#include "quakedef.h" #ifdef HALFLIFEMODELS #include "shader.h" #include "com_mesh.h" /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Half-Life Model Renderer (Experimental) Copyright (C) 2001 James 'Ender' Brown [ender@quakesrc.org] This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. fromquake.h - render.c - apart from calculations (mostly range checking or value conversion code is a mix of standard Quake 1 meshing, and vertex deforms. The rendering loop uses standard Quake 1 drawing, after SetupBones deforms the vertex. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Also, please note that it won't do all hl models.... Nor will it work 100% */ void QuaternionGLMatrix(float x, float y, float z, float w, vec4_t *GLM) { GLM[0][0] = 1 - 2 * y * y - 2 * z * z; GLM[1][0] = 2 * x * y + 2 * w * z; GLM[2][0] = 2 * x * z - 2 * w * y; GLM[0][1] = 2 * x * y - 2 * w * z; GLM[1][1] = 1 - 2 * x * x - 2 * z * z; GLM[2][1] = 2 * y * z + 2 * w * x; GLM[0][2] = 2 * x * z + 2 * w * y; GLM[1][2] = 2 * y * z - 2 * w * x; GLM[2][2] = 1 - 2 * x * x - 2 * y * y; } /* ======================================================================================================================= QuaternionGLAngle - Convert a GL angle to a quaternion matrix ======================================================================================================================= */ void QuaternionGLAngle(const vec3_t angles, vec4_t quaternion) { /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ float yaw = angles[2] * 0.5; float pitch = angles[1] * 0.5; float roll = angles[0] * 0.5; float siny = sin(yaw); float cosy = cos(yaw); float sinp = sin(pitch); float cosp = cos(pitch); float sinr = sin(roll); float cosr = cos(roll); /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ quaternion[0] = sinr * cosp * cosy - cosr * sinp * siny; quaternion[1] = cosr * sinp * cosy + sinr * cosp * siny; quaternion[2] = cosr * cosp * siny - sinr * sinp * cosy; quaternion[3] = cosr * cosp * cosy + sinr * sinp * siny; } matrix3x4 transform_matrix[MAX_BONES]; /* Vertex transformation matrix */ void GL_Draw_HL_AliasFrame(short *order, vec3_t *transformed, float tex_w, float tex_h); struct hlvremaps { unsigned short vertidx; unsigned short normalidx; unsigned short scoord; unsigned short tcoord; }; static index_t HLMDL_DeDupe(unsigned short *order, struct hlvremaps *rem, size_t *count, size_t max) { size_t i; for (i = *count; i-- > 0;) { if (rem[i].vertidx == order[0] && rem[i].normalidx == order[1] && rem[i].scoord == order[2] && rem[i].tcoord == order[3]) return i; } i = *count; if (i < max) { rem[i].vertidx = order[0]; rem[i].normalidx = order[1]; rem[i].scoord = order[2]; rem[i].tcoord = order[3]; } *count += 1; return i; } //parse the vertex info, pull out what we can static void HLMDL_PrepareVerticies (hlmodel_t *model, hlmdl_submodel_t *amodel, struct hlalternative_s *submodel) { struct hlvremaps *uvert; size_t uvertcount, uvertstart; unsigned short count; int i; size_t idx = 0, v, m, maxidx=65536*3; size_t maxverts = 65536; mesh_t *mesh = &submodel->mesh; index_t *index; vec3_t *verts = (vec3_t *) ((qbyte *) model->header + amodel->vertindex); qbyte *bone = ((qbyte *) model->header + amodel->vertinfoindex); vec3_t *norms = (vec3_t *) ((qbyte *) model->header + amodel->normindex); uvertcount = 0; uvert = malloc(sizeof(*uvert)*maxverts); index = malloc(sizeof(*mesh->colors4b_array)*maxidx); for(m = 0; m < amodel->nummesh; m++) { hlmdl_mesh_t *inmesh = (hlmdl_mesh_t *) ((qbyte *) model->header + amodel->meshindex) + m; unsigned short *order = (unsigned short *) ((qbyte *) model->header + inmesh->index); uvertstart = uvertcount; submodel->submesh[m].firstindex = mesh->numindexes; submodel->submesh[m].numindexes = 0; for(;;) { count = *order++; /* get the vertex count and primitive