/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // mathlib.c -- math primitives #include "quakedef.h" #include vec3_t vec3_origin = {0,0,0}; /*-----------------------------------------------------------------*/ #define DEG2RAD( a ) ( a * M_PI ) / 180.0F void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal ) { float d; vec3_t n; float inv_denom; inv_denom = 1.0F / DotProduct( normal, normal ); d = DotProduct( normal, p ) * inv_denom; n[0] = normal[0] * inv_denom; n[1] = normal[1] * inv_denom; n[2] = normal[2] * inv_denom; dst[0] = p[0] - d * n[0]; dst[1] = p[1] - d * n[1]; dst[2] = p[2] - d * n[2]; } /* ** assumes "src" is normalized */ void PerpendicularVector( vec3_t dst, const vec3_t src ) { int pos; int i; float minelem = 1.0F; vec3_t tempvec; /* ** find the smallest magnitude axially aligned vector */ for ( pos = 0, i = 0; i < 3; i++ ) { if ( fabs( src[i] ) < minelem ) { pos = i; minelem = fabs( src[i] ); } } tempvec[0] = tempvec[1] = tempvec[2] = 0.0F; tempvec[pos] = 1.0F; /* ** project the point onto the plane defined by src */ ProjectPointOnPlane( dst, tempvec, src ); /* ** normalize the result */ VectorNormalize( dst ); } #ifdef _MSC_VER #pragma optimize( "", off ) #endif void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ) { float m[3][3]; float im[3][3]; float zrot[3][3]; float tmpmat[3][3]; float rot[3][3]; int i; vec3_t vr, vup, vf; vf[0] = dir[0]; vf[1] = dir[1]; vf[2] = dir[2]; PerpendicularVector( vr, dir ); CrossProduct( vr, vf, vup ); m[0][0] = vr[0]; m[1][0] = vr[1]; m[2][0] = vr[2]; m[0][1] = vup[0]; m[1][1] = vup[1]; m[2][1] = vup[2]; m[0][2] = vf[0]; m[1][2] = vf[1]; m[2][2] = vf[2]; memcpy( im, m, sizeof( im ) ); im[0][1] = m[1][0]; im[0][2] = m[2][0]; im[1][0] = m[0][1]; im[1][2] = m[2][1]; im[2][0] = m[0][2]; im[2][1] = m[1][2]; memset( zrot, 0, sizeof( zrot ) ); zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F; zrot[0][0] = cos( DEG2RAD( degrees ) ); zrot[0][1] = sin( DEG2RAD( degrees ) ); zrot[1][0] = -sin( DEG2RAD( degrees ) ); zrot[1][1] = cos( DEG2RAD( degrees ) ); R_ConcatRotations( m, zrot, tmpmat ); R_ConcatRotations( tmpmat, im, rot ); for ( i = 0; i < 3; i++ ) { dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2]; } } #ifdef _MSC_VER #pragma optimize( "", on ) #endif /*-----------------------------------------------------------------*/ float anglemod(float a) { #if 0 if (a >= 0) a -= 360*(int)(a/360); else a += 360*( 1 + (int)(-a/360) ); #endif a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535); return a; } /* ================== BOPS_Error Split out like this for ASM to call. ================== */ void VARGS BOPS_Error (void) { Sys_Error ("BoxOnPlaneSide: Bad signbits"); } #if !id386 /* ================== BoxOnPlaneSide Returns 1, 2, or 1 + 2 ================== */ int VARGS BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, mplane_t *p) { float dist1, dist2; int sides; #if 0 // this is done by the BOX_ON_PLANE_SIDE macro before calling this // function // fast axial cases if (p->type < 3) { if (p->dist <= emins[p->type]) return 1; if (p->dist >= emaxs[p->type]) return 2; return 3; } #endif // general case switch (p->signbits) { case 0: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; break; case 1: dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; break; case 2: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; break; case 3: dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; break; case 4: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; break; case 5: dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; break; case 6: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; break; case 7: dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; break; default: dist1 = dist2 = 0; // shut up compiler BOPS_Error (); break; } #if 0 int i; vec3_t corners[2]; for (i=0 ; i<3 ; i++) { if (plane->normal[i] < 0) { corners[0][i] = emins[i]; corners[1][i] = emaxs[i]; } else { corners[1][i] = emins[i]; corners[0][i] = emaxs[i]; } } dist = DotProduct (plane->normal, corners[0]) - plane->dist; dist2 = DotProduct (plane->normal, corners[1]) - plane->dist; sides = 0; if (dist1 >= 0) sides = 1; if (dist2 < 0) sides |= 2; #endif sides = 