#include "quakedef.h" #ifdef D3DQUAKE #include "shader.h" #if !defined(HMONITOR_DECLARED) && (WINVER < 0x0500) #define HMONITOR_DECLARED DECLARE_HANDLE(HMONITOR); #endif #include extern LPDIRECT3DDEVICE9 pD3DDev9; //#define d3dcheck(foo) foo #define d3dcheck(foo) do{HRESULT err = foo; if (FAILED(err)) Sys_Error("D3D reported error on backend line %i - error 0x%x\n", __LINE__, (unsigned int)err);} while(0) #define MAX_TMUS 4 /*========================================== tables for deforms =====================================*/ #define frand() (rand()*(1.0/RAND_MAX)) #define FTABLE_SIZE 1024 #define FTABLE_CLAMP(x) (((int)((x)*FTABLE_SIZE) & (FTABLE_SIZE-1))) #define FTABLE_EVALUATE(table,x) (table ? table[FTABLE_CLAMP(x)] : frand()*((x)-floor(x))) static float r_sintable[FTABLE_SIZE]; static float r_triangletable[FTABLE_SIZE]; static float r_squaretable[FTABLE_SIZE]; static float r_sawtoothtable[FTABLE_SIZE]; static float r_inversesawtoothtable[FTABLE_SIZE]; static float *FTableForFunc ( unsigned int func ) { switch (func) { case SHADER_FUNC_SIN: return r_sintable; case SHADER_FUNC_TRIANGLE: return r_triangletable; case SHADER_FUNC_SQUARE: return r_squaretable; case SHADER_FUNC_SAWTOOTH: return r_sawtoothtable; case SHADER_FUNC_INVERSESAWTOOTH: return r_inversesawtoothtable; } //bad values allow us to crash (so I can debug em) return NULL; } static void FTable_Init(void) { unsigned int i; double t; for (i = 0; i < FTABLE_SIZE; i++) { t = (double)i / (double)FTABLE_SIZE; r_sintable[i] = sin(t * 2*M_PI); if (t < 0.25) r_triangletable[i] = t * 4.0; else if (t < 0.75) r_triangletable[i] = 2 - 4.0 * t; else r_triangletable[i] = (t - 0.75) * 4.0 - 1.0; if (t < 0.5) r_squaretable[i] = 1.0f; else r_squaretable[i] = -1.0f; r_sawtoothtable[i] = t; r_inversesawtoothtable[i] = 1.0 - t; } } typedef vec3_t mat3_t[3]; static mat3_t axisDefault={{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; static void Matrix3_Transpose (mat3_t in, mat3_t out) { out[0][0] = in[0][0]; out[1][1] = in[1][1]; out[2][2] = in[2][2]; out[0][1] = in[1][0]; out[0][2] = in[2][0]; out[1][0] = in[0][1]; out[1][2] = in[2][1]; out[2][0] = in[0][2]; out[2][1] = in[1][2]; } static void Matrix3_Multiply_Vec3 (const mat3_t a, const vec3_t b, vec3_t product) { product[0] = a[0][0]*b[0] + a[0][1]*b[1] + a[0][2]*b[2]; product[1] = a[1][0]*b[0] + a[1][1]*b[1] + a[1][2]*b[2]; product[2] = a[2][0]*b[0] + a[2][1]*b[1] + a[2][2]*b[2]; } static int Matrix3_Compare(const mat3_t in, const mat3_t out) { return !memcmp(in, out, sizeof(mat3_t)); } /*================================================*/ typedef struct { backendmode_t mode; unsigned int flags; float curtime; const entity_t *curentity; shader_t *curshader; texnums_t *curtexnums; texid_t curlightmap; texid_t curdeluxmap; int curvertdecl; unsigned int shaderbits; unsigned int curcull; float depthbias; float depthfactor; unsigned int lastpasscount; texid_t curtex[MAX_TMUS]; unsigned int tmuflags[MAX_TMUS]; mesh_t **meshlist; unsigned int nummeshes; D3DCOLOR passcolour; qboolean passsinglecolour; /*FIXME: we shouldn't lock these so much - we need to cache which batches have been submitted and set up streams separately from the vertex data*/ IDirect3DVertexBuffer9 *dynxyz_buff; unsigned int dynxyz_offs; unsigned int dynxyz_size; IDirect3DVertexBuffer9 *dynst_buff[MAX_TMUS]; unsigned int dynst_offs[MAX_TMUS]; unsigned int dynst_size; IDirect3DVertexBuffer9 *dyncol_buff; unsigned int dyncol_offs; unsigned int dyncol_size; IDirect3DIndexBuffer9 *dynidx_buff; unsigned int dynidx_offs; unsigned int dynidx_size; unsigned int wbatch; unsigned int maxwbatches; batch_t *wbatches; } d3dbackend_t; #define DYNVBUFFSIZE 65536 #define DYNIBUFFSIZE 65536 static d3dbackend_t shaderstate; extern int be_maxpasses; enum { D3D_VDEC_COL4B = 1<<0, //D3D_VDEC_NORMS = 1<<1, D3D_VDEC_ST0 = 1<<1, D3D_VDEC_ST1 = 1<<2, D3D_VDEC_ST2 = 1<<3, D3D_VDEC_ST3 = 1<<4, D3D_VDEC_MAX = 1<<5 }; IDirect3DVertexDeclaration9 *vertexdecls[D3D_VDEC_MAX]; static void BE_ApplyTMUState(unsigned int tu, unsigned int flags) { if ((flags ^ shaderstate.tmuflags[tu]) & SHADER_PASS_CLAMP) { shaderstate.tmuflags[tu] ^= SHADER_PASS_CLAMP; if (flags & SHADER_PASS_CLAMP) { IDirect3DDevice9_SetSamplerState(pD3DDev9, tu, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP); IDirect3DDevice9_SetSamplerState(pD3DDev9, tu, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP); IDirect3DDevice9_SetSamplerState(pD3DDev9, tu, D3DSAMP_ADDRESSW, D3DTADDRESS_CLAMP); } else { IDirect3DDevice9_SetSamplerState(pD3DDev9, tu, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP); IDirect3DDevice9_SetSamplerState(pD3DDev9, tu, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP); IDirect3DDevice9_SetSamplerState(pD3DDev9, tu, D3DSAMP_ADDRESSW, D3DTADDRESS_WRAP); } } if ((flags ^ shaderstate.tmuflags[tu]) & SHADER_PASS_NOMIPMAP) { shaderstate.tmuflags[tu] ^= SHADER_PASS_NOMIPMAP; /*lightmaps don't use mipmaps*/ if (flags & SHADER_PASS_NOMIPMAP) { IDirect3DDevice9_SetSamplerState(pD3DDev9, tu, D3DSAMP_MINFILTER, D3DTEXF_LINEAR); IDirect3DDevice9_SetSamplerState(pD3DDev9, tu, D3DSAMP_MIPFILTER, D3DTEXF_NONE); IDirect3DDevice9_SetSamplerState(pD3DDev9, tu, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR); } else { IDirect3DDevice9_SetSamplerState(pD3DDev9, tu, D3DSAMP_MINFILTER, D3DTEXF_LINEAR); IDirect3DDevice9_SetSamplerState(pD3DDev9, tu, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR); IDirect3DDevice9_SetSamplerState(pD3DDev9, tu, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR); } } } void D3DBE_Reset(qboolean before) { int i, tmu; if (before) { IDirect3DDevice9_SetVertexDeclaration(pD3DDev9, NULL); shaderstate.curvertdecl = 0; for (i = 0; i < 5+MAX_TMUS; i++) IDirect3DDevice9_SetStreamSource(pD3DDev9, i, NULL, 0, 0); IDirect3DDevice9_SetIndices(pD3DDev9, NULL); if (shaderstate.dynxyz_buff) IDirect3DVertexBuffer9_Release(shaderstate.dynxyz_buff); shaderstate.dynxyz_buff = NULL; for (tmu = 0; tmu < MAX_TMUS; tmu++) { if (shaderstate.dynst_buff[tmu]) IDirect3DVertexBuffer9_Release(shaderstate.dynst_buff[tmu]); shaderstate.dynst_buff[tmu] = NULL; } if (shaderstate.dyncol_buff) IDirect3DVertexBuffer9_Release(shaderstate.dyncol_buff); shaderstate.dyncol_buff = NULL; if (shaderstate.dynidx_buff) IDirect3DIndexBuffer9_Release(shaderstate.dynidx_buff); shaderstate.dynidx_buff = NULL; for (i = 0; i < D3D_VDEC_MAX; i++) { if (vertexdecls[i]) IDirect3DVertexDeclaration9_Release(vertexdecls[i]); vertexdecls[i] = NULL; } } else { D3DVERTEXELEMENT9 decl[8], declend=D3DDECL_END(); int elements; for (i = 0; i < D3D_VDEC_MAX; i++) { elements = 0; decl[elements].Stream = 0; decl[elements].Offset = 0; decl[elements].Type = D3DDECLTYPE_FLOAT3; decl[elements].Method = D3DDECLMETHOD_DEFAULT; decl[elements].Usage = D3DDECLUSAGE_POSITION; decl[elements].UsageIndex = 0; elements++; if (i & D3D_VDEC_COL4B) { decl[elements].Stream = 1; decl[elements].Offset = 0; decl[elements].Type = D3DDECLTYPE_D3DCOLOR; decl[elements].Method = D3DDECLMETHOD_DEFAULT; decl[elements].Usage = D3DDECLUSAGE_COLOR; decl[elements].UsageIndex = 0; elements++; } /* if (i & D3D_VDEC_NORMS) { decl[elements].Stream = 2; decl[elements].Offset = 0; decl[elements].Type = D3DDECLTYPE_FLOAT2; decl[elements].Method = D3DDECLMETHOD_DEFAULT; decl[elements].Usage = D3DDECLUSAGE_TEXCOORD; decl[elements].UsageIndex = 1; elements++; decl[elements].Stream = 3; decl[elements].Offset = 0; decl[elements].Type = D3DDECLTYPE_FLOAT2; decl[elements].Method = D3DDECLMETHOD_DEFAULT; decl[elements].Usage = D3DDECLUSAGE_TEXCOORD; decl[elements].UsageIndex = 1; elements++; decl[elements].Stream = 4; decl[elements].Offset = 0; decl[elements].Type = D3DDECLTYPE_FLOAT2; decl[elements].Method = D3DDECLMETHOD_DEFAULT; decl[elements].Usage = D3DDECLUSAGE_TEXCOORD; decl[elements].UsageIndex = 1; elements++; } */ for (tmu = 0; tmu < MAX_TMUS; tmu++) { if (i & (D3D_VDEC_ST0< bmaxsize) { boff = 0; *offset = bytes; } else { boff = *offset; *offset += bytes; } d3dcheck(IDirect3DVertexBuffer9_Lock(buff, boff, bytes, data, boff?D3DLOCK_NOOVERWRITE:D3DLOCK_DISCARD)); } static unsigned int allocindexbuffer(void **dest, unsigned int entries) { unsigned int bytes = entries*sizeof(index_t); unsigned int offset; if (shaderstate.dynidx_offs + bytes > DYNIBUFFSIZE) { offset = 0; shaderstate.dynidx_offs = 0; } else { offset = shaderstate.dynidx_offs; shaderstate.dynidx_offs += bytes; } d3dcheck(IDirect3DIndexBuffer9_Lock(shaderstate.dynidx_buff, offset, (unsigned int)entries, dest, offset?D3DLOCK_NOOVERWRITE:D3DLOCK_DISCARD)); return offset/sizeof(index_t); } static void BindTexture(unsigned int tu, void *id) { if (shaderstate.curtex[tu].ptr != id) { shaderstate.curtex[tu].ptr = id; IDirect3DDevice9_SetTexture (pD3DDev9, tu, id); } } static void SelectPassTexture(unsigned int tu, shaderpass_t *pass) { switch(pass->texgen) { default: case T_GEN_DIFFUSE: BindTexture(tu, shaderstate.curtexnums->base.ptr); break; case T_GEN_NORMALMAP: BindTexture( tu, shaderstate.curtexnums->bump.ptr); break; case T_GEN_SPECULAR: BindTexture(tu, shaderstate.curtexnums->specular.ptr); break; case T_GEN_UPPEROVERLAY: BindTexture(tu, shaderstate.curtexnums->upperoverlay.ptr); break; case T_GEN_LOWEROVERLAY: BindTexture(tu, shaderstate.curtexnums->loweroverlay.ptr); break; case T_GEN_FULLBRIGHT: BindTexture(tu, shaderstate.curtexnums->fullbright.ptr); break; case T_GEN_ANIMMAP: BindTexture(tu, pass->anim_frames[(int)(pass->anim_fps * shaderstate.curtime) % pass->anim_numframes].ptr); break; case T_GEN_SINGLEMAP: BindTexture(tu, pass->anim_frames[0].ptr); break; case T_GEN_DELUXMAP: BindTexture(tu, shaderstate.curdeluxmap.ptr); break; case T_GEN_LIGHTMAP: BindTexture(tu, shaderstate.curlightmap.ptr); break; /*case T_GEN_CURRENTRENDER: FIXME: no code to grab the current screen and convert to a texture break;*/ case T_GEN_VIDEOMAP: BindTexture(tu, Media_UpdateForShader(pass->cin).ptr); break; } BE_ApplyTMUState(tu, pass->flags); switch (pass->blendmode) { case PBM_DOTPRODUCT: IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLORARG1, D3DTA_TEXTURE); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLORARG2, D3DTA_CURRENT); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLOROP, D3DTOP_DOTPRODUCT3); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAARG1, D3DTA_TEXTURE); // IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1); break; case PBM_REPLACE: IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLORARG1, D3DTA_TEXTURE); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLOROP, D3DTOP_SELECTARG1); if (shaderstate.flags & (BEF_FORCETRANSPARENT | BEF_FORCEADDITIVE)) { IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAARG1, D3DTA_TEXTURE); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAARG2, D3DTA_CURRENT); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAOP, D3DTOP_MODULATE); } else { IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAARG1, D3DTA_TEXTURE); // IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1); } break; case PBM_ADD: IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLORARG1, D3DTA_TEXTURE); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLORARG2, D3DTA_CURRENT); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLOROP, D3DTOP_BLENDTEXTUREALPHA); shaderstate.passcolour &= 0xff000000; IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAARG1, D3DTA_TEXTURE); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAOP, D3DTOP_MODULATE); break; case PBM_DECAL: if (!tu) goto forcemod; IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLORARG1, D3DTA_TEXTURE); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLORARG2, D3DTA_CURRENT); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLOROP, D3DTOP_BLENDTEXTUREALPHA); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAARG1, D3DTA_TEXTURE); // IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAARG2, D3DTA_CURRENT); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1); break; case PBM_OVERBRIGHT: IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLORARG1, D3DTA_TEXTURE); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLORARG2, D3DTA_CURRENT); { extern cvar_t gl_overbright; switch (gl_overbright.ival) { case 1: IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLOROP, D3DTOP_MODULATE2X); break; case 2: case 3: IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLOROP, D3DTOP_MODULATE4X); break; default: IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLOROP, D3DTOP_MODULATE); break; } } IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAARG1, D3DTA_TEXTURE); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAARG2, D3DTA_CURRENT); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAOP, D3DTOP_MODULATE); break; default: case PBM_MODULATE: forcemod: IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLORARG1, D3DTA_TEXTURE); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLORARG2, D3DTA_CURRENT); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLOROP, D3DTOP_MODULATE); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAARG1, D3DTA_TEXTURE); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAARG2, D3DTA_CURRENT); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAOP, D3DTOP_MODULATE); break; } if (tu == 0) { if (shaderstate.passsinglecolour) { if (shaderstate.passcolour == D3DCOLOR_RGBA(255,255,255,255)) { IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLOROP, D3DTOP_SELECTARG1); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1); } else { IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLORARG2, D3DTA_CONSTANT); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAARG2, D3DTA_CONSTANT); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_CONSTANT, shaderstate.passcolour); } } else { IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_COLORARG2, D3DTA_DIFFUSE); IDirect3DDevice9_SetTextureStageState(pD3DDev9, tu, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE); } } } static void colourgenbyte(const shaderpass_t *pass, int cnt, byte_vec4_t *src, byte_vec4_t *dst, const mesh_t *mesh) { D3DCOLOR block; switch (pass->rgbgen) { case RGB_GEN_ENTITY: block = D3DCOLOR_COLORVALUE(shaderstate.curentity->shaderRGBAf[0], shaderstate.curentity->shaderRGBAf[1], shaderstate.curentity->shaderRGBAf[2], shaderstate.curentity->shaderRGBAf[3]); while((cnt)--) { ((D3DCOLOR*)dst)[cnt] = block; } break; case RGB_GEN_ONE_MINUS_ENTITY: block = D3DCOLOR_COLORVALUE(1-shaderstate.curentity->shaderRGBAf[0], 1-shaderstate.curentity->shaderRGBAf[1], 1-shaderstate.curentity->shaderRGBAf[2], 1-shaderstate.curentity->shaderRGBAf[3]); while((cnt)--) { ((D3DCOLOR*)dst)[cnt] = block; } break; case RGB_GEN_VERTEX: case RGB_GEN_EXACT_VERTEX: if (!src) { while((cnt)--) { dst[cnt][0] = 255;//shaderstate.identitylighting; dst[cnt][1] = 255;//shaderstate.identitylighting; dst[cnt][2] = 