/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // r_light.c #include "quakedef.h" #if defined(GLQUAKE) || defined(D3DQUAKE) #include "glquake.h" #include "shader.h" extern cvar_t r_shadow_realtime_world, r_shadow_realtime_world_lightmaps; int r_dlightframecount; int d_lightstylevalue[256]; // 8.8 fraction of base light value /* ================== R_AnimateLight ================== */ void R_AnimateLight (void) { int i,j; float f; // // light animations // 'm' is normal light, 'a' is no light, 'z' is double bright f = (cl.time*r_lightstylespeed.value); if (f < 0) f = 0; i = (int)f; f -= i; //this can require updates at 1000 times a second.. Depends on your framerate of course for (j=0 ; j r_lightstylesmooth_limit.ival) d_lightstylevalue[j] = v1*22; else d_lightstylevalue[j] = (v1*(1-f) + v2*(f))*22; } } /* ============================================================================= DYNAMIC LIGHTS BLEND RENDERING ============================================================================= */ void AddLightBlend (float r, float g, float b, float a2) { float a; r = bound(0, r, 1); g = bound(0, g, 1); b = bound(0, b, 1); sw_blend[3] = a = sw_blend[3] + a2*(1-sw_blend[3]); a2 = a2/a; sw_blend[0] = sw_blend[0]*(1-a2) + r*a2; sw_blend[1] = sw_blend[1]*(1-a2) + g*a2; sw_blend[2] = sw_blend[2]*(1-a2) + b*a2; //Con_Printf("AddLightBlend(): %4.2f %4.2f %4.2f %4.6f\n", v_blend[0], v_blend[1], v_blend[2], v_blend[3]); } static float bubble_sintable[17], bubble_costable[17]; static void R_InitBubble(void) { float a; int i; float *bub_sin, *bub_cos; bub_sin = bubble_sintable; bub_cos = bubble_costable; for (i=16 ; i>=0 ; i--) { a = i/16.0 * M_PI*2; *bub_sin++ = sin(a); *bub_cos++ = cos(a); } } #define FLASHBLEND_VERTS 16 avec4_t flashblend_colours[FLASHBLEND_VERTS+1]; vecV_t flashblend_vcoords[FLASHBLEND_VERTS+1]; vec2_t flashblend_tccoords[FLASHBLEND_VERTS+1]; index_t flashblend_indexes[FLASHBLEND_VERTS*3]; index_t flashblend_fsindexes[6] = {0, 1, 2, 0, 2, 3}; mesh_t flashblend_mesh; mesh_t flashblend_fsmesh; shader_t *flashblend_shader; shader_t *lpplight_shader; void R_InitFlashblends(void) { int i; for (i = 0; i < FLASHBLEND_VERTS; i++) { flashblend_indexes[i*3+0] = 0; if (i+1 == FLASHBLEND_VERTS) flashblend_indexes[i*3+1] = 1; else flashblend_indexes[i*3+1] = i+2; flashblend_indexes[i*3+2] = i+1; } flashblend_mesh.numvertexes = FLASHBLEND_VERTS+1; flashblend_mesh.xyz_array = flashblend_vcoords; flashblend_mesh.st_array = flashblend_tccoords; flashblend_mesh.colors4f_array = flashblend_colours; flashblend_mesh.indexes = flashblend_indexes; flashblend_mesh.numindexes = FLASHBLEND_VERTS*3; flashblend_mesh.istrifan = true; flashblend_fsmesh.numvertexes = 4; flashblend_fsmesh.xyz_array = flashblend_vcoords; flashblend_fsmesh.st_array = flashblend_tccoords; flashblend_fsmesh.colors4f_array = flashblend_colours; flashblend_fsmesh.indexes = flashblend_fsindexes; flashblend_fsmesh.numindexes = 6; flashblend_fsmesh.istrifan = true; flashblend_shader = R_RegisterShader("flashblend", "{\n" "{\n" "map %whiteimage\n" "blendfunc gl_one gl_one\n" "rgbgen vertex\n" "alphagen vertex\n" "}\n" "}\n" ); lpplight_shader = NULL; R_InitBubble(); } static qboolean R_BuildDlightMesh(dlight_t *light, float radscale, qboolean expand) { int