mirror of
https://github.com/nzp-team/fteqw.git
synced 2024-11-30 07:31:13 +00:00
7f00235804
git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@16 fc73d0e0-1445-4013-8a0c-d673dee63da5
573 lines
14 KiB
C
573 lines
14 KiB
C
#include "bothdefs.h"
|
|
|
|
#ifdef VOICECHAT
|
|
|
|
/*
|
|
* This source code is a product of Sun Microsystems, Inc. and is provided
|
|
* for unrestricted use. Users may copy or modify this source code without
|
|
* charge.
|
|
*
|
|
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
|
|
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
|
|
*
|
|
* Sun source code is provided with no support and without any obligation on
|
|
* the part of Sun Microsystems, Inc. to assist in its use, correction,
|
|
* modification or enhancement.
|
|
*
|
|
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
|
|
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
|
|
* OR ANY PART THEREOF.
|
|
*
|
|
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
|
|
* or profits or other special, indirect and consequential damages, even if
|
|
* Sun has been advised of the possibility of such damages.
|
|
*
|
|
* Sun Microsystems, Inc.
|
|
* 2550 Garcia Avenue
|
|
* Mountain View, California 94043
|
|
*/
|
|
|
|
/*
|
|
* g72x.c
|
|
*
|
|
* Common routines for G.721 and G.723 conversions.
|
|
*/
|
|
|
|
#include "g72x.h"
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
static short power2[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
|
|
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000};
|
|
|
|
/*
|
|
* quan()
|
|
*
|
|
* quantizes the input val against the table of size short integers.
|
|
* It returns i if table[i - 1] <= val < table[i].
|
|
*
|
|
* Using linear search for simple coding.
|
|
*/
|
|
static int
|
|
quan(
|
|
int val,
|
|
short *table,
|
|
int size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < size; i++)
|
|
if (val < *table++)
|
|
break;
|
|
return (i);
|
|
}
|
|
|
|
/*
|
|
* fmult()
|
|
*
|
|
* returns the integer product of the 14-bit integer "an" and
|
|
* "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
|
|
*/
|
|
static int
|
|
fmult(
|
|
int an,
|
|
int srn)
|
|
{
|
|
short anmag, anexp, anmant;
|
|
short wanexp, wanmant;
|
|
short retval;
|
|
|
|
anmag = (an > 0) ? an : ((-an) & 0x1FFF);
|
|
anexp = quan(anmag, power2, 15) - 6;
|
|
anmant = (anmag == 0) ? 32 :
|
|
(anexp >= 0) ? anmag >> anexp : anmag << -anexp;
|
|
wanexp = anexp + ((srn >> 6) & 0xF) - 13;
|
|
|
|
wanmant = (anmant * (srn & 077) + 0x30) >> 4;
|
|
retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
|
|
(wanmant >> -wanexp);
|
|
|
|
return (((an ^ srn) < 0) ? -retval : retval);
|
|
}
|
|
|
|
/*
|
|
* g72x_init_state()
|
|
*
|
|
* This routine initializes and/or resets the g72x_state structure
|
|
* pointed to by 'state_ptr'.
|
|
* All the initial state values are specified in the CCITT G.721 document.
|
|
*/
|
|
void
|
|
g72x_init_state(
|
|
struct g72x_state *state_ptr)
|
|
{
|
|
int cnta;
|
|
|
|
state_ptr->yl = 34816;
|
|
state_ptr->yu = 544;
|
|
state_ptr->dms = 0;
|
|
state_ptr->dml = 0;
|
|
state_ptr->ap = 0;
|
|
for (cnta = 0; cnta < 2; cnta++) {
|
|
state_ptr->a[cnta] = 0;
|
|
state_ptr->pk[cnta] = 0;
|
|
state_ptr->sr[cnta] = 32;
|
|
}
|
|
for (cnta = 0; cnta < 6; cnta++) {
|
|
state_ptr->b[cnta] = 0;
|
|
state_ptr->dq[cnta] = 32;
|
|
}
|
|
state_ptr->td = 0;
|
|
}
|
|
|
|
/*
|
|
* predictor_zero()
|
|
*
|
|
* computes the estimated signal from 6-zero predictor.