0; if (dist1 >= p->dist) sides = 1; if (dist2 < p->dist) sides |= 2; #ifdef PARANOID if (sides == 0) Sys_Error ("BoxOnPlaneSide: sides==0"); #endif return sides; } #endif void VVPerpendicularVector(vec3_t dst, const vec3_t src) { if (!src[0]) { dst[0] = 1; dst[1] = dst[2] = 0; } else if (!src[1]) { dst[1] = 1; dst[0] = dst[2] = 0; } else if (!src[2]) { dst[2] = 1; dst[0] = dst[1] = 0; } else { dst[0] = -src[1]; dst[1] = src[0]; dst[2] = 0; VectorNormalize(dst); } } void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up) { VVPerpendicularVector(right, forward); CrossProduct(right, forward, up); } void VectorAngles(float *forward, float *up, float *result) //up may be NULL { float yaw, pitch, roll; if (forward[1] == 0 && forward[0] == 0) { if (forward[2] > 0) { pitch = 90; yaw = up ? atan2(-up[1], -up[0]) : 0; } else { pitch = 270; yaw = up ? atan2(up[1], up[0]) : 0; } roll = 0; } else { yaw = atan2(forward[1], forward[0]); pitch = -atan2(forward[2], sqrt (forward[0]*forward[0] + forward[1]*forward[1])); if (up) { vec_t cp = cos(pitch), sp = sin(pitch); vec_t cy = cos(yaw), sy = sin(yaw); vec3_t tleft, tup; tleft[0] = -sy; tleft[1] = cy; tleft[2] = 0; tup[0] = sp*cy; tup[1] = sp*sy; tup[2] = cp; roll = -atan2(DotProduct(up, tleft), DotProduct(up, tup)); } else roll = 0; } pitch *= -180 / M_PI; yaw *= 180 / M_PI; roll *= 180 / M_PI; if (pitch < 0) pitch += 360; if (yaw < 0) yaw += 360; if (roll < 0) roll += 360; result[0] = pitch; result[1] = yaw; result[2] = roll; } void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; float sr, sp, sy, cr, cp, cy; angle = angles[YAW] * (M_PI*2 / 360); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (M_PI*2 / 360); sp = sin(angle); cp = cos(angle); angle = angles[ROLL] * (M_PI*2 / 360); sr = sin(angle); cr = cos(angle); if (forward) { forward[0] = cp*cy; forward[1] = cp*sy; forward[2] = -sp; } if (right) { right[0] = (-1*sr*sp*cy+-1*cr*-sy); right[1] = (-1*sr*sp*sy+-1*cr*cy); right[2] = -1*sr*cp; } if (up) { up[0] = (cr*sp*cy+-sr*-sy); up[1] = (cr*sp*sy+-sr*cy); up[2] = cr*cp; } } int VectorCompare (const vec3_t v1, const vec3_t v2) { int i; for (i=0 ; i<3 ; i++) if (v1[i] != v2[i]) return 0; return 1; } void _VectorMA (const vec3_t veca, const float scale, const vec3_t vecb, vec3_t vecc) { vecc[0] = veca[0] + scale*vecb[0]; vecc[1] = veca[1] + scale*vecb[1]; vecc[2] = veca[2] + scale*vecb[2]; } vec_t _DotProduct (vec3_t v1, vec3_t v2) { return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; } void _VectorSubtract (vec3_t veca, vec3_t vecb, vec3_t out) { out[0] = veca[0]-vecb[0]; out[1] = veca[1]-vecb[1]; out[2] = veca[2]-vecb[2]; } void _VectorAdd (vec3_t veca, vec3_t vecb, vec3_t out) { out[0] = veca[0]+vecb[0]; out[1] = veca[1]+vecb[1]; out[2] = veca[2]+vecb[2]; } void _VectorCopy (vec3_t in, vec3_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross) { cross[0] = v1[1]*v2[2] - v1[2]*v2[1]; cross[1] = v1[2]*v2[0] - v1[0]*v2[2]; cross[2] = v1[0]*v2[1] - v1[1]*v2[0]; } vec_t Length(vec3_t v) { int i; float length; length = 0; for (i=0 ; i< 3 ; i++) length += v[i]*v[i]; length = sqrt (length); // FIXME return length; } float Q_rsqrt(float number) { int i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * (int *) &y; // evil floating point bit level hacking i = 0x5f3759df - (i >> 1); // what the fuck? y = * (float *) &i; y = y * (threehalfs - (x2 * y * y)); // 1st iteration // y = y * (threehalfs - (x2 * y * y)); // 2nd iteration, this can be removed return y; } float VectorNormalize (vec3_t v) { float length, ilength; length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; length = sqrt (length); // FIXME if (length) { ilength = 1/length; v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } return length; } void VectorNormalizeFast(vec3_t v) { float ilength; ilength = Q_rsqrt(DotProduct(v, v)); v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } void VectorInverse (vec3_t v) { v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; } int Q_log2(int val) { int answer=0; while ((val>>=1) != 0) answer++; return answer; } /* ================ R_ConcatRotations ================ */ void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; } /* ================ R_ConcatTransforms ================ */ void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] + in1[0][2] * in2[2][3] + in1[0][3]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] + in1[1][2] * in2[2][3] + in1[1][3]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + in1[2][2] * in2[2][3] + in1[2][3]; } void R_ConcatRotationsPad (float in1[3][4], float in2[3][4], float out[3][4]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; } /* =================== FloorDivMod Returns mathematically correct (floor-based) quotient and remainder for numer and denom, both of which should contain no fractional part. The quotient must fit in 32 bits. ==================== */ void FloorDivMod (double numer, double denom, int *quotient, int *rem) { int q, r; double x; #ifndef PARANOID if (denom <= 0.0) Sys_Error ("FloorDivMod: bad denominator %f\n", denom); // if ((floor(numer) != numer) || (floor(denom) != denom)) // Sys_Error ("FloorDivMod: non-integer numer or denom %f %f\n", // numer, denom); #endif if (numer >= 0.0) { x = floor(numer / denom); q = (int)x; r = (int)floor(numer - (x * denom)); } else { // // perform operations with positive values, and fix mod to make floor-based // x = floor(-numer / denom); q = -(int)x; r = (int)floor(-numer - (x * denom)); if (r != 0) { q--; r = (int)denom - r; } } *quotient = q; *rem = r; } /* =================== GreatestCommonDivisor ==================== */ int GreatestCommonDivisor (int i1, int i2) { if (i1 > i2) { if (i2 == 0) return (i1); return GreatestCommonDivisor (i2, i1 % i2); } else { if (i1 == 0) return (i2); return GreatestCommonDivisor (i1, i2 % i1); } } #if !id386 // TODO: move to nonintel.c /* =================== Invert24To16 Inverts an 8.24 value to a 16.16 value ==================== */ fixed16_t Invert24To16(fixed16_t val) { if (val < 256) return (0xFFFFFFFF); return (fixed16_t) (((double)0x10000 * (double)0x1000000 / (double)val) + 0.5); } #endif void VectorTransform (const vec3_t in1, const matrix3x4 in2, vec3_t out) { out[0] = DotProduct(in1, in2[0]) + in2[0][3]; out[1] = DotProduct(in1, in2[1]) + in2[1][3]; out[2] = DotProduct(in1, in2[2]) + in2[2][3]; } #ifdef HALFLIFEMODELS void AngleQuaternion( const vec3_t angles, vec4_t quaternion ) { float angle; float sr, sp, sy, cr, cp, cy; // FIXME: rescale the inputs to 1/2 angle angle = angles[2] * 0.5; sy = sin(angle); cy = cos(angle); angle = angles[1] * 0.5; sp = sin(angle); cp = cos(angle); angle = angles[0] * 0.5; sr = sin(angle); cr = cos(angle); quaternion[0] = sr*cp*cy-cr*sp*sy; // X quaternion[1] = cr*sp*cy+sr*cp*sy; // Y quaternion[2] = cr*cp*sy-sr*sp*cy; // Z quaternion[3] = cr*cp*cy+sr*sp*sy; // W } void QuaternionMatrix( const vec4_t quaternion, float (*matrix)[4] ) { matrix[0][0] = 1.0 - 2.0 * quaternion[1] * quaternion[1] - 2.0 * quaternion[2] * quaternion[2]; matrix[1][0] = 2.0 * quaternion[0] * quaternion[1] + 2.0 * quaternion[3] * quaternion[2]; matrix[2][0] = 2.0 * quaternion[0] * quaternion[2] - 2.0 * quaternion[3] * quaternion[1]; matrix[0][1] = 2.0 * quaternion[0] * quaternion[1] - 2.0 * quaternion[3] * quaternion[2]; matrix[1][1] = 1.0 - 2.0 * quaternion[0] * quaternion[0] - 2.0 * quaternion[2] * quaternion[2]; matrix[2][1] = 2.0 * quaternion[1] * quaternion[2] + 2.0 * quaternion[3] * quaternion[0]; matrix[0][2] = 2.0 * quaternion[0] * quaternion[2] + 2.0 * quaternion[3] * quaternion[1]; matrix[1][2] = 2.0 * quaternion[1] * quaternion[2] - 2.0 * quaternion[3] * quaternion[0]; matrix[2][2] = 1.0 - 2.0 * quaternion[0] * quaternion[0] - 2.0 * quaternion[1] * quaternion[1]; } void QuaternionSlerp( const vec4_t p, vec4_t q, float t, vec4_t qt ) { int i; float omega, cosom, sinom, sclp, sclq; // decide if one of the quaternions is backwards float a = 0; float b = 0; for (i = 0; i < 4; i++) { a += (p[i]-q[i])*(p[i]-q[i]); b += (p[i]+q[i])*(p[i]+q[i]); } if (a > b) { for (i = 0; i < 4; i++) { q[i] = -q[i]; } } cosom = p[0]*q[0] + p[1]*q[1] + p[2]*q[2] + p[3]*q[3]; if ((1.0 + cosom) > 0.00000001) { if ((1.0 - cosom) > 0.00000001) { omega = acos( cosom ); sinom = sin( omega ); sclp = sin( (1.0 - t)*omega) / sinom; sclq = sin( t*omega ) / sinom; } else { sclp = 1.0 - t; sclq = t; } for (i = 0; i < 