Printf ("%s <-- s=%i(%i) a=%i(%i) %i%s\n"
|
|
, chan->sock == NS_SERVER?"c2s":"s2c"
|
|
, sequence
|
|
, reliable_message
|
|
, sequence_ack
|
|
, reliable_ack
|
|
, net_message.cursize
|
|
, offset?" frag":"");
|
|
|
|
// get a rate estimation
|
|
#if 0
|
|
if (chan->outgoing_sequence - sequence_ack < MAX_LATENT)
|
|
{
|
|
int i;
|
|
double time, rate;
|
|
|
|
i = sequence_ack & (MAX_LATENT - 1);
|
|
time = realtime - chan->outgoing_time[i];
|
|
time -= 0.1; // subtract 100 ms
|
|
if (time <= 0)
|
|
{ // gotta be a digital link for <100 ms ping
|
|
if (chan->rate > 1.0/5000)
|
|
chan->rate = 1.0/5000;
|
|
}
|
|
else
|
|
{
|
|
if (chan->outgoing_size[i] < 512)
|
|
{ // only deal with small messages
|
|
rate = chan->outgoing_size[i]/time;
|
|
if (rate > 5000)
|
|
rate = 5000;
|
|
rate = 1.0/rate;
|
|
if (chan->rate > rate)
|
|
chan->rate = rate;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// discard stale or duplicated packets
|
|
//
|
|
if (sequence <= (unsigned)chan->incoming_sequence)
|
|
{
|
|
if (showdrop.value)
|
|
Con_TPrintf ("%s:Out of order packet %i at %i\n"
|
|
, NET_AdrToString (adr, sizeof(adr), &chan->remote_address)
|
|
, sequence
|
|
, chan->incoming_sequence);
|
|
return false;
|
|
}
|
|
|
|
if (offset)
|
|
{
|
|
int len = net_message.cursize - msg_readcount;
|
|
qboolean more = false;
|
|
if (offset & 1)
|
|
{
|
|
more = true;
|
|
offset &= ~1;
|
|
}
|
|
offset = offset << 2;
|
|
|
|
if (offset + len > sizeof(chan->in_fragment_buf)) /*stop the overflow*/
|
|
{
|
|
if (showdrop.value)
|
|
Con_Printf("Dropping packet - too many fragments\n");
|
|
return false;
|
|
}
|
|
if (chan->incoming_unreliable != sequence)
|
|
{
|
|
if (chan->in_fragment_length && showdrop.ival)
|
|
Con_Printf("final fragment lost (%i). dropping entire packet\n", offset);
|
|
/*sequence doesn't match, forget the old*/
|
|
chan->in_fragment_length = 0;
|
|
chan->incoming_unreliable = sequence;
|
|
}
|
|
if (offset != chan->in_fragment_length)
|
|
{
|
|
if (showdrop.ival)
|
|
Con_Printf("prior fragment lost (%i-%i). dropping entire packet\n", offset, chan->in_fragment_length);
|
|
return false; /*dropped one*/
|
|
}
|
|
|
|
memcpy(chan->in_fragment_buf + offset, net_message.data + msg_readcount, len);
|
|
chan->in_fragment_length += len;
|
|
|
|
if (more)
|
|
{
|
|
/*nothing to process yet*/
|
|
return false;
|
|
}
|
|
memcpy(net_message.data, chan->in_fragment_buf, chan->in_fragment_length);
|
|
msg_readcount = 0;
|
|
net_message.cursize = chan->in_fragment_length;
|
|
|
|
if (showpackets.value)
|
|
Con_Printf ("<-- s=%i(%i) a=%i(%i) %i Recombined\n"
|
|
, sequence
|
|
, reliable_message
|
|
, sequence_ack
|
|
, reliable_ack
|
|
, net_message.cursize);
|
|
|
|
chan->incoming_unreliable = 0;
|
|
chan->in_fragment_length = 0;
|
|
}
|
|
else
|
|
{
|
|
/*kill any pending reliable*/
|
|
chan->incoming_unreliable = 0;
|
|
chan->in_fragment_length = 0;
|
|
}
|
|
|
|
//
|
|
// dropped packets don't keep the message from being used
|
|
//
|
|
net_drop = sequence - (chan->incoming_sequence+1);
|
|
if (net_drop > 0)
|
|
{
|
|
chan->drop_count += 1;
|
|
|
|
if (showdrop.value)
|
|
Con_TPrintf ("%s:Dropped %i packets at %i\n"
|
|
, NET_AdrToString (adr, sizeof(adr), &chan->remote_address)
|
|
, sequence-(chan->incoming_sequence+1)
|
|
, sequence);
|
|
}
|
|
|
|
//
|
|
// if the current outgoing reliable message has been acknowledged
|
|
// clear the buffer to make way for the next
|
|
//
|
|
if (reliable_ack == (unsigned)chan->reliable_sequence)
|
|
chan->reliable_length = 0; // it has been received
|
|
|
|
//
|
|
// if this message contains a reliable message, bump incoming_reliable_sequence
|
|
//
|
|
chan->incoming_sequence = sequence;
|
|
chan->incoming_acknowledged = sequence_ack;
|
|
chan->incoming_reliable_acknowledged = reliable_ack;
|
|
if (reliable_message)
|
|
chan->incoming_reliable_sequence ^= 1;
|
|
|
|
//
|
|
// the message can now be read from the current message pointer
|
|
// update statistics counters
|
|
//
|
|
chan->frame_latency = chan->frame_latency*OLD_AVG
|
|
+ (chan->outgoing_sequence-sequence_ack)*(1.0-OLD_AVG);
|
|
chan->frame_rate = chan->frame_rate*OLD_AVG
|
|
+ (realtime-chan->last_received)*(1.0-OLD_AVG);
|
|
chan->good_count += 1;
|
|
|
|
chan->last_received = realtime;
|
|
|
|
#ifdef HUFFNETWORK
|
|
if (chan->compress)
|
|
{
|
|
// Huff_CompressPacket(&net_message, (chan->sock == NS_SERVER)?10:8);
|
|
Huff_DecompressPacket(&net_message, msg_readcount);
|
|
}
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|