|
|
*
|
|
*/
|
|
int
|
|
predictor_zero(
|
|
struct g72x_state *state_ptr)
|
|
{
|
|
int i;
|
|
int sezi;
|
|
|
|
sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
|
|
for (i = 1; i < 6; i++) /* ACCUM */
|
|
sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
|
|
return (sezi);
|
|
}
|
|
/*
|
|
* predictor_pole()
|
|
*
|
|
* computes the estimated signal from 2-pole predictor.
|
|
*
|
|
*/
|
|
int
|
|
predictor_pole(
|
|
struct g72x_state *state_ptr)
|
|
{
|
|
return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
|
|
fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
|
|
}
|
|
/*
|
|
* step_size()
|
|
*
|
|
* computes the quantization step size of the adaptive quantizer.
|
|
*
|
|
*/
|
|
int
|
|
step_size(
|
|
struct g72x_state *state_ptr)
|
|
{
|
|
int y;
|
|
int dif;
|
|
int al;
|
|
|
|
if (state_ptr->ap >= 256)
|
|
return (state_ptr->yu);
|
|
else {
|
|
y = state_ptr->yl >> 6;
|
|
dif = state_ptr->yu - y;
|
|
al = state_ptr->ap >> 2;
|
|
if (dif > 0)
|
|
y += (dif * al) >> 6;
|
|
else if (dif < 0)
|
|
y += (dif * al + 0x3F) >> 6;
|
|
return (y);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* quantize()
|
|
*
|
|
* Given a raw sample, 'd', of the difference signal and a
|
|
* quantization step size scale factor, 'y', this routine returns the
|
|
* ADPCM codeword to which that sample gets quantized. The step
|
|
* size scale factor division operation is done in the log base 2 domain
|
|
* as a subtraction.
|
|
*/
|
|
int
|
|
quantize(
|
|
int d, /* Raw difference signal sample */
|
|
int y, /* Step size multiplier */
|
|
short *table, /* quantization table */
|
|
int size) /* table size of short integers */
|
|
{
|
|
short dqm; /* Magnitude of 'd' */
|
|
short exp; /* Integer part of base 2 log of 'd' */
|
|
short mant; /* Fractional part of base 2 log */
|
|
short dl; /* Log of magnitude of 'd' */
|
|
short dln; /* Step size scale factor normalized log */
|
|
int i;
|
|
|
|
/*
|
|
* LOG
|
|
*
|
|
* Compute base 2 log of 'd', and store in 'dl'.
|
|
*/
|
|
dqm = abs(d);
|
|
exp = quan(dqm >> 1, power2, 15);
|
|
mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */
|
|
dl = (exp << 7) + mant;
|
|
|
|
/*
|
|
* SUBTB
|
|
*
|
|
* "Divide" by step size multiplier.
|
|
*/
|
|
dln = dl - (y >> 2);
|
|
|
|
/*
|
|
* QUAN
|
|
*
|
|
* Obtain codword i for 'd'.
|
|
*/
|
|
i = quan(dln, table, size);
|
|
if (d < 0) /* take 1's complement of i */
|
|
return ((size << 1) + 1 - i);
|
|
else if (i == 0) /* take 1's complement of 0 */
|
|
return ((size << 1) + 1); /* new in 1988 */
|
|
else
|
|
return (i);
|
|
}
|
|
/*
|
|
* reconstruct()
|
|
*
|
|
* Returns reconstructed difference signal 'dq' obtained from
|
|
* codeword 'i' and quantization step size scale factor 'y'.
|
|
* Multiplication is performed in log base 2 domain as addition.