4; i++) { qt[i] = sclp * p[i] + sclq * q[i]; } } else { qt[0] = -p[1]; qt[1] = p[0]; qt[2] = -p[3]; qt[3] = p[2]; sclp = sin( (1.0 - t) * 0.5 * M_PI); sclq = sin( t * 0.5 * M_PI); for (i = 0; i < 3; i++) { qt[i] = sclp * p[i] + sclq * qt[i]; } } } #endif //This function is GL stylie (use as 2nd arg to ML_MultMatrix4). float *Matrix4_NewRotation(float a, float x, float y, float z) { static float ret[16]; float c = cos(a* M_PI / 180.0); float s = sin(a* M_PI / 180.0); ret[0] = x*x*(1-c)+c; ret[4] = x*y*(1-c)-z*s; ret[8] = x*z*(1-c)+y*s; ret[12] = 0; ret[1] = y*x*(1-c)+z*s; ret[5] = y*y*(1-c)+c; ret[9] = y*z*(1-c)-x*s; ret[13] = 0; ret[2] = x*z*(1-c)-y*s; ret[6] = y*z*(1-c)+x*s; ret[10] = z*z*(1-c)+c; ret[14] = 0; ret[3] = 0; ret[7] = 0; ret[11] = 0; ret[15] = 1; return ret; } //This function is GL stylie (use as 2nd arg to ML_MultMatrix4). float *Matrix4_NewTranslation(float x, float y, float z) { static float ret[16]; ret[0] = 1; ret[4] = 0; ret[8] = 0; ret[12] = x; ret[1] = 0; ret[5] = 1; ret[9] = 0; ret[13] = y; ret[2] = 0; ret[6] = 0; ret[10] = 1; ret[14] = z; ret[3] = 0; ret[7] = 0; ret[11] = 0; ret[15] = 1; return ret; } //be aware that this generates two sorts of matricies depending on order of a+b void Matrix4_Multiply(const float *a, const float *b, float *out) { out[0] = a[0] * b[0] + a[4] * b[1] + a[8] * b[2] + a[12] * b[3]; out[1] = a[1] * b[0] + a[5] * b[1] + a[9] * b[2] + a[13] * b[3]; out[2] = a[2] * b[0] + a[6] * b[1] + a[10] * b[2] + a[14] * b[3]; out[3] = a[3] * b[0] + a[7] * b[1] + a[11] * b[2] + a[15] * b[3]; out[4] = a[0] * b[4] + a[4] * b[5] + a[8] * b[6] + a[12] * b[7]; out[5] = a[1] * b[4] + a[5] * b[5] + a[9] * b[6] + a[13] * b[7]; out[6] = a[2] * b[4] + a[6] * b[5] + a[10] * b[6] + a[14] * b[7]; out[7] = a[3] * b[4] + a[7] * b[5] + a[11] * b[6] + a[15] * b[7]; out[8] = a[0] * b[8] + a[4] * b[9] + a[8] * b[10] + a[12] * b[11]; out[9] = a[1] * b[8] + a[5] * b[9] + a[9] * b[10] + a[13] * b[11]; out[10] = a[2] * b[8] + a[6] * b[9] + a[10] * b[10] + a[14] * b[11]; out[11] = a[3] * b[8] + a[7] * b[9] + a[11] * b[10] + a[15] * b[11]; out[12] = a[0] * b[12] + a[4] * b[13] + a[8] * b[14] + a[12] * b[15]; out[13] = a[1] * b[12] + a[5] * b[13] + a[9] * b[14] + a[13] * b[15]; out[14] = a[2] * b[12] + a[6] * b[13] + a[10] * b[14] + a[14] * b[15]; out[15] = a[3] * b[12] + a[7] * b[13] + a[11] * b[14] + a[15] * b[15]; } //transform 4d vector by a 4d matrix. void Matrix4_Transform4(const float *matrix, const float *vector, float *product) { product[0] = matrix[0]*vector[0] + matrix[4]*vector[1] + matrix[8]*vector[2] + matrix[12]*vector[3]; product[1] = matrix[1]*vector[0] + matrix[5]*vector[1] + matrix[9]*vector[2] + matrix[13]*vector[3]; product[2] = matrix[2]*vector[0] + matrix[6]*vector[1] + matrix[10]*vector[2] + matrix[14]*vector[3]; product[3] = matrix[3]*vector[0] + matrix[7]*vector[1] + matrix[11]*vector[2] + matrix[15]*vector[3]; } void Matrix4_Transform3(const float *matrix, const float *vector, float *product) { product[0] = matrix[0]*vector[0] + matrix[4]*vector[1] + matrix[8]*vector[2] + matrix[12]; product[1] = matrix[1]*vector[0] + matrix[5]*vector[1] + matrix[9]*vector[2] + matrix[13]; product[2] = matrix[2]*vector[0] + matrix[6]*vector[1] + matrix[10]*vector[2] + matrix[14]; } void Matrix4_ModelViewMatrix(float *modelview, const vec3_t viewangles, const vec3_t vieworg) { float tempmat[16]; //load identity. memset(modelview, 0, sizeof(*modelview)*16); #if FULLYGL modelview[0] = 1; modelview[5] = 1; modelview[10] = 1; modelview[15] = 1; Matrix4_Multiply(modelview, Matrix4_NewRotation(-90, 1, 0, 0), tempmat); // put Z going up Matrix4_Multiply(tempmat, Matrix4_NewRotation(90, 0, 0, 1), modelview); // put Z going up #else //use this lame wierd and crazy identity matrix.. modelview[2] = -1; modelview[4] = -1; modelview[9] = 1; modelview[15] = 1; #endif //figure out the current modelview matrix //I would if some of these, but then I'd still need a couple of copys Matrix4_Multiply(modelview, Matrix4_NewRotation(-viewangles[2], 1, 0, 0), tempmat); Matrix4_Multiply(tempmat, Matrix4_NewRotation(-viewangles[0], 0, 1, 0), modelview); Matrix4_Multiply(modelview, Matrix4_NewRotation(-viewangles[1], 0, 0, 