255;//shaderstate.identitylighting; } } else { while((cnt)--) { qbyte r, g, b; r=src[cnt][0]; g=src[cnt][1]; b=src[cnt][2]; dst[cnt][0] = b; dst[cnt][1] = g; dst[cnt][2] = r; } } break; case RGB_GEN_ONE_MINUS_VERTEX: while((cnt)--) { qbyte r, g, b; r=255-src[cnt][0]; g=255-src[cnt][1]; b=255-src[cnt][2]; dst[cnt][0] = b; dst[cnt][1] = g; dst[cnt][2] = r; } break; case RGB_GEN_IDENTITY_LIGHTING: //compensate for overbrights block = D3DCOLOR_RGBA(255, 255, 255, 255); //shaderstate.identitylighting while((cnt)--) { ((D3DCOLOR*)dst)[cnt] = block; } break; default: case RGB_GEN_IDENTITY: block = D3DCOLOR_RGBA(255, 255, 255, 255); while((cnt)--) { ((D3DCOLOR*)dst)[cnt] = block; } break; case RGB_GEN_CONST: block = D3DCOLOR_COLORVALUE(pass->rgbgen_func.args[0], pass->rgbgen_func.args[1], pass->rgbgen_func.args[2], 1); while((cnt)--) { ((D3DCOLOR*)dst)[cnt] = block; } break; case RGB_GEN_LIGHTING_DIFFUSE: //collect lighting details for mobile entities if (!mesh->normals_array) { block = D3DCOLOR_RGBA(255, 255, 255, 255); while((cnt)--) { ((D3DCOLOR*)dst)[cnt] = block; } } else { R_LightArraysByte_BGR(mesh->xyz_array, dst, cnt, mesh->normals_array); } break; case RGB_GEN_WAVE: { float *table; float c; table = FTableForFunc(pass->rgbgen_func.type); c = pass->rgbgen_func.args[2] + shaderstate.curtime * pass->rgbgen_func.args[3]; c = FTABLE_EVALUATE(table, c) * pass->rgbgen_func.args[1] + pass->rgbgen_func.args[0]; c = bound(0.0f, c, 1.0f); block = D3DCOLOR_COLORVALUE(c, c, c, 1); while((cnt)--) { ((D3DCOLOR*)dst)[cnt] = block; } } break; case RGB_GEN_TOPCOLOR: case RGB_GEN_BOTTOMCOLOR: #pragma message("fix 24bit player colours") block = D3DCOLOR_RGBA(255, 255, 255, 255); while((cnt)--) { ((D3DCOLOR*)dst)[cnt] = block; } // Con_Printf("RGB_GEN %i not supported\n", pass->rgbgen); break; } } static void alphagenbyte(const shaderpass_t *pass, int cnt, byte_vec4_t *src, byte_vec4_t *dst, const mesh_t *mesh) { /*FIXME: Skip this if the rgbgen did it*/ float *table; unsigned char t; float f; vec3_t v1, v2; switch (pass->alphagen) { default: case ALPHA_GEN_IDENTITY: if (shaderstate.flags & BEF_FORCETRANSPARENT) { f = shaderstate.curentity->shaderRGBAf[3]; if (f < 0) t = 0; else if (f >= 1) t = 255; else t = f*255; while(cnt--) dst[cnt][3] = t; } else { while(cnt--) dst[cnt][3] = 255; } break; case ALPHA_GEN_CONST: t = pass->alphagen_func.args[0]*255; while(cnt--) dst[cnt][3] = t; break; case ALPHA_GEN_WAVE: table = FTableForFunc(pass->alphagen_func.type); f = pass->alphagen_func.args[2] + shaderstate.curtime * pass->alphagen_func.args[3]; f = FTABLE_EVALUATE(table, f) * pass->alphagen_func.args[1] + pass->alphagen_func.args[0]; t = bound(0.0f, f, 1.0f)*255; while(cnt--) dst[cnt][3] = t; break; case ALPHA_GEN_PORTAL: //FIXME: should this be per-vert? VectorAdd(mesh->xyz_array[0], shaderstate.curentity->origin, v1); VectorSubtract(r_origin, v1, v2); f = VectorLength(v2) * (1.0 / 255.0); t = bound(0.0f, f, 1.0f)*255; while(cnt--) dst[cnt][3] = t; break; case ALPHA_GEN_VERTEX: if (!src) { while(cnt--) { dst[cnt][3] = 255; } break; } while(cnt--) { dst[cnt][3] = src[cnt][3]; } break; case ALPHA_GEN_ENTITY: t = bound(0, shaderstate.curentity->shaderRGBAf[3], 1)*255; while(cnt--) { dst[cnt][3] = t; } break; case ALPHA_GEN_SPECULAR: { int i; VectorSubtract(r_origin, shaderstate.curentity->origin, v1); if (!Matrix3_Compare(shaderstate.curentity->axis, (void *)axisDefault)) { Matrix3_Multiply_Vec3(shaderstate.curentity->axis, v2, v2); } else { VectorCopy(v1, v2); } for (i = 0; i < cnt; i++) { VectorSubtract(v2, mesh->xyz_array[i], v1); f = DotProduct(v1, mesh->normals_array[i] ) * Q_rsqrt(DotProduct(v1,v1)); f = f * f * f * f * f; dst[i][3] = bound (0.0f, (int)(f*255), 255); } } break; } } static unsigned int BE_GenerateColourMods(unsigned int vertcount, const shaderpass_t *pass) { unsigned int ret = 0; unsigned char *map; const mesh_t *m; unsigned int mno; m = shaderstate.meshlist[0]; if (pass->flags & SHADER_PASS_NOCOLORARRAY) { shaderstate.passsinglecolour = true; shaderstate.passcolour = D3DCOLOR_RGBA(255,255,255,255); colourgenbyte(pass, 1, (byte_vec4_t*)&shaderstate.passcolour, (byte_vec4_t*)&shaderstate.passcolour, m); alphagenbyte(pass, 1, (byte_vec4_t*)&shaderstate.passcolour, (byte_vec4_t*)&shaderstate.passcolour, m); /*FIXME: just because there's no rgba set, there's no reason to assume it should be a single colour (unshaded ents)*/ d3dcheck(IDirect3DDevice9_SetStreamSource(pD3DDev9, 1, NULL, 0, 0)); } else { unsigned int v; int c; float *src; shaderstate.passsinglecolour = false; ret |= D3D_VDEC_COL4B; allocvertexbuffer(shaderstate.dyncol_buff, shaderstate.dyncol_size, &shaderstate.dyncol_offs, (void**)&map, vertcount*sizeof(D3DCOLOR)); if (m->colors4b_array) { for (vertcount = 0, mno = 0; mno < shaderstate.nummeshes; mno++) { m = shaderstate.meshlist[mno]; colourgenbyte(pass, m->numvertexes, (byte_vec4_t*)m->colors4b_array, (byte_vec4_t*)map, m); alphagenbyte(pass, m->numvertexes, (byte_vec4_t*)m->colors4b_array, (byte_vec4_t*)map, m); map += m->numvertexes*4; vertcount += m->numvertexes; } } else if (m->colors4f_array && ((pass->rgbgen == RGB_GEN_VERTEX) || (pass->rgbgen == RGB_GEN_EXACT_VERTEX) || (pass->rgbgen == RGB_GEN_ONE_MINUS_VERTEX) || (pass->alphagen == ALPHA_GEN_VERTEX))) { for (vertcount = 0, mno = 0; mno < shaderstate.nummeshes; mno++) { m = shaderstate.meshlist[mno]; src = m->colors4f_array[0]; for (v = 0; v < m->numvertexes; v++) { c = src[0]*255; map[0] = bound(0, c, 255); c = src[1]*255; map[1] = bound(0, c, 255); c = src[2]*255; map[2] = bound(0, c, 255); c = src[3]*255; map[3] = bound(0, c, 255); map += 4; src += 4; } vertcount += m->numvertexes; } map -= vertcount*4; /*FIXME: m is wrong. its the last ent only*/ colourgenbyte(pass, vertcount, (byte_vec4_t*)map, (byte_vec4_t*)map, m); alphagenbyte(pass, vertcount, (byte_vec4_t*)map, (byte_vec4_t*)map, m); } else { for (vertcount = 0, mno = 0; mno < shaderstate.nummeshes; mno++) { m = shaderstate.meshlist[mno]; colourgenbyte(pass, m->numvertexes, NULL, (byte_vec4_t*)map, m); alphagenbyte(pass, m->numvertexes, NULL, (byte_vec4_t*)map, m); map += m->numvertexes*4; vertcount += m->numvertexes; } } d3dcheck(IDirect3DVertexBuffer9_Unlock(shaderstate.dyncol_buff)); d3dcheck(IDirect3DDevice9_SetStreamSource(pD3DDev9, 1, shaderstate.dyncol_buff, shaderstate.dyncol_offs - vertcount*sizeof(D3DCOLOR), sizeof(D3DCOLOR))); } return ret; } /*********************************************************************************************************/ /*========================================== texture coord generation =====================================*/ static void tcgen_environment(float *st, unsigned int numverts, float *xyz, float *normal) { int i; vec3_t viewer, reflected; float d; vec3_t rorg; RotateLightVector(shaderstate.curentity->axis, shaderstate.curentity->origin, r_origin, rorg); for (i = 0 ; i < numverts ; i++, xyz += 3, normal += 3, st += 2 ) { VectorSubtract (rorg, xyz, viewer); VectorNormalizeFast (viewer); d = DotProduct (normal, viewer); reflected[0] = normal[0]*2*d - viewer[0]; reflected[1] = normal[1]*2*d - viewer[1]; reflected[2] = normal[2]*2*d - viewer[2]; st[0] = 0.5 + reflected[1] * 0.5; st[1] = 0.5 - reflected[2] * 0.5; } } static float *tcgen(const shaderpass_t *pass, int cnt, float *dst, const mesh_t *mesh) { int i; vecV_t *src; switch (pass->tcgen) { default: case TC_GEN_BASE: return (float*)mesh->st_array; case TC_GEN_LIGHTMAP: return (float*)mesh->lmst_array; case TC_GEN_NORMAL: return (float*)mesh->normals_array; case TC_GEN_SVECTOR: return (float*)mesh->snormals_array; case TC_GEN_TVECTOR: return (float*)mesh->tnormals_array; case TC_GEN_ENVIRONMENT: tcgen_environment(dst, cnt, (float*)mesh->xyz_array, (float*)mesh->normals_array); return dst; case TC_GEN_DOTPRODUCT: return dst;//mesh->st_array[0]; case TC_GEN_VECTOR: src = mesh->xyz_array; for (i = 0; i < cnt; i++, dst += 2) { static vec3_t tc_gen_s = { 1.0f, 0.0f, 0.0f }; static vec3_t tc_gen_t = { 0.0f, 1.0f, 0.0f }; dst[0] = DotProduct(tc_gen_s, src[i]); dst[1] = DotProduct(tc_gen_t, src[i]); } return dst; } } /*src and dst can be the same address when tcmods are chained*/ static void tcmod(const tcmod_t *tcmod, int cnt, const float *src, float *dst, const mesh_t *mesh) { float *table; float t1, t2; float cost, sint; int j; #define R_FastSin(x) sin((x)*(2*M_PI)) switch (tcmod->type) { case SHADER_TCMOD_ROTATE: cost = tcmod->args[0] * shaderstate.curtime; sint = R_FastSin(cost); cost = R_FastSin(cost + 0.25); for (j = 0; j < cnt; j++, dst+=2,src+=2) { t1 = cost * (src[0] - 0.5f) - sint * (src[1] - 0.5f) + 0.5f; t2 = cost * (src[1] - 0.5f) + sint * (src[0] - 0.5f) + 0.5f; dst[0] = t1; dst[1] = t2; } break; case SHADER_TCMOD_SCALE: t1 = tcmod->args[0]; t2 = tcmod->args[1]; for (j = 0; j < cnt; j++, dst+=2,src+=2) { dst[0] = src[0] * t1; dst[1] = src[1] * t2; } break; case SHADER_TCMOD_TURB: t1 = tcmod->args[2] + shaderstate.curtime * tcmod->args[3]; t2 = tcmod->args[1]; for (j = 0; j < cnt; j++, dst+=2,src+=2) { dst[0] = src[0] + R_FastSin (src[0]*t2+t1) * t2; dst[1] = src[1] + R_FastSin (src[1]*t2+t1) * t2; } break; case SHADER_TCMOD_STRETCH: table = FTableForFunc(tcmod->args[0]); t2 = tcmod->args[3] + shaderstate.curtime * tcmod->args[4]; t1 = FTABLE_EVALUATE(table, t2) * tcmod->args[2] + tcmod->args[1]; t1 = t1 ? 