i, j; // float a; vec3_t v; float rad; float *bub_sin, *bub_cos; vec3_t colour; extern cvar_t gl_mindist; bub_sin = bubble_sintable; bub_cos = bubble_costable; rad = light->radius * radscale; VectorCopy(light->color, colour); if (light->fov) { float a = -DotProduct(light->axis[0], vpn); colour[0] *= a; colour[1] *= a; colour[2] *= a; rad *= a; rad *= 0.33; } VectorSubtract (light->origin, r_origin, v); if (Length (v) < rad + gl_mindist.value*2) { // view is inside the dlight return false; } flashblend_colours[0][0] = colour[0]*2; flashblend_colours[0][1] = colour[1]*2; flashblend_colours[0][2] = colour[2]*2; flashblend_colours[0][3] = 1; VectorCopy(light->origin, flashblend_vcoords[0]); for (i=FLASHBLEND_VERTS ; i>0 ; i--) { for (j=0 ; j<3 ; j++) flashblend_vcoords[i][j] = light->origin[j] + (vright[j]*(*bub_cos) + + vup[j]*(*bub_sin)) * rad; bub_sin++; bub_cos++; } if (!expand) VectorMA(flashblend_vcoords[0], -rad/1.5, vpn, flashblend_vcoords[0]); else { vec3_t diff; VectorSubtract(r_origin, light->origin, diff); VectorNormalize(diff); for (i=0 ; i<=FLASHBLEND_VERTS ; i++) VectorMA(flashblend_vcoords[i], rad, diff, flashblend_vcoords[i]); } return true; } /* ============= R_RenderDlights ============= */ void R_RenderDlights (void) { int i; dlight_t *l; vec3_t waste1, waste2; unsigned int beflags = 0; switch(r_flashblend.ival) { case 0: return; default: case 1: break; case 2: beflags |= BEF_FORCENODEPTH; break; } // r_dlightframecount = r_framecount + 1; // because the count hasn't // advanced yet for this frame l = cl_dlights+rtlights_first; for (i=rtlights_first; iradius || !(l->flags & LFLAG_FLASHBLEND)) continue; //dlights emitting from the local player are not visible as flashblends if (l->key == cl.playernum[r_refdef.currentplayernum]+1) continue; //was a glow if (l->key == -(cl.playernum[r_refdef.currentplayernum]+1)) continue; //was a muzzleflash if (r_flashblend.ival == 2) { if (TraceLineN(r_refdef.vieworg, l->origin, waste1, waste2)) continue; } if (!R_BuildDlightMesh (l, r_flashblendscale.value, false)) AddLightBlend (l->color[0]*5, l->color[1]*5, l->color[2]*5, l->radius * 0.0003); else BE_DrawMesh_Single(flashblend_shader, &flashblend_mesh, NULL, &flashblend_shader->defaulttextures, beflags); } } void R_GenDlightMesh(struct batch_s *batch) { static mesh_t *meshptr; dlight_t *l = cl_dlights + batch->surf_first; BE_SelectDLight(l, l->color); if (!R_BuildDlightMesh (l, 1, true)) { int i; static vec2_t s[4] = {{1, -1}, {-1, -1}, {-1, 1}, {1, 1}}; batch->flags |= BEF_FORCENODEPTH; for (i = 0; i < 4; i++) { VectorMA(r_origin, 32, vpn, flashblend_vcoords[i]); VectorMA(flashblend_vcoords[i], s[i][0]*320, vright, flashblend_vcoords[i]); VectorMA(flashblend_vcoords[i], s[i][1]*320, vup, flashblend_vcoords[i]); } meshptr = &flashblend_fsmesh; } else { meshptr = &flashblend_mesh; } batch->mesh = &meshptr; } void R_GenDlightBatches(batch_t *batches[]) { int i, sort; dlight_t *l; batch_t *b; if (!lpplight_shader) lpplight_shader = R_RegisterShader("lpp_light", "{\n" "program lpp_light\n" "{\n" "map $sourcecolour\n" "blendfunc gl_one gl_one\n" "}\n" "surfaceparm nodlight\n" "lpp_light\n" "}\n" ); l = cl_dlights+rtlights_first; for (i=rtlights_first; iradius) continue; if (R_CullSphere(l->origin, l->radius)) continue; b = BE_GetTempBatch(); if (!b) return; b->flags = 0; sort = lpplight_shader->sort; b->buildmeshes = R_GenDlightMesh; b->ent = &r_worldentity; b->mesh = NULL; b->firstmesh = 0; b->meshes = 1; b->skin = &lpplight_shader->defaulttextures; b->texture = NULL; b->shader = lpplight_shader; b->lightmap = -1; b->surf_first = i; b->flags |= BEF_NOSHADOWS; b->vbo = 0; b->next = batches[sort]; batches[sort] = b; } } /* ============================================================================= DYNAMIC LIGHTS ============================================================================= */ /* ============= R_PushDlights ============= */ void R_PushDlights (void) { int i; dlight_t *l; r_dlightframecount = r_framecount + 1; // because the count hasn't // advanced yet for this frame #ifdef RTLIGHTS /*if we're doing full rtlighting only, then don't bother calculating old-style dlights as they won't be visible anyway*/ if (r_shadow_realtime_world.value && r_shadow_realtime_world_lightmaps.value < 0.1) return; #endif if (!r_dynamic.ival || !cl.worldmodel) return; if (!cl.worldmodel->nodes) return; currentmodel = cl.worldmodel; if (!currentmodel->funcs.MarkLights) return; l = cl_dlights+rtlights_first; for (i=rtlights_first ; i <= DL_LAST ; i++, l++) { if (!l->radius || !(l->flags & LFLAG_LIGHTMAP)) continue; currentmodel->funcs.MarkLights( l, 1<nodes ); } } /* ============================================================================= LIGHT SAMPLING ============================================================================= */ mplane_t *lightplane; vec3_t lightspot; void GLQ3_LightGrid(model_t *mod, vec3_t point, vec3_t res_diffuse, vec3_t res_ambient, vec3_t res_dir) { q3lightgridinfo_t *lg = (q3lightgridinfo_t *)cl.worldmodel->lightgrid; int index[8]; int vi[3]; int i, j; float t[8], direction_uv[3]; vec3_t vf, vf2; vec3_t ambient, diffuse; if (res_dir) { res_dir[0] = 1; res_dir[1] = 1; res_dir[2] = 0.1; } if (!lg || !lg->lightgrid) { if(res_ambient) { res_ambient[0] = 64; res_ambient[1] = 64; res_ambient[2] = 64; } if (res_diffuse) { res_diffuse[0] = 192; res_diffuse[1] = 192; res_diffuse[2] = 192; } return; } //If in doubt, steal someone else's code... //Thanks QFusion. for ( i = 0; i < 3; i++ ) { vf[i] = (point[i] - lg->gridMins[i]) / lg->gridSize[i]; vi[i] = (int)(vf[i]); vf[i] = vf[i] - floor(vf[i]); vf2[i] = 1.0f - vf[i]; } index[0] = vi[2]*lg->gridBounds[3] + vi[1]*lg->gridBounds[0] + vi[0]; index[1] = index[0] + lg->gridBounds[0]; index[2] = index[0] + lg->gridBounds[3]; index[3] = index[2] + lg->gridBounds[0]; index[4] = index[0]+(index[0]<(lg->numlightgridelems-1)); index[5] = index[1]+(index[1]<(lg->numlightgridelems-1)); index[6] = index[2]+(index[2]<(lg->numlightgridelems-1)); index[7] = index[3]+(index[3]<(lg->numlightgridelems-1)); for ( i = 0; i < 8; i++ ) { if ( index[i] < 0 || index[i] >= (lg->numlightgridelems) ) { res_ambient[0] = 255; //out of the map res_ambient[1] = 255; res_ambient[2] = 255; return; } } t[0] = vf2[0] * vf2[1] * vf2[2]; t[1] = vf[0] * vf2[1] * vf2[2]; t[2] = vf2[0] * vf[1] * vf2[2]; t[3] = vf[0] * vf[1] * vf2[2]; t[4] = vf2[0] * vf2[1] * vf[2]; t[5] = vf[0] * vf2[1] * vf[2]; t[6] = vf2[0] * vf[1] * vf[2]; t[7] = vf[0] * vf[1] * vf[2]; for ( j = 0; j < 3; j++ ) { ambient[j] = 