/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "quakedef.h" #ifdef _WIN32 #include "winquake.h" #else #include "unistd.h" #endif #define PACKET_HEADER 8 /* packet header ------------- 31 sequence 1 does this message contain a reliable payload 31 acknowledge sequence 1 acknowledge receipt of even/odd message 16 qport (only from client) 15 fragoffset (extension) 1 lastfrag (extension) The remote connection never knows if it missed a reliable message, the local side detects that it has been dropped by seeing a sequence acknowledge higher thatn the last reliable sequence, but without the correct evon/odd bit for the reliable set. If the sender notices that a reliable message has been dropped, it will be retransmitted. It will not be retransmitted again until a message after the retransmit has been acknowledged and the reliable still failed to get there. if the sequence number is -1, the packet should be handled without a netcon The reliable message can be added to at any time by doing MSG_Write* (&netchan->message, ). If the message buffer is overflowed, either by a single message, or by multiple frames worth piling up while the last reliable transmit goes unacknowledged, the netchan signals a fatal error. Reliable messages are always placed first in a packet, then the unreliable message is included if there is sufficient room. To the receiver, there is no distinction between the reliable and unreliable parts of the message, they are just processed out as a single larger message. Illogical packet sequence numbers cause the packet to be dropped, but do not kill the connection. This, combined with the tight window of valid reliable acknowledgement numbers provides protection against malicious address spoofing. The qport field is a workaround for bad address translating routers that sometimes remap the client's source port on a packet during gameplay. If the base part of the net address matches and the qport matches, then the channel matches even if the IP port differs. The IP port should be updated to the new value before sending out any replies. fragmentation works like IP, offset and morefrags. offset is *8 (decode: (offset&~1)<<2 to avoid stomping on the morefrags flag, this allows really jumbo packets with 18 bits of length) */ int net_drop; cvar_t showpackets = SCVAR("showpackets", "0"); cvar_t showdrop = SCVAR("showdrop", "0"); cvar_t qport = SCVAR("qport", "0"); cvar_t net_mtu = CVARD("mtu", "1450", "Specifies a maximum udp payload size, above which packets will be fragmented. If routers all worked properly this could be some massive value, and some massive value may work really nicely for lans. Use smaller values than the default if you're connecting through nested tunnels through routers that fail with IP fragmentation."); cvar_t pext_replacementdeltas = CVAR("debug_pext_replacementdeltas", "0"); /*rename once the extension is finalized*/ /*returns the bitmask of supported+enabled extensions*/ unsigned int Net_PextMask(int maskset) { unsigned int mask = 0; if (maskset == 1) /*FTEX*/ { #ifdef PEXT_SCALE //dmw - protocol extensions mask |= PEXT_SCALE; #endif #ifdef PEXT_LIGHTSTYLECOL mask |= PEXT_LIGHTSTYLECOL; #endif #ifdef PEXT_TRANS mask |= PEXT_TRANS; #endif #ifdef PEXT_VIEW2 mask |= PEXT_VIEW2; #endif #ifdef PEXT_ACCURATETIMINGS mask |= PEXT_ACCURATETIMINGS; #endif #ifdef PEXT_ZLIBDL mask |= PEXT_ZLIBDL; #endif #ifdef PEXT_FATNESS mask |= PEXT_FATNESS; #endif #ifdef PEXT_HLBSP mask |= PEXT_HLBSP; #endif #ifdef PEXT_Q2BSP mask |= PEXT_Q2BSP; #endif #ifdef PEXT_Q3BSP mask |= PEXT_Q3BSP; #endif #ifdef PEXT_TE_BULLET mask |= PEXT_TE_BULLET; #endif #ifdef PEXT_HULLSIZE mask |= PEXT_HULLSIZE; #endif #ifdef PEXT_SETVIEW mask |= PEXT_SETVIEW; #endif #ifdef PEXT_MODELDBL mask |= PEXT_MODELDBL; #endif #ifdef PEXT_SOUNDDBL mask |= PEXT_SOUNDDBL; #endif #ifdef PEXT_VWEAP mask |= PEXT_VWEAP; #endif #ifdef PEXT_FLOATCOORDS mask |= PEXT_FLOATCOORDS; #endif mask |= PEXT_SPAWNSTATIC2; mask |= PEXT_COLOURMOD; mask |= PEXT_SPLITSCREEN; mask |= PEXT_HEXEN2; mask |= PEXT_CUSTOMTEMPEFFECTS; mask |= PEXT_256PACKETENTITIES; mask |= PEXT_ENTITYDBL; mask |= PEXT_ENTITYDBL2; mask |= PEXT_SHOWPIC; mask |= PEXT_SETATTACHMENT; #ifdef PEXT_CHUNKEDDOWNLOADS mask |= PEXT_CHUNKEDDOWNLOADS; #endif #ifdef PEXT_CSQC mask |= PEXT_CSQC; #endif #ifdef PEXT_DPFLAGS mask |= PEXT_DPFLAGS; #endif } else if (maskset == 2) { mask |= PEXT2_PRYDONCURSOR; #ifdef PEXT2_VOICECHAT mask |= PEXT2_VOICECHAT; #endif mask |= PEXT2_SETANGLEDELTA; if (pext_replacementdeltas.ival) mask |= PEXT2_REPLACEMENTDELTAS; if (MAX_CLIENTS != QWMAX_CLIENTS) mask |= PEXT2_MAXPLAYERS; } return mask; } /* =============== Netchan_Init =============== */ void Netchan_Init (void) { int port; Cvar_Register (&pext_replacementdeltas, "Protocol Extensions"); Cvar_Register (&showpackets, "Networking"); Cvar_Register (&showdrop, "Networking"); Cvar_Register (&qport, "Networking"); Cvar_Register (&net_mtu, "Networking"); // pick a port value that should be nice and random #ifdef _WIN32 port = (time(NULL)) & 0xffff; #else port = ((int)(getpid()+getuid()*1000) * time(NULL)) & 0xffff; #endif Cvar_SetValue (&qport, port); } /* =============== Netchan_OutOfBand Sends an out-of-band datagram ================ */ void Netchan_OutOfBand (netsrc_t sock, netadr_t adr, int length, qbyte *data) { sizebuf_t send; qbyte send_buf[MAX_QWMSGLEN + PACKET_HEADER]; // write the packet header send.data = send_buf; send.maxsize = sizeof(send_buf); send.cursize = 0; MSG_WriteLong (&send, -1); // -1 sequence means out of band SZ_Write (&send, data, length); // send the datagram //zoid, no input in demo playback mode #ifndef SERVERONLY if (!cls.demoplayback) #endif NET_SendPacket (sock, send.cursize, send.data, adr); } /* =============== Netchan_OutOfBandPrint Sends a text message in an out-of-band datagram ================ */ void VARGS Netchan_OutOfBandPrint (netsrc_t sock, netadr_t adr, char *format, ...) { va_list argptr; static char string[8192]; // ??? why static? va_start (argptr, format); vsnprintf (string,sizeof(string)-1, format,argptr); va_end (argptr); Netchan_OutOfBand (sock, adr, strlen(string), (qbyte *)string); } #ifndef CLIENTONLY void VARGS Netchan_OutOfBandTPrintf (netsrc_t sock, netadr_t adr, int language, translation_t text, ...) { va_list argptr; static char string[8192]; // ??? why static? char *format = langtext(text, language); string[0] = A2C_PRINT; va_start (argptr, text); vsnprintf (string+1,sizeof(string)-1, format,argptr); va_end (argptr); Netchan_OutOfBand (sock, adr, strlen(string), (qbyte *)string); } #endif /* ============== Netchan_Setup called to open a channel to a remote system ============== */ void Netchan_Setup (netsrc_t sock, netchan_t *chan, netadr_t adr, int qport) { memset (chan, 0, sizeof(*chan)); chan->sock = sock; chan->remote_address = adr; chan->last_received = realtime; chan->message.data = chan->message_buf; chan->message.allowoverflow = true; chan->message.maxsize = MAX_QWMSGLEN;//sizeof(chan->message_buf); chan->qport = qport; } /* =============== Netchan_CanPacket Returns true if the bandwidth choke isn't active ================ */ #define MAX_BACKUP 200 qboolean Netchan_CanPacket (netchan_t *chan, int rate) { if (chan->remote_address.type == NA_LOOPBACK) return true; //don't ever drop packets due to possible routing problems when there is no routing. if (!rate) return true; if (chan->cleartime < realtime + MAX_BACKUP/(float)rate) return true; return false; } void Netchan_Block (netchan_t *chan, int bytes, int rate) { if (rate) { if (chan->cleartime < realtime-0.25) //0.25 allows it to be a little bursty. chan->cleartime = realtime + bytes/(float)rate; else chan->cleartime += bytes/(float)rate; } } /* =============== Netchan_CanReliable Returns true if the bandwidth choke isn't ================ */ qboolean Netchan_CanReliable (netchan_t *chan, int rate) { if (chan->reliable_length) return false; // waiting for ack return Netchan_CanPacket (chan, rate); } #ifdef SERVERONLY qboolean ServerPaused(void); #endif #ifdef NQPROT nqprot_t NQNetChan_Process(netchan_t *chan) { int header; int sequence; int drop; MSG_BeginReading (chan->netprim); header = LongSwap(MSG_ReadLong()); if (net_message.cursize != (header & NETFLAG_LENGTH_MASK)) return NQP_ERROR; //size was wrong, couldn't have been ours. if (header & NETFLAG_CTL) return NQP_ERROR; //huh? sequence = LongSwap(MSG_ReadLong()); if (header & NETFLAG_ACK) { if (sequence == chan->reliable_sequence) { chan->reliable_start += MAX_NQDATAGRAM; if (chan->reliable_start >= chan->reliable_length) { chan->reliable_length = 0; //they got the entire message chan->reliable_start = 0; } chan->incoming_reliable_acknowledged = chan->reliable_sequence; chan->reliable_sequence++; chan->last_received = realtime; } else if (sequence < chan->reliable_sequence) Con_DPrintf("Stale ack recieved\n"); else if (sequence > chan->reliable_sequence) Con_Printf("Future ack recieved\n"); if (showpackets.value) Con_Printf ("<-- a s=%i a=%i(%i) %i\n" , chan->outgoing_sequence , chan->incoming_sequence , chan->incoming_reliable_sequence , 0); return NQP_ERROR; //don't try execing the 'payload'. I hate ack packets. } if (header & NETFLAG_UNRELIABLE) { if (sequence < chan->incoming_unreliable) { Con_DPrintf("Stale datagram recieved\n"); return NQP_ERROR; } drop = sequence - chan->incoming_unreliable - 1; if (drop > 0) { Con_DPrintf("Dropped %i datagrams\n", drop); chan->drop_count += drop; } chan->incoming_unreliable = sequence; chan->last_received = realtime; chan->incoming_acknowledged++; chan->good_count++; if (showpackets.value) Con_Printf ("<-- u s=%i a=%i(%i) %i\n" , chan->outgoing_sequence , chan->incoming_sequence , chan->incoming_reliable_sequence , net_message.cursize); return NQP_DATAGRAM; } if (header & NETFLAG_DATA) { int runt[2]; //always reply. a stale sequence probably means our ack got lost. runt[0] = BigLong(NETFLAG_ACK | 8); runt[1] = BigLong(sequence); NET_SendPacket (chan->sock, 8, runt, net_from); chan->last_received = realtime; if (sequence == chan->incoming_reliable_sequence) { chan->incoming_reliable_sequence++; if (chan->in_fragment_length + net_message.cursize-8 >= sizeof(chan->in_fragment_buf)) { chan->fatal_error = true; return NQP_ERROR; } memcpy(chan->in_fragment_buf + chan->in_fragment_length, net_message.data+8, net_message.cursize-8); chan->in_fragment_length += net_message.cursize-8; if (header & NETFLAG_EOM) { SZ_Clear(&net_message); SZ_Write(&net_message, chan->in_fragment_buf, chan->in_fragment_length); chan->in_fragment_length = 0; MSG_BeginReading(chan->netprim); if (showpackets.value) Con_Printf ("<-- r s=%i a=%i(%i) %i\n" , chan->outgoing_sequence , chan->incoming_sequence , chan->incoming_reliable_sequence , net_message.cursize); return NQP_RELIABLE; //we can read it now } } else Con_DPrintf("Stale reliable (%i)\n", sequence); return NQP_ERROR; } return NQP_ERROR; //not supported. } #endif /* =============== Netchan_Transmit tries to send an unreliable message to a connection, and handles the transmition / retransmition of the reliable messages. A 0 length will still generate a packet and deal with the reliable messages. ================ */ int Netchan_Transmit (netchan_t *chan, int length, qbyte *data, int rate) { sizebuf_t send; qbyte send_buf[MAX_OVERALLMSGLEN + PACKET_HEADER]; qboolean send_reliable; char remote_adr[MAX_ADR_SIZE]; unsigned w1, w2; int i; #ifdef NQPROT if (chan->isnqprotocol) { int sentsize = 0; send.data = send_buf; send.maxsize = MAX_NQMSGLEN + PACKET_HEADER; send.cursize = 0; /*unreliables flood out, but reliables are tied to server sequences*/ if (chan->nqreliable_allowed) { if (!chan->reliable_length && chan->message.cursize) { memcpy (chan->reliable_buf, chan->message_buf, chan->message.cursize); chan->reliable_length = chan->message.cursize; chan->reliable_start = 0; chan->message.cursize = 0; } i = chan->reliable_length - chan->reliable_start; if (i>0) { MSG_WriteLong(&send, 0); MSG_WriteLong(&send, LongSwap(chan->reliable_sequence)); if (i > MAX_NQDATAGRAM) i = MAX_NQDATAGRAM; SZ_Write (&send, chan->reliable_buf+chan->reliable_start, i); if (chan->reliable_start+i == chan->reliable_length) { if (send.cursize + length < send.maxsize) { //throw the unreliable packet into the same one as the reliable (but not sent reliably) SZ_Write (&send, data, length); length = 0; } *(int*)send_buf = BigLong(NETFLAG_DATA | NETFLAG_EOM | send.cursize); } else *(int*)send_buf = BigLong(NETFLAG_DATA | send.cursize); NET_SendPacket (chan->sock, send.cursize, send.data, chan->remote_address); Netchan_Block(chan, send.cursize, rate); sentsize += send.cursize; if (showpackets.value) Con_Printf ("--> r s=%i a=%i(%i) %i\n" , chan->outgoing_sequence , chan->incoming_sequence , chan->incoming_reliable_sequence , send.cursize); send.cursize = 0; } chan->nqreliable_allowed = false; } //send out the unreliable (if still unsent) if (length) { MSG_WriteLong(&send, 0); MSG_WriteLong(&send, LongSwap(chan->outgoing_unreliable)); chan->outgoing_unreliable++; SZ_Write (&send, data, length); *(int*)send_buf = BigLong(NETFLAG_UNRELIABLE | send.cursize); NET_SendPacket (chan->sock, send.cursize, send.data, chan->remote_address); Netchan_Block(chan, send.cursize, rate); sentsize += send.cursize; if (showpackets.value) Con_Printf ("--> u s=%i %i\n" , chan->outgoing_unreliable , send.cursize); send.cursize = 0; } return sentsize; } #endif // check for message overflow if (chan->message.overflowed) { chan->fatal_error = true; Con_TPrintf (TL_OUTMESSAGEOVERFLOW , NET_AdrToString (remote_adr, sizeof(remote_adr), chan->remote_address)); return 0; } // if the remote side dropped the last reliable message, resend it send_reliable = false; if (chan->incoming_acknowledged > chan->last_reliable_sequence && chan->incoming_reliable_acknowledged != chan->reliable_sequence) send_reliable = true; // if the reliable transmit buffer is empty, copy the current message out if (!chan->reliable_length && chan->message.cursize) { memcpy (chan->reliable_buf, chan->message_buf, chan->message.cursize); chan->reliable_length = chan->message.cursize; chan->message.cursize = 0; chan->reliable_sequence ^= 1; send_reliable = true; } // write the packet header send.data = send_buf; send.maxsize = MAX_QWMSGLEN + PACKET_HEADER; send.cursize = 0; w1 = chan->outgoing_sequence | (send_reliable<<31); w2 = chan->incoming_sequence | (chan->incoming_reliable_sequence<<31); chan->outgoing_sequence++; MSG_WriteLong (&send, w1); MSG_WriteLong (&send, w2); // send the qport if we are a client #ifndef SERVERONLY if (chan->sock == NS_CLIENT) MSG_WriteShort (&send, cls.qport); #endif if (chan->fragmentsize) { //allow the max size to be bigger send.maxsize = MAX_OVERALLMSGLEN + PACKET_HEADER; MSG_WriteShort(&send, 0); } // copy the reliable message to the packet first if (send_reliable) { SZ_Write (&send, chan->reliable_buf, chan->reliable_length); chan->last_reliable_sequence = chan->outgoing_sequence; } // add the unreliable part if space is available if (send.maxsize - send.cursize >= length) SZ_Write (&send, data, length); // send the datagram i = chan->outgoing_sequence & (MAX_LATENT-1); chan->outgoing_size[i] = send.cursize; chan->outgoing_time[i] = realtime; #ifdef HUFFNETWORK if (chan->compress) { //int oldsize = send.cursize; Huff_CompressPacket(&send, 8 + ((chan->sock == NS_CLIENT)?2:0) + (chan->fragmentsize?2:0)); // Con_Printf("%i becomes %i\n", oldsize, send.cursize); // Huff_DecompressPacket(&send, (chan->sock == NS_CLIENT)?10:8); } #endif //zoid, no input in demo playback mode #ifndef SERVERONLY if (!cls.demoplayback) #endif { int hsz = 10 + ((chan->sock == NS_CLIENT)?2:0); /*header size, if fragmentation is in use*/ if (!chan->fragmentsize || send.cursize < chan->fragmentsize - hsz) NET_SendPacket (chan->sock, send.cursize, send.data, chan->remote_address); else { int offset = chan->fragmentsize, no; qboolean more; /*switch on the 'more flags' bit, and send the first part*/ send.data[hsz - 2] |= 0x1; NET_SendPacket (chan->sock, offset, send.data, chan->remote_address); /*send the additional parts, adding new headers within the previous packet*/ while(offset < send.cursize) { no = offset + chan->fragmentsize - hsz; if (no < send.cursize) { more = true; no &= 7; if (no == offset) break; } else { no = send.cursize; more = false; } *(int*)&send.data[(offset - hsz) + 0] = LittleLong(w1); *(int*)&send.data[(offset - hsz) + 4] = LittleLong(w2); #ifndef SERVERONLY if (chan->sock == NS_CLIENT) *(short*)&send.data[offset - 4] = LittleShort(cls.qport); #endif *(short*)&send.data[offset - 2] = LittleShort(((offset-hsz)>>2) | (more?1:0)); NET_SendPacket (chan->sock, (no - offset) + hsz, send.data + offset - hsz, chan->remote_address); offset = no; } } } Netchan_Block(chan, send.cursize, rate); #ifdef SERVERONLY if (ServerPaused()) chan->cleartime = realtime; #endif if (showpackets.value) Con_Printf ("--> s=%i(%i) a=%i(%i) %i\n" , chan->outgoing_sequence , send_reliable , chan->incoming_sequence , chan->incoming_reliable_sequence , send.cursize); return send.cursize; } /* ================= Netchan_Process called when the current net_message is from remote_address modifies net_message so that it points to the packet payload ================= */ qboolean Netchan_Process (netchan_t *chan) { unsigned sequence, sequence_ack; unsigned reliable_ack, reliable_message; char adr[MAX_ADR_SIZE]; #ifndef CLIENTONLY int qport; #endif int offset; if ( #ifndef SERVERONLY !cls.demoplayback && #endif !NET_CompareAdr (net_from, chan->remote_address)) return false; // get sequence numbers MSG_BeginReading (chan->netprim); sequence = MSG_ReadLong (); sequence_ack = MSG_ReadLong (); // read the qport if we are a server #ifndef CLIENTONLY if (chan->sock == NS_SERVER) qport = MSG_ReadShort (); #endif if (chan->fragmentsize) offset = (unsigned short)MSG_ReadShort(); else offset = 0; reliable_message = sequence >> 31; reliable_ack = sequence_ack >> 31; sequence &= ~(1<<31); sequence_ack &= ~(1<<31); if (showpackets.value) Con_Printf ("<-- s=%i(%i) a=%i(%i) %i\n" , sequence , reliable_message , sequence_ack , reliable_ack , net_message.cursize); // get a rate estimation #if 0 if (chan->outgoing_sequence - sequence_ack < MAX_LATENT) { int i; double time, rate; i = sequence_ack & (MAX_LATENT - 1); time = realtime - chan->outgoing_time[i]; time -= 0.1; // subtract 100 ms if (time <= 0) { // gotta be a digital link for <100 ms ping if (chan->rate > 1.0/5000) chan->rate = 1.0/5000; } else { if (chan->outgoing_size[i] < 512) { // only deal with small messages rate = chan->outgoing_size[i]/time; if (rate > 5000) rate = 5000; rate = 1.0/rate; if (chan->rate > rate) chan->rate = rate; } } } #endif // // discard stale or duplicated packets // if (sequence <= (unsigned)chan->incoming_sequence) { if (showdrop.value) Con_TPrintf (TL_OUTOFORDERPACKET , NET_AdrToString (adr, sizeof(adr), chan->remote_address) , sequence , chan->incoming_sequence); return false; } if (offset) { int len = net_message.cursize - msg_readcount; qboolean more = false; if (offset & 1) { more = true; offset &= ~1; offset = offset << 2; } if (offset + len > sizeof(chan->in_fragment_buf)) /*stop the overflow*/ { if (showdrop.value) Con_Printf("Dropping packet - too many fragments\n"); return false; } if (chan->incoming_unreliable != sequence) { /*sequence doesn't match, forget the old*/ chan->in_fragment_length = 0; chan->incoming_unreliable = sequence; } if (offset != chan->in_fragment_length) return false; /*dropped one*/ memcpy(chan->in_fragment_buf + offset, net_message.data + msg_readcount, len); chan->in_fragment_length += net_message.cursize - msg_readcount; if (more) { /*nothing to process yet*/ return false; } memcpy(net_message.data, chan->in_fragment_buf, chan->in_fragment_length); msg_readcount = 0; net_message.cursize = chan->in_fragment_length; chan->incoming_unreliable = 0; chan->in_fragment_length = 0; } else { /*kill any pending reliable*/ chan->incoming_unreliable = 0; chan->in_fragment_length = 0; } // // dropped packets don't keep the message from being used // net_drop = sequence - (chan->incoming_sequence+1); if (net_drop > 0) { chan->drop_count += 1; if (showdrop.value) Con_TPrintf (TL_DROPPEDPACKETCOUNT , NET_AdrToString (adr, sizeof(adr), chan->remote_address) , sequence-(chan->incoming_sequence+1) , sequence); } // // if the current outgoing reliable message has been acknowledged // clear the buffer to make way for the next // if (reliable_ack == (unsigned)chan->reliable_sequence) chan->reliable_length = 0; // it has been received // // if this message contains a reliable message, bump incoming_reliable_sequence // chan->incoming_sequence = sequence; chan->incoming_acknowledged = sequence_ack; chan->incoming_reliable_acknowledged = reliable_ack; if (reliable_message) chan->incoming_reliable_sequence ^= 1; // // the message can now be read from the current message pointer // update statistics counters // chan->frame_latency = chan->frame_latency*OLD_AVG + (chan->outgoing_sequence-sequence_ack)*(1.0-OLD_AVG); chan->frame_rate = chan->frame_rate*OLD_AVG + (realtime-chan->last_received)*(1.0-OLD_AVG); chan->good_count += 1; chan->last_received = realtime; #ifdef HUFFNETWORK if (chan->compress) { // Huff_CompressPacket(&net_message, (chan->sock == NS_SERVER)?10:8); Huff_DecompressPacket(&net_message, msg_readcount); } #endif return true; }