1.0f / t1 : 1.0f; t2 = 0.5f - 0.5f * t1; for (j = 0; j < cnt; j++, dst+=2,src+=2) { dst[0] = src[0] * t1 + t2; dst[1] = src[1] * t1 + t2; } break; case SHADER_TCMOD_SCROLL: t1 = tcmod->args[0] * shaderstate.curtime; t2 = tcmod->args[1] * shaderstate.curtime; for (j = 0; j < cnt; j++, dst += 2, src+=2) { dst[0] = src[0] + t1; dst[1] = src[1] + t2; } break; case SHADER_TCMOD_TRANSFORM: for (j = 0; j < cnt; j++, dst+=2, src+=2) { t1 = src[0]; t2 = src[1]; dst[0] = t1 * tcmod->args[0] + t2 * tcmod->args[2] + tcmod->args[4]; dst[1] = t2 * tcmod->args[1] + t1 * tcmod->args[3] + tcmod->args[5]; } break; default: break; } } static void GenerateTCMods(const shaderpass_t *pass, float *dest) { mesh_t *mesh; unsigned int mno; // unsigned int fvertex = 0; //unused variable int i; float *src; for (mno = 0; mno < shaderstate.nummeshes; mno++) { mesh = shaderstate.meshlist[mno]; src = tcgen(pass, mesh->numvertexes, dest, mesh); //tcgen might return unmodified info if (pass->numtcmods) { tcmod(&pass->tcmods[0], mesh->numvertexes, src, dest, mesh); for (i = 1; i < pass->numtcmods; i++) { tcmod(&pass->tcmods[i], mesh->numvertexes, dest, dest, mesh); } } else if (src != dest) { memcpy(dest, src, 8*mesh->numvertexes); } dest += mesh->numvertexes*2; } } //end texture coords /*******************************************************************************************************************/ static void deformgen(const deformv_t *deformv, int cnt, vecV_t *src, vecV_t *dst, const mesh_t *mesh) { float *table; int j, k; float args[4]; float deflect; switch (deformv->type) { default: case DEFORMV_NONE: if (src != dst) memcpy(dst, src, sizeof(*src)*cnt); break; case DEFORMV_WAVE: if (!mesh->normals_array) { if (src != dst) memcpy(dst, src, sizeof(*src)*cnt); return; } args[0] = deformv->func.args[0]; args[1] = deformv->func.args[1]; args[3] = deformv->func.args[2] + deformv->func.args[3] * shaderstate.curtime; table = FTableForFunc(deformv->func.type); for ( j = 0; j < cnt; j++ ) { deflect = deformv->args[0] * (src[j][0]+src[j][1]+src[j][2]) + args[3]; deflect = FTABLE_EVALUATE(table, deflect) * args[1] + args[0]; // Deflect vertex along its normal by wave amount VectorMA(src[j], deflect, mesh->normals_array[j], dst[j]); } break; case DEFORMV_NORMAL: //normal does not actually move the verts, but it does change the normals array //we don't currently support that. if (src != dst) memcpy(dst, src, sizeof(*src)*cnt); /* args[0] = deformv->args[1] * shaderstate.curtime; for ( j = 0; j < cnt; j++ ) { args[1] = normalsArray[j][2] * args[0]; deflect = deformv->args[0] * R_FastSin(args[1]); normalsArray[j][0] *= deflect; deflect = deformv->args[0] * R_FastSin(args[1] + 0.25); normalsArray[j][1] *= deflect; VectorNormalizeFast(normalsArray[j]); } */ break; case DEFORMV_MOVE: table = FTableForFunc(deformv->func.type); deflect = deformv->func.args[2] + shaderstate.curtime * deformv->func.args[3]; deflect = FTABLE_EVALUATE(table, deflect) * deformv->func.args[1] + deformv->func.args[0]; for ( j = 0; j < cnt; j++ ) VectorMA(src[j], deflect, deformv->args, dst[j]); break; case DEFORMV_BULGE: args[0] = deformv->args[0]/(2*M_PI); args[1] = deformv->args[1]; args[2] = shaderstate.curtime * deformv->args[2]/(2*M_PI); for (j = 0; j < cnt; j++) { deflect = R_FastSin(mesh->st_array[j][0]*args[0] + args[2])*args[1]; dst[j][0] = src[j][0]+deflect*mesh->normals_array[j][0]; dst[j][1] = src[j][1]+deflect*mesh->normals_array[j][1]; dst[j][2] = src[j][2]+deflect*mesh->normals_array[j][2]; } break; case DEFORMV_AUTOSPRITE: if (mesh->numindexes < 6) break; for (j = 0; j < cnt-3; j+=4, src+=4, dst+=4) { vec3_t mid, d; float radius; mid[0] = 0.25*(src[0][0] + src[1][0] + src[2][0] + src[3][0]); mid[1] = 0.25*(src[0][1] + src[1][1] + src[2][1] + src[3][1]); mid[2] = 0.25*(src[0][2] + src[1][2] + src[2][2] + src[3][2]); VectorSubtract(src[0], mid, d); radius = 2*VectorLength(d); for (k = 0; k < 4; k++) { dst[k][0] = mid[0] + radius*((mesh->st_array[k][0]-0.5)*r_refdef.m_view[0+0]-(mesh->st_array[k][1]-0.5)*r_refdef.m_view[0+1]); dst[k][1] = mid[1] + radius*((mesh->st_array[k][0]-0.5)*r_refdef.m_view[4+0]-(mesh->st_array[k][1]-0.5)*r_refdef.m_view[4+1]); dst[k][2] = mid[2] + radius*((mesh->st_array[k][0]-0.5)*r_refdef.m_view[8+0]-(mesh->st_array[k][1]-0.5)*r_refdef.m_view[8+1]); } } break; case DEFORMV_AUTOSPRITE2: if (mesh->numindexes < 6) break; for (k = 0; k < mesh->numindexes; k += 6) { int long_axis, short_axis; vec3_t axis; float len[3]; mat3_t m0, m1, m2, result; float *quad[4]; vec3_t rot_centre, tv; quad[0] = (float *)(dst + mesh->indexes[k+0]); quad[1] = (float *)(dst + mesh->indexes[k+1]); quad[2] = (float *)(dst + mesh->indexes[k+2]); for (j = 2; j >= 0; j--) { quad[3] = (float *)(dst + mesh->indexes[k+3+j]); if (!VectorEquals (quad[3], quad[0]) && !VectorEquals (quad[3], quad[1]) && !VectorEquals (quad[3], quad[2])) { break; } } // build a matrix were the longest axis of the billboard is the Y-Axis VectorSubtract(quad[1], quad[0], m0[0]); VectorSubtract(quad[2], quad[0], m0[1]); VectorSubtract(quad[2], quad[1], m0[2]); len[0] = DotProduct(m0[0], m0[0]); len[1] = DotProduct(m0[1], m0[1]); len[2] = DotProduct(m0[2], m0[2]); if ((len[2] > len[1]) && (len[2] > len[0])) { if (len[1] > len[0]) { long_axis = 1; short_axis = 0; } else { long_axis = 0; short_axis = 1; } } else if ((len[1] > len[2]) && (len[1] > len[0])) { if (len[2] > len[0]) { long_axis = 2; short_axis = 0; } else { long_axis = 0; short_axis = 2; } } else //if ( (len[0] > len[1]) && (len[0] > len[2]) ) { if (len[2] > len[1]) { long_axis = 