1), tempmat); Matrix4_Multiply(tempmat, Matrix4_NewTranslation(-vieworg[0], -vieworg[1], -vieworg[2]), modelview); // put Z going up } void Matrix4_CreateTranslate (float *out, float x, float y, float z) { memcpy(out, Matrix4_NewTranslation(x, y, z), 16*sizeof(float)); } void Matrix4Q_CreateTranslate (float *out, float x, float y, float z) { out[0] = 1; out[4] = 0; out[8] = 0; out[12] = 0; out[1] = 0; out[5] = 1; out[9] = 0; out[13] = 0; out[2] = 0; out[6] = 0; out[10] = 1; out[14] = 0; out[3] = x; out[7] = y; out[11] = z; out[15] = 1; } void Matrix4_ModelViewMatrixFromAxis(float *modelview, const vec3_t pn, const vec3_t right, const vec3_t up, const vec3_t vieworg) { float tempmat[16]; tempmat[ 0] = right[0]; tempmat[ 1] = up[0]; tempmat[ 2] = -pn[0]; tempmat[ 3] = 0; tempmat[ 4] = right[1]; tempmat[ 5] = up[1]; tempmat[ 6] = -pn[1]; tempmat[ 7] = 0; tempmat[ 8] = right[2]; tempmat[ 9] = up[2]; tempmat[10] = -pn[2]; tempmat[11] = 0; tempmat[12] = 0; tempmat[13] = 0; tempmat[14] = 0; tempmat[15] = 1; Matrix4_Multiply(tempmat, Matrix4_NewTranslation(-vieworg[0], -vieworg[1], -vieworg[2]), modelview); // put Z going up } void Matrix4Q_ToVectors(const float *in, float vx[3], float vy[3], float vz[3], float t[3]) { vx[0] = in[0]; vx[1] = in[4]; vx[2] = in[8]; vy[0] = in[1]; vy[1] = in[5]; vy[2] = in[9]; vz[0] = in[2]; vz[1] = in[6]; vz[2] = in[10]; t [0] = in[3]; t [1] = in[7]; t [2] = in[11]; } void Matrix4Q_FromVectors(float *out, const float vx[3], const float vy[3], const float vz[3], const float t[3]) { out[0] = vx[0]; out[1] = vy[0]; out[2] = vz[0]; out[3] = t[0]; out[4] = vx[1]; out[5] = vy[1]; out[6] = vz[1]; out[7] = t[1]; out[8] = vx[2]; out[9] = vy[2]; out[10] = vz[2]; out[11] = t[2]; out[12] = 0.0f; out[13] = 0.0f; out[14] = 0.0f; out[15] = 1.0f; } void Matrix4_ModelMatrixFromAxis(float *modelview, const vec3_t pn, const vec3_t right, const vec3_t up, const vec3_t vieworg) { float tempmat[16]; tempmat[ 0] = pn[0]; tempmat[ 1] = pn[1]; tempmat[ 2] = pn[2]; tempmat[ 3] = 0; tempmat[ 4] = right[0]; tempmat[ 5] = right[1]; tempmat[ 6] = right[2]; tempmat[ 7] = 0; tempmat[ 8] = up[0]; tempmat[ 9] = up[1]; tempmat[10] = up[2]; tempmat[11] = 0; tempmat[12] = 0; tempmat[13] = 0; tempmat[14] = 0; tempmat[15] = 1; Matrix4_Multiply(Matrix4_NewTranslation(vieworg[0], vieworg[1], vieworg[2]), tempmat, modelview); // put Z going up } void Matrix4_ModelMatrix(float *modelview, vec_t x, vec_t y, vec_t z, vec_t pitch, vec_t yaw, vec_t roll, vec_t scale) { float tempmat[16]; //load identity. memset(modelview, 0, sizeof(*modelview)*16); #if FULLYGL modelview[0] = 1; modelview[5] = 1; modelview[10] = 1; modelview[15] = 1; Matrix4_Multiply(modelview, Matrix4_NewRotation(-90, 1, 0, 0), tempmat); // put Z going up Matrix4_Multiply(tempmat, Matrix4_NewRotation(90, 0, 0, 1), modelview); // put Z going up #else //use this lame wierd and crazy identity matrix.. modelview[2] = -1; modelview[4] = -1; modelview[9] = 1; modelview[15] = 1; #endif //figure out the current modelview matrix //I would if some of these, but then I'd still need a couple of copys Matrix4_Multiply(modelview, Matrix4_NewRotation(-roll, 1, 0, 0), tempmat); Matrix4_Multiply(tempmat, Matrix4_NewRotation(-pitch, 0, 1, 0), modelview); Matrix4_Multiply(modelview, Matrix4_NewRotation(-yaw, 0, 0, 1), tempmat); Matrix4_Multiply(tempmat, Matrix4_NewTranslation(x, y, z), modelview); } void Matrix4_Identity(float *outm) { outm[ 0] = 1; outm[ 1] = 0; outm[ 2] = 0; outm[ 3] = 0; outm[ 4] = 0; outm[ 5] = 1; outm[ 6] = 0; outm[ 7] = 0; outm[ 8] = 0; outm[ 9] = 0; outm[10] = 1; outm[11] = 0; outm[12] = 0; outm[13] = 0; outm[14] = 0; outm[15] = 1; } void Matrix4_Projection_Far(float *proj, float fovx, float fovy, float neard, float fard) { double xmin, xmax, ymin, ymax; //proj ymax = neard * tan( fovy * M_PI / 360.0 ); ymin = -ymax; if (fovx == fovy) { xmax = ymax; xmin = ymin; } else { xmax = neard * tan( fovx * M_PI / 360.0 ); xmin = -xmax; } proj[0] = (2*neard) / (xmax - xmin); proj[4] = 0; proj[8] = (xmax + xmin) / (xmax - xmin); proj[12] = 0; proj[1] = 0; proj[5] = (2*neard) / (ymax - ymin); proj[9] = (ymax + ymin) / (ymax - ymin); proj[13] = 0; proj[2] = 0; proj[6] = 