mirror of
https://github.com/nzp-team/fteqw.git
synced 2024-11-23 20:32:43 +00:00
ce5cb75832
git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@2951 fc73d0e0-1445-4013-8a0c-d673dee63da5
168 lines
4.6 KiB
C
168 lines
4.6 KiB
C
/*
|
|
Copyright (C) 1996-1997 Id Software, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*/
|
|
/*
|
|
memory allocation
|
|
|
|
|
|
H_??? The hunk manages the entire memory block given to quake. It must be
|
|
contiguous. Memory can be allocated from either the low or high end in a
|
|
stack fashion. The only way memory is released is by resetting one of the
|
|
pointers.
|
|
|
|
Hunk allocations should be given a name, so the Hunk_Print () function
|
|
can display usage.
|
|
|
|
Hunk allocations are guaranteed to be 16 byte aligned.
|
|
|
|
The video buffers are allocated high to avoid leaving a hole underneath
|
|
server allocations when changing to a higher video mode.
|
|
|
|
|
|
Z_??? Zone memory functions used for small, dynamic allocations like text
|
|
strings from command input. There is only about 48K for it, allocated at
|
|
the very bottom of the hunk.
|
|
|
|
Cache_??? Cache memory is for objects that can be dynamically loaded and
|
|
can usefully stay persistant between levels. The size of the cache
|
|
fluctuates from level to level.
|
|
|
|
To allocate a cachable object
|
|
|
|
|
|
Temp_??? Temp memory is used for file loading and surface caching. The size
|
|
of the cache memory is adjusted so that there is a minimum of 512k remaining
|
|
for temp memory.
|
|
|
|
|
|
------ Top of Memory -------
|
|
|
|
high hunk allocations
|
|
|
|
<--- high hunk reset point held by vid
|
|
|
|
video buffer
|
|
|
|
z buffer
|
|
|
|
surface cache
|
|
|
|
<--- high hunk used
|
|
|
|
cachable memory
|
|
|
|
<--- low hunk used
|
|
|
|
client and server low hunk allocations
|
|
|
|
<-- low hunk reset point held by host
|
|
|
|
startup hunk allocations
|
|
|
|
Zone block
|
|
|
|
----- Bottom of Memory -----
|
|
|
|
|
|
|
|
*/
|
|
|
|
void Memory_Init (void *buf, int size);
|
|
void Memory_DeInit(void);
|
|
|
|
void VARGS Z_Free (void *ptr);
|
|
void *Z_Malloc (int size); // returns 0 filled memory
|
|
void *ZF_Malloc (int size); // allowed to fail
|
|
//#define Z_Malloc(x) Z_MallocNamed2(x, __FILE__, __LINE__ )
|
|
void *VARGS Z_TagMalloc (int size, int tag);
|
|
void VARGS Z_TagFree(void *ptr);
|
|
void VARGS Z_FreeTags(int tag);
|
|
//void *Z_Realloc (void *ptr, int size);
|
|
|
|
//Big Zone: allowed to fail, doesn't clear. The expectation is a large file, rather than sensative data structures.
|
|
//(this is a nicer name for malloc)
|
|
void *BZ_Malloc(int size);
|
|
void *BZF_Malloc(int size);
|
|
void *BZ_Realloc(void *ptr, int size);
|
|
void *BZF_Realloc(void *data, int newsize);
|
|
void BZ_Free(void *ptr);
|
|
|
|
#ifdef NAMEDMALLOCS
|
|
#define BZ_Malloc(size) Z_MallocNamed(size, __FILE__, __LINE__)
|
|
|
|
|
|
#define Z_Malloc(size) Z_MallocNamed(size, __FILE__, __LINE__)
|
|
|
|
#define BZ_Realloc(ptr, size) BZ_NamedRealloc(ptr, size, __FILE__, __LINE__)
|
|
#endif
|
|
|
|
void *Hunk_Alloc (int size); // returns 0 filled memory
|
|
void *Hunk_AllocName (int size, char *name);
|
|
|
|
void *Hunk_HighAllocName (int size, char *name);
|
|
|
|
int Hunk_LowMark (void);
|
|
void Hunk_FreeToLowMark (int mark);
|
|
int Hunk_LowMemAvailable(void);
|
|
|
|
int Hunk_HighMark (void);
|
|
void Hunk_FreeToHighMark (int mark);
|
|
|
|
void *Hunk_TempAlloc (int size);
|
|
void *Hunk_TempAllocMore (int size); //Don't clear old temp
|
|
|
|
void Hunk_Check (void);
|
|
|
|
typedef struct cache_user_s
|
|
{
|
|
void *data;
|
|
qboolean fake;
|
|
} cache_user_t;
|
|
|
|
void Cache_Flush (void);
|
|
|
|
void *Cache_Check (cache_user_t *c);
|
|
// returns the cached data, and moves to the head of the LRU list
|
|
// if present, otherwise returns NULL
|
|
|
|
void Cache_Free (cache_user_t *c);
|
|
|
|
void *Cache_Alloc (cache_user_t *c, int size, char *name);
|
|
// Returns NULL if all purgable data was tossed and there still
|
|
// wasn't enough room.
|
|
|
|
void Cache_Report (void);
|
|
|
|
// Constant Block memory functions
|
|
// - Constant blocks are used for loads of strings/etc that
|
|
// are allocated once and change very little during the rest
|
|
// of run time, such as cvar names and default values
|
|
typedef struct const_block_s {
|
|
int curleft; // current bytes left in block
|
|
int cursize; // current maximum size of block
|
|
int memstep; // bytes to step per realloc
|
|
char *point; // current block point
|
|
char *block; // memory block
|
|
} const_block_t;
|
|
|
|
const_block_t *CB_Malloc (int size, int step);
|
|
//char *CB_Slice (const_block_t *cb, int size);
|
|
char *CB_Copy (const_block_t *cb, char *data, int size);
|
|
void CB_Free (const_block_t *cb);
|
|
|