|
|
*/
|
|
int
|
|
reconstruct(
|
|
int sign, /* 0 for non-negative value */
|
|
int dqln, /* G.72x codeword */
|
|
int y) /* Step size multiplier */
|
|
{
|
|
short dql; /* Log of 'dq' magnitude */
|
|
short dex; /* Integer part of log */
|
|
short dqt;
|
|
short dq; /* Reconstructed difference signal sample */
|
|
|
|
dql = dqln + (y >> 2); /* ADDA */
|
|
|
|
if (dql < 0) {
|
|
return ((sign) ? -0x8000 : 0);
|
|
} else { /* ANTILOG */
|
|
dex = (dql >> 7) & 15;
|
|
dqt = 128 + (dql & 127);
|
|
dq = (dqt << 7) >> (14 - dex);
|
|
return ((sign) ? (dq - 0x8000) : dq);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* update()
|
|
*
|
|
* updates the state variables for each output code
|
|
*/
|
|
void
|
|
update(
|
|
int code_size, /* distinguish 723_40 with others */
|
|
int y, /* quantizer step size */
|
|
int wi, /* scale factor multiplier */
|
|
int fi, /* for long/short term energies */
|
|
int dq, /* quantized prediction difference */
|
|
int sr, /* reconstructed signal */
|
|
int dqsez, /* difference from 2-pole predictor */
|
|
struct g72x_state *state_ptr) /* coder state pointer */
|
|
{
|
|
int cnt;
|
|
short mag, exp; /* Adaptive predictor, FLOAT A */
|
|
short a2p; /* LIMC */
|
|
short a1ul; /* UPA1 */
|
|
short pks1; /* UPA2 */
|
|
short fa1;
|
|
char tr; /* tone/transition detector */
|
|
short ylint, thr2, dqthr;
|
|
short ylfrac, thr1;
|
|
short pk0;
|
|
|
|
pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */
|
|
|
|
mag = dq & 0x7FFF; /* prediction difference magnitude */
|
|
/* TRANS */
|
|
ylint = (short)(state_ptr->yl >> 15); /* exponent part of yl */
|
|
ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */
|
|
thr1 = (32 + ylfrac) << ylint; /* threshold */
|
|
thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */
|
|
dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */
|
|
if (state_ptr->td == 0) /* signal supposed voice */
|
|
tr = 0;
|
|
else if (mag <= dqthr) /* supposed data, but small mag */
|
|
tr = 0; /* treated as voice */
|
|
else /* signal is data (modem) */
|
|
tr = 1;
|
|
|
|
/*
|
|
* Quantizer scale factor adaptation.
|
|
*/
|
|
|
|
/* FUNCTW & FILTD & DELAY */
|
|
/* update non-steady state step size multiplier */
|
|
state_ptr->yu = y + ((wi - y) >> 5);
|
|
|
|
/* LIMB */
|
|
if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */
|
|
state_ptr->yu = 544;
|
|
else if (state_ptr->yu > 5120)
|
|
state_ptr->yu = 5120;
|
|
|
|
/* FILTE & DELAY */
|
|
/* update steady state step size multiplier */
|
|
state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
|
|
|
|
/*
|
|
* Adaptive predictor coefficients.
|
|
*/
|
|
if (tr == 1) { /* reset a's and b's for modem signal */
|
|
state_ptr->a[0] = 0;
|
|
state_ptr->a[1] = 0;
|
|
state_ptr->b[0] = 0;
|
|
state_ptr->b[1] = 0;
|
|
state_ptr->b[2] = 0;
|
|
state_ptr->b[3] = 0;
|
|
state_ptr->b[4] = 0;
|
|
state_ptr->b[5] = 0;
|
|
} else { /* update a's and b's */
|
|
pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */
|
|
|
|
/* update predictor pole a[1] */
|
|
a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
|
|
if (dqsez != 0) {
|
|
fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
|
|
if (fa1 < -8191) /* a2p = function of fa1 */
|
|
a2p -= 0x100;
|
|
else if (fa1 > 8191)
|
|
a2p += 0xFF;
|
|
else
|
|
a2p += fa1 >> 5;
|
|
|
|
if (pk0 ^ state_ptr->pk[1])
|
|
/* LIMC */
|
|
if (a2p <= -12160)
|
|
a2p = -12288;
|
|
else if (a2p >= 12416)
|
|
a2p = 12288;
|
|
else
|
|
a2p -= 0x80;
|
|
else if (a2p <= -12416)
|
|