type */ if(!count) break; /* done */ if(count & 0x8000) { //fan int first = HLMDL_DeDupe(order+0*4, uvert, &uvertcount, maxverts); int prev = HLMDL_DeDupe(order+1*4, uvert, &uvertcount, maxverts); count = (unsigned short)-(short)count; if (idx + (count-2)*3 > maxidx) break; //would overflow. fixme: extend for (i = min(2,count); i < count; i++) { index[idx++] = first; index[idx++] = prev; index[idx++] = prev = HLMDL_DeDupe(order+i*4, uvert, &uvertcount, maxverts); } } else { int v0 = HLMDL_DeDupe(order+0*4, uvert, &uvertcount, maxverts); int v1 = HLMDL_DeDupe(order+1*4, uvert, &uvertcount, maxverts); //emit (count-2)*3 indicies as a strip //012 213, etc if (idx + (count-2)*3 > maxidx) break; //would overflow. fixme: extend for (i = min(2,count); i < count; i++) { if (i & 1) { index[idx++] = v1; index[idx++] = v0; } else { index[idx++] = v0; index[idx++] = v1; } v0 = v1; index[idx++] = v1 = HLMDL_DeDupe(order+i*4, uvert, &uvertcount, maxverts); } } order += i*4; } if (uvertcount >= maxverts) { //if we're overflowing our verts, rewind, as we cannot generate this mesh. we'll just end up with a 0-index mesh, with no extra verts either uvertcount = uvertstart; idx = submodel->submesh[m].firstindex; } submodel->submesh[m].numindexes = idx - submodel->submesh[m].firstindex; } mesh->numindexes = idx; mesh->numvertexes = uvertcount; mesh->indexes = ZG_Malloc(model->memgroup, sizeof(*mesh->indexes)*idx); memcpy(mesh->indexes, index, sizeof(*mesh->indexes)*idx); mesh->colors4b_array = ZG_Malloc(model->memgroup, sizeof(*mesh->colors4b_array)*uvertcount); mesh->st_array = ZG_Malloc(model->memgroup, sizeof(*mesh->st_array)*uvertcount); mesh->lmst_array[0] = ZG_Malloc(model->memgroup, sizeof(*mesh->lmst_array[0])*uvertcount); mesh->xyz_array = ZG_Malloc(model->memgroup, sizeof(*mesh->xyz_array)*uvertcount); mesh->normals_array = ZG_Malloc(model->memgroup, sizeof(*mesh->normals_array)*uvertcount); mesh->snormals_array = ZG_Malloc(model->memgroup, sizeof(*mesh->snormals_array)*uvertcount); mesh->tnormals_array = ZG_Malloc(model->memgroup, sizeof(*mesh->tnormals_array)*uvertcount); mesh->bonenums = ZG_Malloc(model->memgroup, sizeof(*mesh->bonenums)*uvertcount); mesh->boneweights = ZG_Malloc(model->memgroup, sizeof(*mesh->boneweights)*uvertcount); //prepare the verticies now that we have the mappings for(v = 0; v < uvertcount; v++) { mesh->bonenums[v][0] = mesh->bonenums[v][1] = mesh->bonenums[v][2] = mesh->bonenums[v][3] = bone[uvert[v].vertidx]; Vector4Set(mesh->boneweights[v], 1, 0, 0, 0); Vector4Set(mesh->colors4b_array[v], 255, 255, 255, 255); //why bytes? why not? mesh->lmst_array[0][v][0] = uvert[v].scoord; mesh->lmst_array[0][v][1] = uvert[v].tcoord; VectorCopy(verts[uvert[v].vertidx], mesh->xyz_array[v]); //Warning: these models use different tables for vertex and normals. //this means they might be transformed by different bones. we ignore that and just assume that the normals will want the same bone. VectorCopy(norms[uvert[v].normalidx], mesh->normals_array[v]); } //don't need that mapping any more free(uvert); free(index); //treat this as the base pose, and calculate the sdir+tdir for bumpmaps. R_Generate_Mesh_ST_Vectors(mesh); } /* ======================================================================================================================= Mod_LoadHLModel - read in the model's constituent parts ======================================================================================================================= */ qboolean QDECL Mod_LoadHLModel (model_t *mod, void *buffer, size_t fsize) { int i; hlmodel_t *model; hlmdl_header_t *header; hlmdl_header_t *texheader; hlmdl_tex_t *tex; hlmdl_bone_t *bones; hlmdl_bonecontroller_t *bonectls; struct hlmodelshaders_s *shaders; void *texmem = NULL; int body; //load the model into hunk model = ZG_Malloc(&mod->memgroup, sizeof(hlmodel_t)); model->memgroup = &mod->memgroup; header = ZG_Malloc(&mod->memgroup, fsize); memcpy(header, buffer, fsize); #if defined(HLSERVER) && (defined(__powerpc__) || defined(__ppc__)) //this is to let bigfoot know when he comes to port it all... And I'm lazy. #ifdef warningmsg #pragma warningmsg("-----------------------------------------") #pragma warningmsg("FIXME: No byteswapping on halflife models") //hah, yeah, good luck with that, you'll need it. #pragma warningmsg("-----------------------------------------") #endif #endif if (header->version != 10) { Con_Printf(CON_ERROR "Cannot load model %s - unknown version %i\n", mod->name, header->version); return false; } if (header->numcontrollers > MAX_BONE_CONTROLLERS) { Con_Printf(CON_ERROR "Cannot load model %s - too many controllers %i\n", mod->name, header->numcontrollers); return false; } if (header->numbones > MAX_BONES) { Con_Printf(CON_ERROR "Cannot load model %s - too many bones %i\n", mod->name, header->numbones); return false; } texheader = NULL; if (!header->numtextures) { size_t fz; char texmodelname[MAX_QPATH]; COM_StripExtension(mod->name, texmodelname, sizeof(texmodelname)); Q_strncatz(texmodelname, "t.mdl", sizeof(texmodelname)); //no textures? eesh. They must be stored externally. texheader = texmem = (hlmdl_header_t*)FS_LoadMallocFile(texmodelname, &fz); if (texheader) { if (texheader->version != 10) texheader = NULL; } } if (!texheader) texheader = header; else header->numtextures = texheader->numtextures; tex = (hlmdl_tex_t *) ((qbyte *) texheader + texheader->textures); bones = (hlmdl_bone_t *) ((qbyte *) header + header->boneindex); bonectls = (hlmdl_bonecontroller_t *) ((qbyte *) header + header->controllerindex); model->header = header; model->bones = bones; model->bonectls = bonectls; shaders = ZG_Malloc(&mod->memgroup, texheader->numtextures*sizeof(shader_t)); model->shaders = shaders; for(i = 0; i < texheader->numtextures; i++) { Q_snprintfz(shaders[i].name, sizeof(shaders[i].name), "%s/%s", mod->name, COM_SkipPath(tex[i].name)); memset(&shaders[i].defaulttex, 0, sizeof(shaders[i].defaulttex)); shaders[i].defaulttex.base = Image_GetTexture(shaders[i].name, "", IF_NOALPHA, (qbyte *) texheader + tex[i].offset, (qbyte *) texheader + tex[i].w * tex[i].h + tex[i].offset, tex[i].w, tex[i].h, TF_8PAL24); shaders[i].w = tex[i].w; shaders[i].h = tex[i].h; } model->numskinrefs = texheader->skinrefs; model->numskingroups = texheader->skingroups; model->skinref = ZG_Malloc(&mod->memgroup, model->numskinrefs*model->numskingroups*sizeof(*model->skinref)); memcpy(model->skinref, (short *) ((qbyte *) texheader + texheader->skins), model->numskinrefs*model->numskingroups*sizeof(*model->skinref)); if (texmem) Z_Free(texmem); mod->type = mod_halflife; mod->numframes = model->header->numseq; mod->meshinfo = model; model->numgeomsets = model->header->numbodyparts; model->geomset = ZG_Malloc(&mod->memgroup, sizeof(*model->geomset) * model->numgeomsets); for (body = 0; body < model->header->numbodyparts; body++) { hlmdl_bodypart_t *bodypart = (hlmdl_bodypart_t *) ((qbyte *) model->header + model->header->bodypartindex) + body; int bodyindex; model->geomset[body].numalternatives = bodypart->nummodels; model->geomset[body].alternatives = ZG_Malloc(&mod->memgroup, sizeof(*model->geomset[body].alternatives) * bodypart->nummodels); for (bodyindex = 0; bodyindex < bodypart->nummodels; bodyindex++) { hlmdl_submodel_t *amodel = (hlmdl_submodel_t *) ((qbyte *) model->header + bodypart->modelindex) + bodyindex; model->geomset[body].alternatives[bodyindex].numsubmeshes = amodel->nummesh; model->geomset[body].alternatives[bodyindex].submesh = ZG_Malloc(&mod->memgroup, sizeof(*model->geomset[body].alternatives[bodyindex].submesh) * amodel->nummesh); HLMDL_PrepareVerticies(model, amodel, &model->geomset[body].alternatives[bodyindex]); } } return