0; proj[10] = (fard+neard)/(neard-fard); proj[14] = (2*fard*neard)/(neard-fard); proj[3] = 0; proj[7] = 0; proj[11] = -1; proj[15] = 0; } void Matrix4_Projection_Inf(float *proj, float fovx, float fovy, float neard) { float xmin, xmax, ymin, ymax; float nudge = 1; //proj ymax = neard * tan( fovy * M_PI / 360.0 ); ymin = -ymax; if (fovx == fovy) { xmax = ymax; xmin = ymin; } else { xmax = neard * tan( fovx * M_PI / 360.0 ); xmin = -xmax; } proj[0] = (2*neard) / (xmax - xmin); proj[4] = 0; proj[8] = (xmax + xmin) / (xmax - xmin); proj[12] = 0; proj[1] = 0; proj[5] = (2*neard) / (ymax - ymin); proj[9] = (ymax + ymin) / (ymax - ymin); proj[13] = 0; proj[2] = 0; proj[6] = 0; proj[10] = -1 * nudge; proj[14] = -2*neard * nudge; proj[3] = 0; proj[7] = 0; proj[11] = -1; proj[15] = 0; } void Matrix4_Projection2(float *proj, float fovx, float fovy, float neard) { float xmin, xmax, ymin, ymax; float nudge = 1; //proj ymax = neard * tan( fovy * M_PI / 360.0 ); ymin = -ymax; xmax = neard * tan( fovx * M_PI / 360.0 ); xmin = -xmax; proj[0] = (2*neard) / (xmax - xmin); proj[4] = 0; proj[8] = (xmax + xmin) / (xmax - xmin); proj[12] = 0; proj[1] = 0; proj[5] = (2*neard) / (ymax - ymin); proj[9] = (ymax + ymin) / (ymax - ymin); proj[13] = 0; proj[2] = 0; proj[6] = 0; proj[10] = -1 * nudge; proj[14] = -2*neard * nudge; proj[3] = 0; proj[7] = 0; proj[11] = -1; proj[15] = 0; } void Matrix4_Orthographic(float *proj, float xmin, float xmax, float ymin, float ymax, float znear, float zfar) { proj[0] = 2/(xmax-xmin); proj[4] = 0; proj[8] = 0; proj[12] = -(xmax+xmin)/(xmax-xmin); proj[1] = 0; proj[5] = 2/(ymax-ymin); proj[9] = 0; proj[13] = -(ymax+ymin)/(ymax-ymin); proj[2] = 0; proj[6] = 0; proj[10] = -2/(zfar-znear); proj[14] = -(zfar+znear)/(zfar-znear); proj[3] = 0; proj[7] = 0; proj[11] = 0; proj[15] = 1; } void Matrix4_OrthographicD3D(float *proj, float xmin, float xmax, float ymax, float ymin, float znear, float zfar) { proj[0] = 2/(xmax-xmin); proj[4] = 0; proj[8] = 0; proj[12] = (xmax+xmin)/(xmin-xmax); proj[1] = 0; proj[5] = 2/(ymax-ymin); proj[9] = 0; proj[13] = (ymax+ymin)/(ymin-ymax); proj[2] = 0; proj[6] = 0; proj[10] = 1/(znear-zfar); proj[14] = znear/(znear-zfar); proj[3] = 0; proj[7] = 0; proj[11] = 0; proj[15] = 1; } /* * Compute inverse of 4x4 transformation matrix. * Code contributed by Jacques Leroy jle@star.be * Return true for success, false for failure (singular matrix) * This came to FTE via mesa's GLU. */ qboolean Matrix4_Invert(const float *m, float *out) { /* NB. OpenGL Matrices are COLUMN major. */ #define SWAP_ROWS(a, b) { float *_tmp = a; (a)=(b); (b)=_tmp; } #define MAT(m,r,c) (m)[(c)*4+(r)] float wtmp[4][8]; float m0, m1, m2, m3, s; float *r0, *r1, *r2, *r3; r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; r0[0] = MAT(m, 0, 0), r0[1] = MAT(m, 0, 1), r0[2] = MAT(m, 0, 2), r0[3] = MAT(m, 0, 3), r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, r1[0] = MAT(m, 1, 0), r1[1] = MAT(m, 1, 1), r1[2] = MAT(m, 1, 2), r1[3] = MAT(m, 1, 3), r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, r2[0] = MAT(m, 2, 0), r2[1] = MAT(m, 2, 1), r2[2] = MAT(m, 2, 2), r2[3] = MAT(m, 2, 3), r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, r3[0] = MAT(m, 3, 0), r3[1] = MAT(m, 3, 1), r3[2] = MAT(m, 3, 2), r3[3] = MAT(m, 3, 3), r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; /* choose pivot - or die */ if (fabs(r3[0]) > fabs(r2[0])) SWAP_ROWS(r3, r2); if (fabs(r2[0]) > fabs(r1[0])) SWAP_ROWS(r2, r1); if (fabs(r1[0]) > fabs(r0[0])) SWAP_ROWS(r1, r0); if (0.0 == r0[0]) return false; /* eliminate first variable */ m1 = r1[0] / r0[0]; m2 = r2[0] / r0[0]; m3 = r3[0] / r0[0]; s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; s = r0[4]; if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } s = r0[5]; if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r0[6]; if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r0[7]; if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } /* choose pivot - or die */ if (fabs(r3[1]) > fabs(r2[1])) SWAP_ROWS(r3, r2); if (fabs(r2[1]) > fabs(r1[1])) SWAP_ROWS(r2, r1); if (0.0 == r1[1]) return false; /* eliminate second variable */ m2 = r2[1] / r1[1]; m3 = r3[1] / r1[1]; r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } /* choose