0; diffuse[j] = 0; for ( i = 0; i < 4; i++ ) { ambient[j] += t[i*2] * lg->lightgrid[ index[i]].ambient[j]; ambient[j] += t[i*2+1] * lg->lightgrid[ index[i+4]].ambient[j]; diffuse[j] += t[i*2] * lg->lightgrid[ index[i]].diffuse[j]; diffuse[j] += t[i*2+1] * lg->lightgrid[ index[i+4]].diffuse[j]; } } for ( j = 0; j < 2; j++ ) { direction_uv[j] = 0; for ( i = 0; i < 4; i++ ) { direction_uv[j] += t[i*2] * lg->lightgrid[ index[i]].direction[j]; direction_uv[j] += t[i*2+1] * lg->lightgrid[ index[i+4]].direction[j]; } direction_uv[j] = anglemod ( direction_uv[j] ); } VectorScale(ambient, 4, ambient); VectorScale(diffuse, 4, diffuse); /*ambient is the min level*/ /*diffuse is the max level*/ VectorCopy(ambient, res_ambient); if (res_diffuse) VectorAdd(diffuse, ambient, res_diffuse); if (res_dir) { vec3_t right, left; direction_uv[2] = 0; AngleVectors(direction_uv, res_dir, right, left); } } int GLRecursiveLightPoint (mnode_t *node, vec3_t start, vec3_t end) { int r; float front, back, frac; int side; mplane_t *plane; vec3_t mid; msurface_t *surf; int s, t, ds, dt; int i; mtexinfo_t *tex; qbyte *lightmap; unsigned scale; int maps; if (cl.worldmodel->fromgame == fg_quake2) { if (node->contents != -1) return -1; // solid } else if (node->contents < 0) return -1; // didn't hit anything // calculate mid point // FIXME: optimize for axial plane = node->plane; front = DotProduct (start, plane->normal) - plane->dist; back = DotProduct (end, plane->normal) - plane->dist; side = front < 0; if ( (back < 0) == side) return GLRecursiveLightPoint (node->children[side], start, end); frac = front / (front-back); mid[0] = start[0] + (end[0] - start[0])*frac; mid[1] = start[1] + (end[1] - start[1])*frac; mid[2] = start[2] + (end[2] - start[2])*frac; // go down front side r = GLRecursiveLightPoint (node->children[side], start, mid); if (r >= 0) return r; // hit something if ( (back < 0) == side ) return -1; // didn't hit anuthing // check for impact on this node VectorCopy (mid, lightspot); lightplane = plane; surf = cl.worldmodel->surfaces + node->firstsurface; for (i=0 ; inumsurfaces ; i++, surf++) { if (surf->flags & SURF_DRAWTILED) continue; // no lightmaps tex = surf->texinfo; s = DotProduct (mid, tex->vecs[0]) + tex->vecs[0][3]; t = DotProduct (mid, tex->vecs[1]) + tex->vecs[1][3];; if (s < surf->texturemins[0] || t < surf->texturemins[1]) continue; ds = s - surf->texturemins[0]; dt = t - surf->texturemins[1]; if ( ds > surf->extents[0] || dt > surf->extents[1] ) continue; if (!surf->samples) return 0; ds >>= 4; dt >>= 4; lightmap = surf->samples; r = 0; if (lightmap) { if (cl.worldmodel->engineflags & MDLF_RGBLIGHTING) { lightmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3; for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ; maps++) { scale = d_lightstylevalue[surf->styles[maps]]; r += (lightmap[0]+lightmap[1]+lightmap[2]) * scale / 3; lightmap += ((surf->extents[0]>>4)+1) * ((surf->extents[1]>>4)+1)*3; } } else { lightmap += dt * ((surf->extents[0]>>4)+1) + ds; for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ; maps++) { scale = d_lightstylevalue[surf->styles[maps]]; r += *lightmap * scale; lightmap += ((surf->extents[0]>>4)+1) * ((surf->extents[1]>>4)+1); } } r >>= 8; } return r; } // go down back side return