!!permu BUMP !!permu FRAMEBLEND !!permu SKELETAL !!permu UPPERLOWER !!permu FOG !!cvarf r_glsl_offsetmapping_scale !!cvardf r_glsl_pcf //this is the main shader responsible for realtime dlights. //texture units: //s0=diffuse, s1=normal, s2=specular, s3=shadowmap //custom modifiers: //PCF(shadowmap) //CUBEPROJ(projected cubemap) //SPOT(projected circle //CUBESHADOW #undef CUBE //engine cannot load cubemaps properly with d3d yet. #ifndef r_glsl_pcf #error r_glsl_pcf wasn't defined #endif #if r_glsl_pcf < 1 #undef r_glsl_pcf #define r_glsl_pcf 9 #endif #ifdef UPPERLOWER #define UPPER #define LOWER #endif struct a2v { float4 pos: POSITION; float4 tc: TEXCOORD0; float3 n: NORMAL; float3 s: TANGENT; float3 t: BINORMAL; }; struct v2f { float4 pos: SV_POSITION; float2 tc: TEXCOORD0; float3 lightvector: TEXCOORD1; float3 eyevector: TEXCOORD2; float3 vtexprojcoord: TEXCOORD3; }; #include #ifdef VERTEX_SHADER v2f main (a2v inp) { v2f outp; float4 wpos; wpos = mul(m_model, inp.pos); outp.pos = mul(m_view, wpos); outp.pos = mul(m_projection, outp.pos); outp.tc = inp.tc.xy; float3 lightminusvertex = l_lightposition - wpos.xyz; outp.lightvector.x = -dot(lightminusvertex, inp.s.xyz); outp.lightvector.y = dot(lightminusvertex, inp.t.xyz); outp.lightvector.z = dot(lightminusvertex, inp.n.xyz); float3 eyeminusvertex = e_eyepos - wpos.xyz; outp.eyevector.x = -dot(eyeminusvertex, inp.s.xyz); outp.eyevector.y = dot(eyeminusvertex, inp.t.xyz); outp.eyevector.z = dot(eyeminusvertex, inp.n.xyz); outp.vtexprojcoord = mul(l_cubematrix, wpos).xyz; return outp; } #endif #ifdef FRAGMENT_SHADER Texture2D t_diffuse : register(t0); Texture2D t_normalmap : register(t1); Texture2D t_specular : register(t2); Texture2D t_upper : register(t3); Texture2D t_lower : register(t4); Texture2D t_shadowmap : register(t5); TextureCube t_projectionmap : register(t6); SamplerState s_diffuse : register(s0); SamplerState s_normalmap : register(s1); SamplerState s_specular : register(s2); SamplerState s_upper : register(s3); SamplerState s_lower : register(s4); SamplerComparisonState s_shadowmap : register(s5); SamplerState s_projectionmap : register(s6); #ifdef PCF float3 ShadowmapCoord(float3 vtexprojcoord) { #ifdef SPOT //bias it. don't bother figuring out which side or anything, its not needed //l_projmatrix contains the light's projection matrix so no other magic needed vtexprojcoord.z -= 0.015; return (vtexprojcoord.xyz + float3(1.0, 1.0, 1.0)) * float3(0.5, 0.5, 0.5); //#elif defined(CUBESHADOW) // vec3 shadowcoord = vshadowcoord.xyz / vshadowcoord.w; // #define dosamp(x,y) shadowCube(s_t4, shadowcoord + vec2(x,y)*texscale.xy).r #else //figure out which axis to use //texture is arranged thusly: //forward left up //back right down float3 dir = abs(vtexprojcoord.xyz); //assume z is the major axis (ie: forward from the light) float3 t = vtexprojcoord.xyz; float ma = dir.z; float3 axis = float3(0.5/3.0, 0.5/2.0, 0.5); if (dir.x > ma) { ma = dir.x; t = vtexprojcoord.zyx; axis.x = 0.5; } if (dir.y > ma) { ma = dir.y; t = vtexprojcoord.xzy; axis.x = 2.5/3.0; } //if the axis is negative, flip it. if (t.z > 0.0) { axis.y = 1.5/2.0; t.z = -t.z; } //we also need to pass the result through the light's projection matrix too //the 'matrix' we need only contains 5 actual values. and one of them is a -1. So we might as well just use a vec4. //note: the projection matrix also includes scalers to pinch the image inwards to avoid sampling over borders, as well as to cope with non-square source image //the resulting z is prescaled to result in a value between -0.5 and 0.5. //also make sure we're in the right quadrant type thing return axis + ((l_shadowmapproj.xyz*t.xyz + float3(0.0, 0.0, l_shadowmapproj.w)) / -t.z); #endif } float ShadowmapFilter(float3 vtexprojcoord) { float3 shadowcoord = ShadowmapCoord(vtexprojcoord); // #define dosamp(x,y) shadow2D(s_t4, shadowcoord.xyz + (vec3(x,y,0.0)*l_shadowmapscale.xyx)).r // #define dosamp(x,y) (t_shadowmap.Sample(s_shadowmap, shadowcoord.xy + (float2(x,y)*l_shadowmapscale.xy)).r < shadowcoord.z) #define dosamp(x,y) (t_shadowmap.SampleCmpLevelZero(s_shadowmap, shadowcoord.xy+(float2(x,y)*l_shadowmapscale.xy), shadowcoord.z)) float s = 0.0; #if r_glsl_pcf >= 1 && r_glsl_pcf < 5 s += dosamp(0.0, 0.0); return s; #elif r_glsl_pcf >= 5 && r_glsl_pcf < 9 s += dosamp(-1.0, 0.0); s += dosamp(0.0, -1.0); s += dosamp(0.0, 0.0); s += dosamp(0.0, 1.0); s += dosamp(1.0, 0.0); return s * (1.0/5.0); #else s += dosamp(-1.0, -1.0); s += dosamp(-1.0, 0.0); s += dosamp(-1.0, 1.0); s += dosamp(0.0, -1.0); s += dosamp(0.0, 0.0); s += dosamp(0.0, 1.0); s += dosamp(1.0, -1.0); s += dosamp(1.0, 0.0); s += dosamp(1.0, 1.0); return s * (1.0/9.0); #endif } #endif float4 main (v2f inp) : SV_TARGET { float2 tc = inp.tc; //TODO: offsetmapping. float4 base = t_diffuse.Sample(s_diffuse, tc); #ifdef BUMP float4 bump = t_normalmap.Sample(s_normalmap, tc); bump.rgb = normalize(bump.rgb - 0.5); #else float4 bump = float4(0, 0, 1, 0); #endif float4 spec = t_specular.Sample(s_specular, tc); #ifdef CUBE float4 cubemap = t_projectionmap.Sample(s_projectionmap, inp.vtexprojcoord); #endif #ifdef LOWER float4 lower = t_lower.Sample(s_lower, tc); base += lower; #endif #ifdef UPPER float4 upper = t_upper.Sample(s_upper, tc); base += upper; #endif float lightscale = max(1.0 - (dot(inp.lightvector,inp.lightvector)/(l_lightradius*l_lightradius)), 0.0); float3 nl = normalize(inp.lightvector); float bumpscale = max(dot(bump.xyz, nl), 0.0); float3 halfdir = normalize(normalize(inp.eyevector) + nl); float specscale = pow(max(dot(halfdir, bump.rgb), 0.0), 32.0 * spec.a); float4 result; result.a = base.a; result.rgb = base.rgb * (l_lightcolourscale.x + l_lightcolourscale.y * bumpscale); //amient light + diffuse result.rgb += spec.rgb * l_lightcolourscale.z * specscale; //specular result.rgb *= lightscale * l_colour; //fade light by distance and light colour. #ifdef CUBE result.rgb *= cubemap.rgb; //fade by cubemap #endif #ifdef PCF result.rgb *= ShadowmapFilter(inp.vtexprojcoord); #endif //TODO: fog return result; } #endif