a2p = -12288;
|
|
else if (a2p >= 12160)
|
|
a2p = 12288;
|
|
else
|
|
a2p += 0x80;
|
|
}
|
|
|
|
/* TRIGB & DELAY */
|
|
state_ptr->a[1] = a2p;
|
|
|
|
/* UPA1 */
|
|
/* update predictor pole a[0] */
|
|
state_ptr->a[0] -= state_ptr->a[0] >> 8;
|
|
if (dqsez != 0)
|
|
{
|
|
if (pks1 == 0)
|
|
state_ptr->a[0] += 192;
|
|
else
|
|
state_ptr->a[0] -= 192;
|
|
}
|
|
|
|
/* LIMD */
|
|
a1ul = 15360 - a2p;
|
|
if (state_ptr->a[0] < -a1ul)
|
|
state_ptr->a[0] = -a1ul;
|
|
else if (state_ptr->a[0] > a1ul)
|
|
state_ptr->a[0] = a1ul;
|
|
|
|
/* UPB : update predictor zeros b[6] */
|
|
for (cnt = 0; cnt < 6; cnt++) {
|
|
if (code_size == 5) /* for 40Kbps G.723 */
|
|
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
|
|
else /* for G.721 and 24Kbps G.723 */
|
|
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
|
|
if (dq & 0x7FFF) { /* XOR */
|
|
if ((dq ^ state_ptr->dq[cnt]) >= 0)
|
|
state_ptr->b[cnt] += 128;
|
|
else
|
|
state_ptr->b[cnt] -= 128;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (cnt = 5; cnt > 0; cnt--)
|
|
state_ptr->dq[cnt] = state_ptr->dq[cnt-1];
|
|
/* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
|
|
if (mag == 0) {
|
|
state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20;
|
|
} else {
|
|
exp = quan(mag, power2, 15);
|
|
state_ptr->dq[0] = (dq >= 0) ?
|
|
(exp << 6) + ((mag << 6) >> exp) :
|
|
(exp << 6) + ((mag << 6) >> exp) - 0x400;
|
|
}
|
|
|
|
state_ptr->sr[1] = state_ptr->sr[0];
|
|
/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
|
|
if (sr == 0) {
|
|
state_ptr->sr[0] = 0x20;
|
|
} else if (sr > 0) {
|
|
exp = quan(sr, power2, 15);
|
|
state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
|
|
} else if (sr > -32768) {
|
|
mag = -sr;
|
|
exp = quan(mag, power2, 15);
|
|
state_ptr->sr[0] = (exp << 6) + ((mag << 6) >> exp) - 0x400;
|
|
} else
|
|
state_ptr->sr[0] = (short)0xFC20;
|
|
|
|
/* DELAY A */
|
|
state_ptr->pk[1] = state_ptr->pk[0];
|
|
state_ptr->pk[0] = pk0;
|
|
|
|
/* TONE */
|
|
if (tr == 1) /* this sample has been treated as data */
|
|
state_ptr->td = 0; /* next one will be treated as voice */
|
|
else if (a2p < -11776) /* small sample-to-sample correlation */
|
|
state_ptr->td = 1; /* signal may be data */
|
|
else /* signal is voice */
|
|
state_ptr->td = 0;
|
|
|
|
/*
|
|
* Adaptation speed control.
|
|
*/
|
|
state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */
|
|
state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */
|
|
|
|
if (tr == 1)
|
|
state_ptr->ap = 256;
|
|
else if (y < 1536) /* SUBTC */
|
|
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
|
|
else if (state_ptr->td == 1)
|
|
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
|
|
else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
|
|
(state_ptr->dml >> 3))
|
|
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
|
|
else
|
|
state_ptr->ap += (-state_ptr->ap) >> 4;
|
|
}
|
|
|
|
/*
|
|
* tandem_adjust(sr, se, y, i, sign)
|
|
*
|
|
* At the end of ADPCM decoding, it simulates an encoder which may be receiving
|
|
* the output of this decoder as a tandem process. If the output of the
|
|
* simulated encoder differs from the input to this decoder, the decoder output
|
|
* is adjusted by one level of A-law or u-law codes.
|
|
*
|
|
* Input:
|
|
* sr decoder output linear PCM sample,
|
|
* se predictor estimate sample,
|
|
* y quantizer step size,
|
|
* i decoder input code,
|
|
* sign sign bit of code i
|
|
*
|
|
* Return:
|
|
* adjusted A-law or u-law compressed sample.