GLRecursiveLightPoint (node->children[!side], mid, end); } int GLR_LightPoint (vec3_t p) { vec3_t end; int r; if (r_refdef.flags & 1) return 255; if (!cl.worldmodel || !cl.worldmodel->lightdata) return 255; if (cl.worldmodel->fromgame == fg_quake3) { GLQ3_LightGrid(cl.worldmodel, p, NULL, end, NULL); return (end[0] + end[1] + end[2])/3; } end[0] = p[0]; end[1] = p[1]; end[2] = p[2] - 2048; r = GLRecursiveLightPoint (cl.worldmodel->nodes, p, end); if (r == -1) r = 0; return r; } #ifdef PEXT_LIGHTSTYLECOL float *GLRecursiveLightPoint3C (mnode_t *node, vec3_t start, vec3_t end) { static float l[6]; float *r; float front, back, frac; int side; mplane_t *plane; vec3_t mid; msurface_t *surf; int s, t, ds, dt; int i; mtexinfo_t *tex; qbyte *lightmap, *deluxmap; float scale; int maps; if (cl.worldmodel->fromgame == fg_quake2) { if (node->contents != -1) return NULL; // solid } else if (node->contents < 0) return NULL; // didn't hit anything // calculate mid point // FIXME: optimize for axial plane = node->plane; front = DotProduct (start, plane->normal) - plane->dist; back = DotProduct (end, plane->normal) - plane->dist; side = front < 0; if ( (back < 0) == side) return GLRecursiveLightPoint3C (node->children[side], start, end); frac = front / (front-back); mid[0] = start[0] + (end[0] - start[0])*frac; mid[1] = start[1] + (end[1] - start[1])*frac; mid[2] = start[2] + (end[2] - start[2])*frac; // go down front side r = GLRecursiveLightPoint3C (node->children[side], start, mid); if (r && r[0]+r[1]+r[2] >= 0) return r; // hit something if ( (back < 0) == side ) return NULL; // didn't hit anuthing // check for impact on this node VectorCopy (mid, lightspot); lightplane = plane; surf = cl.worldmodel->surfaces + node->firstsurface; for (i=0 ; inumsurfaces ; i++, surf++) { if (surf->flags & SURF_DRAWTILED) continue; // no lightmaps tex = surf->texinfo; s = DotProduct (mid, tex->vecs[0]) + tex->vecs[0][3]; t = DotProduct (mid, tex->vecs[1]) + tex->vecs[1][3]; if (s < surf->texturemins[0] || t < surf->texturemins[1]) continue; ds = s - surf->texturemins[0]; dt = t - surf->texturemins[1]; if ( ds > surf->extents[0] || dt > surf->extents[1] ) continue; if (!surf->samples) { l[0]=0;l[1]=0;l[2]=0; l[3]=0;l[4]=1;l[5]=1; return l; } ds >>= 4; dt >>= 4; lightmap = surf->samples; l[0]=0;l[1]=0;l[2]=0; l[3]=0;l[4]=0;l[5]=0; if (lightmap) { if (cl.worldmodel->deluxdata) { if (cl.worldmodel->engineflags & MDLF_RGBLIGHTING) { deluxmap = surf->samples - cl.worldmodel->lightdata + cl.worldmodel->deluxdata; lightmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3; deluxmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3; for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ; maps++) { scale = d_lightstylevalue[surf->styles[maps]]/256.0f; if (cl_lightstyle[surf->styles[maps]].colour & 1) l[0] += lightmap[0] * scale; if (cl_lightstyle[surf->styles[maps]].colour & 2) l[1] += lightmap[1] * scale; if (cl_lightstyle[surf->styles[maps]].colour & 4) l[2] += lightmap[2] * scale; l[3] += (deluxmap[0]-127)*scale; l[4] += (deluxmap[1]-127)*scale; l[5] += (deluxmap[2]-127)*scale; lightmap += ((surf->extents[0]>>4)+1) * ((surf->extents[1]>>4)+1) * 3; deluxmap += ((surf->extents[0]>>4)+1) * ((surf->extents[1]>>4)+1) * 3; } } else { deluxmap = (surf->samples - cl.worldmodel->lightdata)*3 + cl.worldmodel->deluxdata; lightmap += (dt * ((surf->extents[0]>>4)+1) + ds); deluxmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3; for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ; maps++) { scale = d_lightstylevalue[surf->styles[maps]]/256.0f; if (cl_lightstyle[surf->styles[maps]].colour & 1) l[0] += *lightmap * scale; if (cl_lightstyle[surf->styles[maps]].colour & 2) l[1] += *lightmap * scale; if (cl_lightstyle[surf->styles[maps]].colour & 4) l[2] += *lightmap * scale; l[3] += deluxmap[0]*scale; l[4] += deluxmap[1]*scale; l[5] += deluxmap[2]*scale; lightmap += ((surf->extents[0]>>4)+1) * ((surf->extents[1]>>4)+1); deluxmap += ((surf->extents[0]>>4)+1) * ((surf->extents[1]>>4)+1) * 3; } } } else { if (cl.worldmodel->engineflags & MDLF_RGBLIGHTING) { lightmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3; for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ; maps++) { scale = d_lightstylevalue[surf->styles[maps]]/256.0f; if (cl_lightstyle[surf->styles[maps]].colour & 1) l[0] += lightmap[0] * scale; if (cl_lightstyle[surf->styles[maps]].colour & 2) l[1] += lightmap[1] * scale; if (cl_lightstyle[surf->styles[maps]].colour & 4) l[2] += lightmap[2] * scale; lightmap += ((surf->extents[0]>>4)+1) * ((surf->extents[1]>>4)+1) * 3; } } else { lightmap += (dt * ((surf->extents[0]>>4)+1) + ds); for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ; maps++) { scale = d_lightstylevalue[surf->styles[maps]]/256.0f; if (cl_lightstyle[surf->styles[maps]].colour & 1) l[0] += *lightmap * scale; if (cl_lightstyle[surf->styles[maps]].colour & 2) l[1] += *lightmap * scale; if (cl_lightstyle[surf->styles[maps]].colour & 4) l[2] += *lightmap * scale; lightmap += ((surf->extents[0]>>4)+1) * ((surf->extents[1]>>4)+1); } } } } return l; } // go down back side return GLRecursiveLightPoint3C (node->children[!side], mid, end); } #endif void GLQ1BSP_LightPointValues(model_t *model, vec3_t point, vec3_t res_diffuse, vec3_t res_ambient, vec3_t res_dir) { vec3_t end; float *r; extern cvar_t r_shadow_realtime_world, r_shadow_realtime_world_lightmaps; if (!cl.worldmodel->lightdata || r_fullbright.ival) { res_diffuse[0] = 0; res_diffuse[1] = 0; res_diffuse[2] = 0; res_ambient[0] = 255; res_ambient[1] = 255; res_ambient[2] = 255; res_dir[0] = 1; res_dir[1] = 1; res_dir[2] = 0.1; VectorNormalize(res_dir); return; } end[0] = point[0]; end[1] = point[1]; end[2] = point[2] - 2048; r = GLRecursiveLightPoint3C(model->nodes, point, end); if (r == NULL) { res_diffuse[0] = 0; res_diffuse[1] = 0; res_diffuse[2] = 0; res_ambient[0] = 0; res_ambient[1] = 0; res_ambient[2] = 0; res_dir[0] = 0; res_dir[1] = 1; res_dir[2] = 1; } else { res_diffuse[0] = r[0]; res_diffuse[1] = r[1]; res_diffuse[2] = r[2]; /*bright on one side, dark on the other, but not too dark*/ res_ambient[0] = r[0]/3; res_ambient[1] = r[1]/3; res_ambient[2] = r[2]/3; res_dir[0] = r[3]; res_dir[1] = r[4]; res_dir[2] = -r[5]; if (!res_dir[0] && !res_dir[1] && !res_dir[2]) res_dir[1] = res_dir[2] = 1; VectorNormalize(res_dir); } if (r_shadow_realtime_world.ival) { VectorScale(res_diffuse, r_shadow_realtime_world_lightmaps.value, res_diffuse); VectorScale(res_ambient, r_shadow_realtime_world_lightmaps.value, res_ambient); } } #endif