pivot - or die */ if (fabs(r3[2]) > fabs(r2[2])) SWAP_ROWS(r3, r2); if (0.0 == r2[2]) return false; /* eliminate third variable */ m3 = r3[2] / r2[2]; r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7]; /* last check */ if (0.0 == r3[3]) return false; s = 1.0 / r3[3]; /* now back substitute row 3 */ r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; m2 = r2[3]; /* now back substitute row 2 */ s = 1.0 / r2[2]; r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); m1 = r1[3]; r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; m0 = r0[3]; r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; m1 = r1[2]; /* now back substitute row 1 */ s = 1.0 / r1[1]; r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); m0 = r0[2]; r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; m0 = r0[1]; /* now back substitute row 0 */ s = 1.0 / r0[0]; r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); MAT(out, 0, 0) = r0[4]; MAT(out, 0, 1) = r0[5], MAT(out, 0, 2) = r0[6]; MAT(out, 0, 3) = r0[7], MAT(out, 1, 0) = r1[4]; MAT(out, 1, 1) = r1[5], MAT(out, 1, 2) = r1[6]; MAT(out, 1, 3) = r1[7], MAT(out, 2, 0) = r2[4]; MAT(out, 2, 1) = r2[5], MAT(out, 2, 2) = r2[6]; MAT(out, 2, 3) = r2[7], MAT(out, 3, 0) = r3[4]; MAT(out, 3, 1) = r3[5], MAT(out, 3, 2) = r3[6]; MAT(out, 3, 3) = r3[7]; return true; #undef MAT #undef SWAP_ROWS } void Matrix3_Invert_Simple (const vec3_t in1[3], vec3_t out[3]) { // we only support uniform scaling, so assume the first row is enough // (note the lack of sqrt here, because we're trying to undo the scaling, // this means multiplying by the inverse scale twice - squaring it, which // makes the sqrt a waste of time) #if 1 double scale = 1.0 / (in1[0][0] * in1[0][0] + in1[0][1] * in1[0][1] + in1[0][2] * in1[0][2]); #else double scale = 3.0 / sqrt (in1->m[0][0] * in1->m[0][0] + in1->m[0][1] * in1->m[0][1] + in1->m[0][2] * in1->m[0][2] + in1->m[1][0] * in1->m[1][0] + in1->m[1][1] * in1->m[1][1] + in1->m[1][2] * in1->m[1][2] + in1->m[2][0] * in1->m[2][0] + in1->m[2][1] * in1->m[2][1] + in1->m[2][2] * in1->m[2][2]); scale *= scale; #endif // invert the rotation by transposing and multiplying by the squared // recipricol of the input matrix scale as described above out[0][0] = in1[0][0] * scale; out[0][1] = in1[1][0] * scale; out[0][2] = in1[2][0] * scale; out[1][0] = in1[0][1] * scale; out[1][1] = in1[1][1] * scale; out[1][2] = in1[2][1] * scale; out[2][0] = in1[0][2] * scale; out[2][1] = in1[1][2] * scale; out[2][2] = in1[2][2] * scale; } void Matrix4Q_Invert_Simple (const float *in1, float *out) { // we only support uniform scaling, so assume the first row is enough // (note the lack of sqrt here, because we're trying to undo the scaling, // this means multiplying by the inverse scale twice - squaring it, which // makes the sqrt a waste of time) #if 1 double scale = 1.0 / (in1[0] * in1[0] + in1[1] * in1[1] + in1[2] * in1[2]); #else double scale = 3.0 / sqrt (in1->m[0][0] * in1->m[0][0] + in1->m[0][1] * in1->m[0][1] + in1->m[0][2] * in1->m[0][2] + in1->m[1][0] * in1->m[1][0] + in1->m[1][1] * in1->m[1][1] + in1->m[1][2] * in1->m[1][2] + in1->m[2][0] * in1->m[2][0] + in1->m[2][1] * in1->m[2][1] + in1->m[2][2] * in1->m[2][2]); scale *= scale; #endif // invert the rotation by transposing and multiplying by the squared // recipricol of the input matrix scale as described above out[0] = in1[0] * scale; out[1] = in1[4] * scale; out[2] = in1[8] * scale; out[4] = in1[1] * scale; out[5] = in1[5] * scale; out[6] = in1[9] * scale; out[8] = in1[2] * scale; out[9] = in1[6] * scale; out[10] = in1[10] * scale; #ifdef MATRIX4x4_OPENGLORIENTATION // invert the translate out->m[12] = -(in1[12] * out[0] + in1[13] * out[4] + in1[14] * out[8]); out->m[13] = -(in1[12] * out[1] + in1[13] * out[5] + in1[14] * out[9]); out->m[14] = -(in1[12] * out[2] + in1[13] * out[6] + in1[14] * out[10]); // don't know if there's anything worth doing here out[3] = 0; out[7] = 0; out[11] = 0; out[15] = 1; #else // invert the translate out[3] = -(in1[3] * out[0] + in1[7] * out[1] + in1[11] * out[2]); out[7] = -(in1[3] * out[4] + in1[7] * out[5] + in1[11] * out[6]); out[11] = -(in1[3] * out[8] + in1[7] * out[9] + in1[11] * out[10]); // don't