true; } #ifdef HLSERVER void *Mod_GetHalfLifeModelData(model_t *mod) { hlmodelcache_t *mc; if (!mod || mod->type != mod_halflife) return NULL; //halflife models only, please mc = Mod_Extradata(mod); return (void*)mc->header; } #endif int HLMDL_FrameForName(model_t *mod, const char *name) { int i; hlmdl_header_t *h; hlmdl_sequencelist_t *seqs; hlmodel_t *mc; if (!mod || mod->type != mod_halflife) return -1; //halflife models only, please mc = Mod_Extradata(mod); h = mc->header; seqs = (hlmdl_sequencelist_t*)((char*)h+h->seqindex); for (i = 0; i < h->numseq; i++) { if (!strcmp(seqs[i].name, name)) return i; } return -1; } int HLMDL_BoneForName(model_t *mod, const char *name) { int i; hlmdl_header_t *h; hlmdl_bone_t *bones; hlmodel_t *mc; if (!mod || mod->type != mod_halflife) return -1; //halflife models only, please mc = Mod_Extradata(mod); h = mc->header; bones = (hlmdl_bone_t*)((char*)h+h->boneindex); for (i = 0; i < h->numbones; i++) { if (!strcmp(bones[i].name, name)) return i+1; } //FIXME: hlmdl has tags as well as bones. return 0; } /* ======================================================================================================================= HL_CalculateBones - calculate bone positions - quaternion+vector in one function ======================================================================================================================= */ void HL_CalculateBones ( int frame, vec4_t adjust, hlmdl_bone_t *bone, hlmdl_anim_t *animation, float *organg ) { int i; /* For each vector */ for(i = 0; i < 6; i++) { organg[i] = bone->value[i]; /* Take the bone value */ if(animation->offset[i] != 0) { /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ int tempframe; hlmdl_animvalue_t *animvalue = (hlmdl_animvalue_t *) ((qbyte *) animation + animation->offset[i]); /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ /* find values including the required frame */ tempframe = frame; while(animvalue->num.total <= tempframe) { tempframe -= animvalue->num.total; animvalue += animvalue->num.valid + 1; } if (tempframe >= animvalue->num.valid) tempframe = animvalue->num.valid; else tempframe += 1; organg[i] += animvalue[tempframe].value * bone->scale[i]; } if(bone->bonecontroller[i] != -1) { /* Add the programmable offset. */ organg[i] += adjust[bone->bonecontroller[i]]; } } } /* ======================================================================================================================= HL_CalcBoneAdj - Calculate the adjustment values for the programmable controllers ======================================================================================================================= */ void HL_CalcBoneAdj(hlmodel_t *model) { /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ int i; float value; hlmdl_bonecontroller_t *control = (hlmdl_bonecontroller_t *) ((qbyte *) model->header + model->header->controllerindex); /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ for(i = 0; i < model->header->numcontrollers; i++) { /*~~~~~~~~~~~~~~~~~~~~~*/ int j = control[i].index; /*~~~~~~~~~~~~~~~~~~~~~*/ if(control[i].type & 0x8000) { //wraps normally value = model->controller[j];// + control[i].start; } else { // value = (model->controller[j]+1)*0.5; //shifted to give a valid range between -1 and 1, with 0 being mid-range. // if(value < 0) // value = 0; // else if(value > 1.0) // value = 1.0; // value = (1.0 - value) * control[i].start + value * control[i].end; value = model->controller[j]; if (value < control[i].start) value = control[i].start; if (value > control[i].end) value = control[i].end; } /* Rotational controllers need their values converted */ if(control[i].type >= 0x0008 && control[i].type <= 0x0020) model->adjust[i] = M_PI * value / 180; else