|
|
*/
|
|
int
|
|
tandem_adjust_alaw(
|
|
int sr, /* decoder output linear PCM sample */
|
|
int se, /* predictor estimate sample */
|
|
int y, /* quantizer step size */
|
|
int i, /* decoder input code */
|
|
int sign,
|
|
short *qtab)
|
|
{
|
|
unsigned char sp; /* A-law compressed 8-bit code */
|
|
short dx; /* prediction error */
|
|
char id; /* quantized prediction error */
|
|
int sd; /* adjusted A-law decoded sample value */
|
|
int im; /* biased magnitude of i */
|
|
int imx; /* biased magnitude of id */
|
|
|
|
if (sr <= -32768)
|
|
sr = -1;
|
|
sp = linear2alaw((sr >> 1) << 3); /* short to A-law compression */
|
|
dx = (alaw2linear(sp) >> 2) - se; /* 16-bit prediction error */
|
|
id = quantize(dx, y, qtab, sign - 1);
|
|
|
|
if (id == i) { /* no adjustment on sp */
|
|
return (sp);
|
|
} else { /* sp adjustment needed */
|
|
/* ADPCM codes : 8, 9, ... F, 0, 1, ... , 6, 7 */
|
|
im = i ^ sign; /* 2's complement to biased unsigned */
|
|
imx = id ^ sign;
|
|
|
|
if (imx > im) { /* sp adjusted to next lower value */
|
|
if (sp & 0x80) {
|
|
sd = (sp == 0xD5) ? 0x55 :
|
|
((sp ^ 0x55) - 1) ^ 0x55;
|
|
} else {
|
|
sd = (sp == 0x2A) ? 0x2A :
|
|
((sp ^ 0x55) + 1) ^ 0x55;
|
|
}
|
|
} else { /* sp adjusted to next higher value */
|
|
if (sp & 0x80)
|
|
sd = (sp == 0xAA) ? 0xAA :
|
|
((sp ^ 0x55) + 1) ^ 0x55;
|
|
else
|
|
sd = (sp == 0x55) ? 0xD5 :
|
|
((sp ^ 0x55) - 1) ^ 0x55;
|
|
}
|
|
return (sd);
|
|
}
|
|
}
|
|
|
|
int
|
|
tandem_adjust_ulaw(
|
|
int sr, /* decoder output linear PCM sample */
|
|
int se, /* predictor estimate sample */
|
|
int y, /* quantizer step size */
|
|
int i, /* decoder input code */
|
|
int sign,
|
|
short *qtab)
|
|
{
|
|
unsigned char sp; /* u-law compressed 8-bit code */
|
|
short dx; /* prediction error */
|
|
char id; /* quantized prediction error */
|
|
int sd; /* adjusted u-law decoded sample value */
|
|
int im; /* biased magnitude of i */
|
|
int imx; /* biased magnitude of id */
|
|
|
|
if (sr <= -32768)
|
|
sr = 0;
|
|
sp = linear2ulaw(sr << 2); /* short to u-law compression */
|
|
dx = (ulaw2linear(sp) >> 2) - se; /* 16-bit prediction error */
|
|
id = quantize(dx, y, qtab, sign - 1);
|
|
if (id == i) {
|
|
return (sp);
|
|
} else {
|
|
/* ADPCM codes : 8, 9, ... F, 0, 1, ... , 6, 7 */
|
|
im = i ^ sign; /* 2's complement to biased unsigned */
|
|
imx = id ^ sign;
|
|
if (imx > im) { /* sp adjusted to next lower value */
|
|
if (sp & 0x80)
|
|
sd = (sp == 0xFF) ? 0x7E : sp + 1;
|
|
else
|
|
sd = (sp == 0) ? 0 : sp - 1;
|
|
|
|
} else { /* sp adjusted to next higher value */
|
|
if (sp & 0x80)
|
|
sd = (sp == 0x80) ? 0x80 : sp - 1;
|
|
else
|
|
sd = (sp == 0x7F) ? 0xFE : sp + 1;
|
|
}
|
|
return (sd);
|
|
}
|
|
}
|
|
|
|
#endif
|