know if there's anything worth doing here out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; #endif } void Matrix3x4_InvertTo3x3(float *in, float *result) { float t1[16], tr[16]; memcpy(t1, in, sizeof(float)*12); t1[12] = 0; t1[13] = 0; t1[14] = 0; t1[15] = 1; Matrix4_Invert(t1, tr); VectorCopy(tr+0, result+0); VectorCopy(tr+4, result+3); VectorCopy(tr+8, result+6); return; /* #define A(x,y) in[x+y*4] #define result(x,y) result[x+y*3] double determinant = +A(0,0)*(A(1,1)*A(2,2)-A(2,1)*A(1,2)) -A(0,1)*(A(1,0)*A(2,2)-A(1,2)*A(2,0)) +A(0,2)*(A(1,0)*A(2,1)-A(1,1)*A(2,0)); double invdet = 1/determinant; result(0,0) = (A(1,1)*A(2,2)-A(2,1)*A(1,2))*invdet; result(1,0) = -(A(0,1)*A(2,2)-A(0,2)*A(2,1))*invdet; result(2,0) = (A(0,1)*A(1,2)-A(0,2)*A(1,1))*invdet; result(0,1) = -(A(1,0)*A(2,2)-A(1,2)*A(2,0))*invdet; result(1,1) = (A(0,0)*A(2,2)-A(0,2)*A(2,0))*invdet; result(2,1) = -(A(0,0)*A(1,2)-A(1,0)*A(0,2))*invdet; result(0,2) = (A(1,0)*A(2,1)-A(2,0)*A(1,1))*invdet; result(1,2) = -(A(0,0)*A(2,1)-A(2,0)*A(0,1))*invdet; result(2,2) = (A(0,0)*A(1,1)-A(1,0)*A(0,1))*invdet; */ } //screen->3d void Matrix4_UnProject(const vec3_t in, vec3_t out, const vec3_t viewangles, const vec3_t vieworg, float fovx, float fovy) { float modelview[16]; float proj[16]; float tempm[16]; Matrix4_ModelViewMatrix(modelview, viewangles, vieworg); Matrix4_Projection_Inf(proj, fovx, fovy, 4); Matrix4_Multiply(proj, modelview, tempm); Matrix4_Invert(tempm, proj); { float v[4], tempv[4]; v[0] = in[0]*2-1; v[1] = in[1]*2-1; v[2] = in[2]; v[3] = 1; //don't use 1, because the far clip plane really is an infinite distance away if (v[2] >= 1) v[2] = 0.999999; Matrix4_Transform4(proj, v, tempv); out[0] = tempv[0]/tempv[3]; out[1] = tempv[1]/tempv[3]; out[2] = tempv[2]/tempv[3]; } } //returns fractions of screen. //uses GL style rotations and translations and stuff. //3d -> screen (fixme: offscreen return values needed) void Matrix4_Project (const vec3_t in, vec3_t out, const vec3_t viewangles, const vec3_t vieworg, float fovx, float fovy) { float modelview[16]; float proj[16]; Matrix4_ModelViewMatrix(modelview, viewangles, vieworg); Matrix4_Projection_Inf(proj, fovx, fovy, 4); { float v[4], tempv[4]; v[0] = in[0]; v[1] = in[1]; v[2] = in[2]; v[3] = 1; Matrix4_Transform4(modelview, v, tempv); Matrix4_Transform4(proj, tempv, v); v[0] /= v[3]; v[1] /= v[3]; v[2] /= v[3]; out[0] = (1+v[0])/2; out[1] = (1+v[1])/2; out[2] = (1+v[2])/2; } } //I much prefer it to take float*... void Matrix3_Multiply (vec3_t *in1, vec3_t *in2, vec3_t *out) { out[0][0] = in1[0][0]*in2[0][0] + in1[0][1]*in2[1][0] + in1[0][2]*in2[2][0]; out[0][1] = in1[0][0]*in2[0][1] + in1[0][1]*in2[1][1] + in1[0][2]*in2[2][1]; out[0][2] = in1[0][0]*in2[0][2] + in1[0][1]*in2[1][2] + in1[0][2]*in2[2][2]; out[1][0] = in1[1][0]*in2[0][0] + in1[1][1]*in2[1][0] + in1[1][2]*in2[2][0]; out[1][1] = in1[1][0]*in2[0][1] + in1[1][1]*in2[1][1] + in1[1][2]*in2[2][1]; out[1][2] = in1[1][0]*in2[0][2] + in1[1][1]*in2[1][2] + in1[1][2]*in2[2][2]; out[2][0] = in1[2][0]*in2[0][0] + in1[2][1]*in2[1][0] + in1[2][2]*in2[2][0]; out[2][1] = in1[2][0]*in2[0][1] + in1[2][1]*in2[1][1] + in1[2][2]*in2[2][1]; out[2][2] = in1[2][0]*in2[0][2] + in1[2][1]*in2[1][2] + in1[2][2]*in2[2][2]; } vec_t VectorNormalize2 (const vec3_t v, vec3_t out) { float length, ilength; length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; if (length) { length = sqrt (length); // FIXME ilength = 1/length; out[0] = v[0]*ilength; out[1] = v[1]*ilength; out[2] = v[2]*ilength; } else { VectorClear (out); } return length; } float ColorNormalize (vec3_t in, vec3_t out) { float f = max (max (in[0], in[1]), in[2]); if ( f > 1.0 ) { f = 1.0 / f; out[0] = in[0] * f; out[1] = in[1] * f; out[2] = in[2] * f; } else { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } return f; } void MakeNormalVectors (vec3_t forward, vec3_t right, vec3_t up) { float d; // this rotate and negat guarantees a vector // not colinear with the original right[1] = -forward[0]; right[2] = forward[1]; right[0] = forward[2]; d = DotProduct (right, forward); VectorMA (right, -d, forward, right); VectorNormalize (right); CrossProduct (right, forward, up); }