model->adjust[i] = value; } } /* ======================================================================================================================= HL_SetupBones - determine where vertex should be using bone movements ======================================================================================================================= */ void QuaternionSlerp( const vec4_t p, vec4_t q, float t, vec4_t qt ); void HL_SetupBones(hlmodel_t *model, int seqnum, int firstbone, int lastbone, float subblendfrac, float frametime, float *matrix) { /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ int i; vec3_t organg1[2]; vec3_t organg2[2]; vec3_t organgb[2]; vec4_t quat1, quat2, quatb; int frame1, frame2; hlmdl_sequencelist_t *sequence = (hlmdl_sequencelist_t *) ((qbyte *) model->header + model->header->seqindex) + ((unsigned int)seqnum>=model->header->numseq?0:seqnum); hlmdl_sequencedata_t *sequencedata = (hlmdl_sequencedata_t *) ((qbyte *) model->header + model->header->seqgroups) + sequence->seqindex; hlmdl_anim_t *animation; /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ matrix += firstbone*12; if (sequencedata->name[32]) { size_t fz; if (sequence->seqindex >= MAX_ANIM_GROUPS) { Sys_Error("Too many animation sequence cache groups\n"); return; } if (!model->animcache[sequence->seqindex]) model->animcache[sequence->seqindex] = FS_LoadMallocGroupFile(model->memgroup, sequencedata->name+32, &fz); if (!model->animcache[sequence->seqindex] || model->animcache[sequence->seqindex]->magic != *(int*)"IDSQ" || model->animcache[sequence->seqindex]->version != 10) { Sys_Error("Unable to load %s\n", sequencedata->name+32); return; } animation = (hlmdl_anim_t *)((qbyte*)model->animcache[sequence->seqindex] + sequence->index); } else animation = (hlmdl_anim_t *) ((qbyte *) model->header + sequencedata->data + sequence->index); frametime *= sequence->timing; if (frametime < 0) frametime = 0; frame1 = (int)frametime; frametime -= frame1; frame2 = frame1+1; if (!sequence->numframes) return; if(frame1 >= sequence->numframes) { if (sequence->loop) frame1 %= sequence->numframes; else frame1 = sequence->numframes-1; } if(frame2 >= sequence->numframes) { if (sequence->loop) frame2 %= sequence->numframes; else frame2 = sequence->numframes-1; } if (frame2 < frame1) { i = frame2; frame2 = frame1; frame1 = i; frametime = 1-frametime; } if (lastbone > model->header->numbones) lastbone = model->header->numbones; HL_CalcBoneAdj(model); /* Deal with programmable controllers */ /*FIXME:this is useless*/ /* if(sequence->motiontype & 0x0001) positions[sequence->motionbone][0] = 0.0; if(sequence->motiontype & 0x0002) positions[sequence->motionbone][1] = 0.0; if(sequence->motiontype & 0x0004) positions[sequence->motionbone][2] = 0.0; */ /* this is hellish. a hl model blends: 4 controllers (on a player, it seems each one of them twists a separate bone in the chest) a mouth (not used on players) its a sequence (to be smooth we need to blend between two frames in the sequence) up to four source animations (ironically used to pitch up/down) alternate sequence (walking+firing) frame2 (quake expectations.) this is madness, quite frankly. luckily... controllers and mouth control the entire thing. they should be interpolated outside, and have no affect on blending here alternate sequences replace. we can just call this function twice (so long as bone ranges are incremental). autoanimating sequence is handled inside HL_CalculateBones (sequences are weird and it has to be handled there anyway) this means we only have sources and alternate frames left to cope with. FIXME: we don't handle frame2. */ if (sequence->hasblendseq>1 && sequence->hasblendseq<9) { //I have no idea how to deal with > 1. //some CS models seem to have 9 here, but some look like they're fucked. if (subblendfrac < 0) subblendfrac = 0; if (subblendfrac > 1) subblendfrac = 1; for(i = firstbone; i < lastbone; i++, matrix+=12) { //calc first blend (writes organgb+quatb) HL_CalculateBones(frame1, model->adjust, model->bones + i, animation + i, organgb[0]); QuaternionGLAngle(organgb[1], quatb); /* A quaternion */ if (frame1 != frame2) { HL_CalculateBones(frame2, model->adjust, model->bones + i, animation + i, organg2[0]); QuaternionGLAngle(organg2[1], quat2); /* A quaternion */ QuaternionSlerp(quatb, quat2, frametime, quatb); VectorInterpolate(organgb[0], frametime, organg2[0], organgb[0]); } //calc first blend (writes organg1+quat1) HL_CalculateBones(frame1, model->adjust, model->bones + i, animation + i + model->header->numbones, organg1[0]); QuaternionGLAngle(organg1[1], quat1); /* A quaternion */ if (frame1 != frame2) { HL_CalculateBones(frame2, model->adjust, model->bones + i, animation + i + model->header->numbones, organg2[0]); QuaternionGLAngle(organg2[1], quat2); /* A quaternion */ QuaternionSlerp(quat1, quat2, frametime, quat1); VectorInterpolate(organg1[0], frametime, organg2[0], organg1[0]); } //blend the two, figure out a matrix. QuaternionSlerp(quatb, quat1, subblendfrac, quat1); QuaternionGLMatrix(quat1[0], quat1[1], quat1[2], quat1[3], (vec4_t*)matrix); FloatInterpolate(organgb[0][0], subblendfrac, organg1[0][0], matrix[0*4+3]); FloatInterpolate(organgb[0][1], subblendfrac, organg1[0][1], matrix[1*4+3]); FloatInterpolate(organgb[0][2], subblendfrac, organg1[0][2], matrix[2*4+3]); } } else { //FIXME: disgusting hack to get CS player models not looking like total idiots. but merely regular ones instead. if (sequence->hasblendseq == 9) animation += 4*model->header->numbones; for(i = firstbone; i < lastbone; i++, matrix+=12) { HL_CalculateBones(frame1, model->adjust, model->bones + i, animation + i, organg1[0]); QuaternionGLAngle(organg1[1], quat1); /* A quaternion */ if (frame1 != frame2) { HL_CalculateBones(frame2, model->adjust, model->bones + i, animation + i, organg2[0]); QuaternionGLAngle(organg2[1], quat2); /* A quaternion */ //lerp the quats properly rather than poorly lerping eular angles. QuaternionSlerp(quat1, quat2, frametime, quat1); VectorInterpolate(organg1[0], frametime, organg2[0], organg1[0]); } //figure out the relative bone matrix. //we probably ought to keep them as quats or something. QuaternionGLMatrix(quat1[0], quat1[1], quat1[2], quat1[3], (vec4_t*)matrix); matrix[0*4+3] = organg1[0][0]; matrix[1*4+3] = organg1[0][1]; matrix[2*4+3] = organg1[0][2]; } } } int HLMDL_GetNumBones(model_t *mod) { hlmodel_t *mc; if (!mod || mod->type != mod_halflife) return -1; //halflife models only, please mc = Mod_Extradata(mod); return mc->header->numbones; } int HLMDL_GetBoneParent(model_t *mod, int bonenum) { hlmodel_t *model = Mod_Extradata(mod); if (bonenum >= 0 && bonenum < model->header->numbones) return model->bones[bonenum].parent; return -1; } const char *HLMDL_GetBoneName(model_t *mod, int bonenum) { hlmodel_t *model = Mod_Extradata(mod); if (bonenum >= 0 && bonenum < model->header->numbones) return model->bones[bonenum].name; return NULL; } int HLMDL_GetBoneData(model_t *mod, int firstbone, int lastbone, framestate_t *fstate, float *result) { int b, cbone, bgroup; hlmodel_t *model = Mod_Extradata(mod); for (b = 0; b < MAX_BONE_CONTROLLERS; b++) model->controller[b] = fstate->bonecontrols[b]; for (cbone = 0, bgroup = 0; bgroup < FS_COUNT; bgroup++) { lastbone = fstate->g[bgroup].endbone; if (bgroup == FS_COUNT-1) lastbone = model->header->numbones; if (cbone >= lastbone) continue; HL_SetupBones(model, fstate->g[bgroup].frame[0], cbone, lastbone, (fstate->g[bgroup].subblendfrac+1)*0.5, fstate->g[bgroup].frametime[0], result); /* Setup the bones */ cbone = lastbone; } return cbone; } const char *HLMDL_FrameNameForNum(model_t *mod, int surfaceidx, int seqnum) { hlmodel_t *model = Mod_Extradata(mod); hlmdl_sequencelist_t *sequence = (hlmdl_sequencelist_t *) ((qbyte *) model->header + model->header->seqindex) + ((unsigned int)seqnum>=model->header->numseq?0:seqnum); return sequence->name; } qboolean HLMDL_FrameInfoForNum(model_t *mod, int surfaceidx, int seqnum, char **name, int *numframes, float *duration, qboolean *loop) { hlmodel_t *model = Mod_Extradata(mod); hlmdl_sequencelist_t *sequence = (hlmdl_sequencelist_t *) ((qbyte *) model->header + model->header->seqindex) + ((unsigned int)seqnum>=model->header->numseq?0:seqnum); *name = sequence->name; *numframes = sequence->numframes; *duration = sequence->numframes/sequence->timing; *loop = sequence->loop; return true; } void R_HL_BuildFrame(hlmodel_t *model, hlmdl_submodel_t *amodel, entity_t *curent, int bodypart, int bodyidx, int meshidx, float tex_s, float tex_t, mesh_t *mesh, qboolean gpubones) { int b; int cbone; int bgroup; int lastbone; int v; *mesh = model->geomset[bodypart].alternatives[bodyidx].mesh; //FIXME: cache this! if (curent->framestate.bonecount >= model->header->numbones) { if (curent->framestate.skeltype == SKEL_RELATIVE) { mesh->numbones = model->header->numbones; for (b = 0; b < mesh->numbones; b++) { /* If we have a parent, take the addition. Otherwise just copy the values */ if(model->bones[b].parent>=0) { R_ConcatTransforms(transform_matrix[model->bones[b].parent], (void*)(curent->framestate.bonestate+b*12), transform_matrix[b]); } else { memcpy(transform_matrix[b], curent->framestate.bonestate+b*12, 12 * sizeof(float)); } } mesh->bones = transform_matrix[0][0]; } else { mesh->bones = curent->framestate.bonestate; mesh->numbones = curent->framestate.bonecount; } } else { float relatives[12*MAX_BONES]; mesh->bones = transform_matrix[0][0]; mesh->numbones = model->header->numbones; //FIXME: needs caching. for (b = 0; b < MAX_BONE_CONTROLLERS; b++) model->controller[b] = curent->framestate.bonecontrols[b]; for (cbone = 0, bgroup = 0; bgroup < FS_COUNT; bgroup++) { lastbone = curent->framestate.g[bgroup].endbone; if (bgroup == FS_COUNT-1) lastbone = model->header->numbones; if (cbone >= lastbone) continue; HL_SetupBones(model, curent->framestate.g[bgroup].frame[0], cbone, lastbone, (curent->framestate.g[bgroup].subblendfrac+1)*0.5, curent->framestate.g[bgroup].frametime[0], relatives); /* Setup the bones */ cbone = lastbone; } //convert relative to absolutes for (b = 0; b < cbone; b++) { /* If we have a parent, take the addition. Otherwise just copy the values */ if(model->bones[b].parent>=0) { R_ConcatTransforms(transform_matrix[model->bones[b].parent], (void*)(relatives+b*12), transform_matrix[b]); } else { memcpy(transform_matrix[b], relatives+b*12, 12 * sizeof(float)); } } } mesh->indexes += model->geomset[bodypart].alternatives[bodyidx].submesh[meshidx].firstindex; mesh->numindexes = model->geomset[bodypart].alternatives[bodyidx].submesh[meshidx].numindexes; if (gpubones) { //get the backend to do the skeletal stuff (read: glsl) for(v = 0; v < mesh->numvertexes; v++) { //should really come up with a better way to deal with this, like rect textures. mesh->st_array[v][0] = mesh->lmst_array[0][v][0] * tex_s; mesh->st_array[v][1] = mesh->lmst_array[0][v][1] * tex_t; } } else { //backend can't handle it, apparently. do it in software. static vecV_t nxyz[2048]; static vec3_t nnorm[2048]; for(v = 0; v < mesh->numvertexes; v++) { //should really come up with a better way to deal with this, like rect textures. mesh->st_array[v][0] = mesh->lmst_array[0][v][0] * tex_s; mesh->st_array[v][1] = mesh->lmst_array[0][v][1] * tex_t; VectorTransform(mesh->xyz_array[v], (void *)transform_matrix[mesh->bonenums[v][0]], nxyz[v]); nnorm[v][0] = DotProduct(mesh->normals_array[v], transform_matrix[mesh->bonenums[v][0]][0]); nnorm[v][1] = DotProduct(mesh->normals_array[v], transform_matrix[mesh->bonenums[v][0]][1]); nnorm[v][2] = DotProduct(mesh->normals_array[v], transform_matrix[mesh->bonenums[v][0]][2]); //FIXME: svector, tvector! } mesh->xyz_array = nxyz; mesh->normals_array = nnorm; mesh->bonenums = NULL; mesh->boneweights = NULL; mesh->bones = NULL; mesh->numbones = 0; } } void R_HalfLife_WalkMeshes(entity_t *rent, batch_t *b, batch_t **batches); void R_HL_BuildMesh(struct batch_s *b) { R_HalfLife_WalkMeshes(b->ent, b, NULL); } void R_HalfLife_WalkMeshes(entity_t *rent, batch_t *b, batch_t **batches) { hlmodel_t *model = Mod_Extradata(rent->model); int body, m; int batchid = 0; static mesh_t bmesh, *mptr = &bmesh; skinfile_t *sk = NULL; unsigned int entity_body = 0; if (rent->customskin) sk = Mod_LookupSkin(rent->customskin); //entity_body = rent->body; //hey, if its there, lets use it. for (body = 0; body < model->header->numbodyparts; body++) { /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ hlmdl_bodypart_t *bodypart = (hlmdl_bodypart_t *) ((qbyte *) model->header + model->header->bodypartindex) + body; int bodyindex = ((sk && body < MAX_GEOMSETS && sk->geomset[body] >= 1)?sk->geomset[body]-1:(entity_body / bodypart->base)) % bodypart->nummodels; hlmdl_submodel_t *amodel = (hlmdl_submodel_t *) ((qbyte *) model->header + bodypart->modelindex) + bodyindex; /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ /* Draw each mesh */ for(m = 0; m < amodel->nummesh; m++) { /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ hlmdl_mesh_t *mesh = (hlmdl_mesh_t *) ((qbyte *) model->header + amodel->meshindex) + m; float tex_w; float tex_h; struct hlmodelshaders_s *s; int skinidx = mesh->skinindex; /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ if (skinidx >= model->numskinrefs) continue; //can happen from bad mesh/skin mixing if (rent->skinnum < model->numskingroups) skinidx += rent->skinnum * model->numskinrefs; s = &model->shaders[model->skinref[skinidx]]; if (batches) { int sort, j; b = BE_GetTempBatch(); if (!b) return; if (!s->shader) { s->shader = R_RegisterSkin(s->name, rent->model->name); R_BuildDefaultTexnums(&s->defaulttex, s->shader); } b->skin = NULL; b->shader = s->shader; if (sk) { int i; for (i = 0; i < sk->nummappings; i++) { if (!strcmp(sk->mappings[i].surface, s->name)) { b->skin = &sk->mappings[i].texnums; b->shader = sk->mappings[i].shader; break; } } } b->buildmeshes = R_HL_BuildMesh; b->ent = rent; b->mesh = NULL; b->firstmesh = 0; b->meshes = 1; b->texture = NULL; for (j = 0; j < MAXRLIGHTMAPS; j++) b->lightmap[j] = -1; b->surf_first = batchid; b->flags = 0; sort = b->shader->sort; //fixme: we probably need to force some blend modes based on the surface flags. if (rent->flags & RF_FORCECOLOURMOD) b->flags |= BEF_FORCECOLOURMOD; if (rent->flags & RF_ADDITIVE) { b->flags |= BEF_FORCEADDITIVE; if (sort < SHADER_SORT_ADDITIVE) sort = SHADER_SORT_ADDITIVE; } if (rent->flags & RF_TRANSLUCENT) { b->flags |= BEF_FORCETRANSPARENT; if (SHADER_SORT_PORTAL < sort && sort < SHADER_SORT_BLEND) sort = SHADER_SORT_BLEND; } if (rent->flags & RF_NODEPTHTEST) { b->flags |= BEF_FORCENODEPTH; if (sort < SHADER_SORT_NEAREST) sort = SHADER_SORT_NEAREST; } if (rent->flags & RF_NOSHADOW) b->flags |= BEF_NOSHADOWS; b->vbo = NULL; b->next = batches[sort]; batches[sort] = b; } else { if (batchid == b->surf_first) { tex_w = 1.0f / s->w; tex_h = 1.0f / s->h; b->mesh = &mptr; R_HL_BuildFrame(model, amodel, b->ent, body, bodyindex, m, tex_w, tex_h, b->mesh[0], b->shader->prog && (b->shader->prog->supportedpermutations & PERMUTATION_SKELETAL)); return; } } batchid++; } } } qboolean R_CalcModelLighting(entity_t *e, model_t *clmodel); void R_HalfLife_GenerateBatches(entity_t *e, batch_t **batches) { R_CalcModelLighting(e, e->model); R_HalfLife_WalkMeshes(e, NULL, batches); } #endif