2; short_axis = 1; } else { long_axis = 1; short_axis = 2; } } if (DotProduct(m0[long_axis], m0[short_axis])) { VectorNormalize2(m0[long_axis], axis); VectorCopy(axis, m0[1]); if (axis[0] || axis[1]) { VectorVectors(m0[1], m0[2], m0[0]); } else { VectorVectors(m0[1], m0[0], m0[2]); } } else { VectorNormalize2(m0[long_axis], axis); VectorNormalize2(m0[short_axis], m0[0]); VectorCopy(axis, m0[1]); CrossProduct(m0[0], m0[1], m0[2]); } for (j = 0; j < 3; j++) rot_centre[j] = (quad[0][j] + quad[1][j] + quad[2][j] + quad[3][j]) * 0.25; if (shaderstate.curentity) { VectorAdd(shaderstate.curentity->origin, rot_centre, tv); } else { VectorCopy(rot_centre, tv); } VectorSubtract(r_origin, tv, tv); // filter any longest-axis-parts off the camera-direction deflect = -DotProduct(tv, axis); VectorMA(tv, deflect, axis, m1[2]); VectorNormalizeFast(m1[2]); VectorCopy(axis, m1[1]); CrossProduct(m1[1], m1[2], m1[0]); Matrix3_Transpose(m1, m2); Matrix3_Multiply(m2, m0, result); for (j = 0; j < 4; j++) { VectorSubtract(quad[j], rot_centre, tv); Matrix3_Multiply_Vec3((void *)result, tv, quad[j]); VectorAdd(rot_centre, quad[j], quad[j]); } } break; // case DEFORMV_PROJECTION_SHADOW: // break; } } /*does not do the draw call, does not consider indicies (except for billboard generation) */ static qboolean BE_DrawMeshChain_SetupPass(shaderpass_t *pass, unsigned int vertcount) { int vdec; void *map; int i; unsigned int passno = 0, tmu; int lastpass = pass->numMergedPasses; for (i = 0; i < lastpass; i++) { if (pass[i].texgen == T_GEN_UPPEROVERLAY && !TEXVALID(shaderstate.curtexnums->upperoverlay)) continue; if (pass[i].texgen == T_GEN_LOWEROVERLAY && !TEXVALID(shaderstate.curtexnums->loweroverlay)) continue; if (pass[i].texgen == T_GEN_FULLBRIGHT && !TEXVALID(shaderstate.curtexnums->fullbright)) continue; break; } if (i == lastpass) return false; /*all meshes in a chain must have the same features*/ vdec = 0; /*we only use one colour, generated from the first pass*/ vdec |= BE_GenerateColourMods(vertcount, pass); tmu = 0; /*activate tmus*/ for (passno = 0; passno < lastpass; passno++) { if (pass[passno].texgen == T_GEN_UPPEROVERLAY && !TEXVALID(shaderstate.curtexnums->upperoverlay)) continue; if (pass[passno].texgen == T_GEN_LOWEROVERLAY && !TEXVALID(shaderstate.curtexnums->loweroverlay)) continue; if (pass[passno].texgen == T_GEN_FULLBRIGHT && !TEXVALID(shaderstate.curtexnums->fullbright)) continue; SelectPassTexture(tmu, pass+passno); vdec |= D3D_VDEC_ST0<normals_array && // meshchain->2 && // meshchain->tnormals_array) // vdec |= D3D_VDEC_NORMS; if (vdec != shaderstate.curvertdecl) { shaderstate.curvertdecl = vdec; d3dcheck(IDirect3DDevice9_SetVertexDeclaration(pD3DDev9, vertexdecls[shaderstate.curvertdecl])); } D3DBE_ApplyShaderBits(pass->shaderbits); return true; } static void BE_RenderMeshProgram(unsigned int vertcount, unsigned int idxfirst, unsigned int idxcount) { shader_t *s = shaderstate.curshader; //shaderpass_t *pass = s->passes; //unused variable IDirect3DDevice9_SetVertexShader(pD3DDev9, s->prog->handle[0].hlsl.vert); IDirect3DDevice9_SetPixelShader(pD3DDev9, s->prog->handle[0].hlsl.frag); // IDirect3DDevice9_SetVertexShaderConstantF(pD3DDev9, d3dcheck(IDirect3DDevice9_DrawIndexedPrimitive(pD3DDev9, D3DPT_TRIANGLELIST, 0, 0, vertcount, idxfirst, idxcount/3)); IDirect3DDevice9_SetVertexShader(pD3DDev9, NULL); IDirect3DDevice9_SetPixelShader(pD3DDev9, NULL); } static void BE_Cull(unsigned int cullflags) { cullflags |= r_refdef.flipcull; if (shaderstate.curcull != cullflags) { shaderstate.curcull = cullflags; if (shaderstate.curcull & 1) { if (shaderstate.curcull & SHADER_CULL_FRONT) IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_CULLMODE, D3DCULL_CW); else if (shaderstate.curcull & SHADER_CULL_BACK) IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_CULLMODE, D3DCULL_CCW); else IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_CULLMODE, D3DCULL_NONE); } else { if (shaderstate.curcull & SHADER_CULL_FRONT) IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_CULLMODE, D3DCULL_CCW); else if (shaderstate.curcull & SHADER_CULL_BACK) IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_CULLMODE, D3DCULL_CW); else IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_CULLMODE, D3DCULL_NONE); } } } static void BE_DrawMeshChain_Internal(void) { unsigned int vertcount, idxcount, idxfirst; mesh_t *m; void *map; int i; unsigned int mno; unsigned int passno = 0; shaderpass_t *pass = shaderstate.curshader->passes; extern cvar_t r_polygonoffset_submodel_offset; // r_polygonoffset_submodel_factor // unused variable float pushdepth; // float pushfactor; BE_Cull(shaderstate.curshader->flags & (SHADER_CULL_FRONT | SHADER_CULL_BACK)); pushdepth = (shaderstate.curshader->polyoffset.factor + ((shaderstate.flags & BEF_PUSHDEPTH)?r_polygonoffset_submodel_offset.value:0))/0xffff; if (pushdepth != shaderstate.depthbias) { shaderstate.depthbias = pushdepth; IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_DEPTHBIAS, *(DWORD*)&shaderstate.depthbias); } // pushdepth = shaderstate.curshader->polyoffset.unit/-1;// + ((shaderstate.flags & BEF_PUSHDEPTH)?8:0); // pushfactor = shaderstate.curshader->polyoffset.factor/-1; // if (pushfactor != shaderstate.depthfactor) // { // shaderstate.depthfactor = pushfactor; // IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_SLOPESCALEDEPTHBIAS, *(DWORD*)&shaderstate.depthfactor); // } for (mno = 0, vertcount = 0, idxcount = 0; mno < shaderstate.nummeshes; mno++) { m = shaderstate.meshlist[mno]; vertcount += m->numvertexes; idxcount += m->numindexes; } /*vertex buffers are common to all passes*/ allocvertexbuffer(shaderstate.dynxyz_buff, shaderstate.dynxyz_size, &shaderstate.dynxyz_offs, &map, vertcount*sizeof(vecV_t)); for (mno = 0, vertcount = 0; mno < shaderstate.nummeshes; mno++) { vecV_t *dest = (vecV_t*)((char*)map+vertcount*sizeof(vecV_t)); m = shaderstate.meshlist[mno]; deformgen(&shaderstate.curshader->deforms[0], m->numvertexes, m->xyz_array, dest, m); for (i = 1; i < shaderstate.curshader->numdeforms; i++) { deformgen(&shaderstate.curshader->deforms[i], m->numvertexes, dest, dest, m); } vertcount += m->numvertexes; } d3dcheck(IDirect3DVertexBuffer9_Unlock(shaderstate.dynxyz_buff)); d3dcheck(IDirect3DDevice9_SetStreamSource(pD3DDev9, 0, shaderstate.dynxyz_buff, shaderstate.dynxyz_offs - vertcount*sizeof(vecV_t), sizeof(vecV_t))); /*so are index buffers*/ idxfirst = allocindexbuffer(&map, idxcount); for (mno = 0, vertcount = 0; mno < shaderstate.nummeshes; mno++) { m = shaderstate.meshlist[mno]; for (i = 0; i < m->numindexes; i++) ((index_t*)map)[i] = m->indexes[i]+vertcount; map = (char*)map + m->numindexes*sizeof(index_t); vertcount += m->numvertexes; } d3dcheck(IDirect3DIndexBuffer9_Unlock(shaderstate.dynidx_buff)); d3dcheck(IDirect3DDevice9_SetIndices(pD3DDev9, shaderstate.dynidx_buff)); switch (shaderstate.mode) { case BEM_DEPTHONLY: IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_COLORWRITEENABLE, 0); /*deactivate any extras*/ for (passno = 0; passno < shaderstate.lastpasscount; ) { d3dcheck(IDirect3DDevice9_SetStreamSource(pD3DDev9, 5+passno, NULL, 0, 0)); BindTexture(passno, NULL); d3dcheck(IDirect3DDevice9_SetTextureStageState(pD3DDev9, passno, D3DTSS_COLOROP, D3DTOP_DISABLE)); passno++; } shaderstate.lastpasscount = 0; d3dcheck(IDirect3DDevice9_DrawIndexedPrimitive(pD3DDev9, D3DPT_TRIANGLELIST, 0, 0, vertcount, idxfirst, idxcount/3)); IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_RED|D3DCOLORWRITEENABLE_GREEN|D3DCOLORWRITEENABLE_BLUE|D3DCOLORWRITEENABLE_ALPHA); break; default: case BEM_STANDARD: if (shaderstate.curshader->prog) { BE_RenderMeshProgram(vertcount, idxfirst, idxcount); } else { /*now go through and flush each pass*/ for (passno = 0; passno < shaderstate.curshader->numpasses; passno += pass->numMergedPasses) { if (!BE_DrawMeshChain_SetupPass(pass+passno, vertcount)) continue; #ifdef BENCH shaderstate.bench.draws++; if (shaderstate.bench.clamp && shaderstate.bench.clamp < shaderstate.bench.draws) continue; #endif d3dcheck(IDirect3DDevice9_DrawIndexedPrimitive(pD3DDev9, D3DPT_TRIANGLELIST, 0, 0, vertcount, idxfirst, idxcount/3)); } } break; } } void D3DBE_SelectMode(backendmode_t mode) { shaderstate.mode = mode; } /*Generates an optimised vbo for each of the given model's textures*/ void D3DBE_GenBrushModelVBO(model_t *mod) { unsigned int maxvboverts; unsigned int maxvboelements; unsigned int t; unsigned int i; unsigned int v; unsigned int vcount, ecount; unsigned int pervertsize; //erm, that name wasn't intentional unsigned int meshes; vbo_t *vbo; char *vboedata; mesh_t *m; char *vbovdata; if (!mod->numsurfaces) return; for (t = 0; t < mod->numtextures; t++) { if (!mod->textures[t]) continue; vbo = &mod->textures[t]->vbo; BE_ClearVBO(vbo); maxvboverts = 0; maxvboelements = 0; meshes = 0; for (i=0 ; inumsurfaces ; i++) { if (mod->surfaces[i].texinfo->texture != mod->textures[t]) continue; m = mod->surfaces[i].mesh; if (!m) continue; meshes++; maxvboelements += m->numindexes; maxvboverts += m->numvertexes; } #if sizeof_index_t == 2 if (maxvboverts > (1<<(sizeof(index_t)*8))-1) continue; #endif if (!maxvboverts) continue; //fixme: stop this from leaking! vcount = 0; ecount = 0; pervertsize = sizeof(vecV_t)+ //coord sizeof(vec2_t)+ //tex sizeof(vec2_t)+ //lm sizeof(vec3_t)+ //normal sizeof(vec3_t)+ //sdir sizeof(vec3_t)+ //tdir sizeof(vec4_t); //colours vbovdata = BZ_Malloc(maxvboverts*pervertsize); vboedata = BZ_Malloc(maxvboelements*sizeof(index_t)); vbo->coord = (vecV_t*)(vbovdata); vbo->texcoord = (vec2_t*)((char*)vbo->coord+maxvboverts*sizeof(*vbo->coord)); vbo->lmcoord = (vec2_t*)((char*)vbo->texcoord+maxvboverts*sizeof(*vbo->texcoord)); vbo->normals = (vec3_t*)((char*)vbo->lmcoord+maxvboverts*sizeof(*vbo->lmcoord)); vbo->svector = (vec3_t*)((char*)vbo->normals+maxvboverts*sizeof(*vbo->normals)); vbo->tvector = (vec3_t*)((char*)vbo->svector+maxvboverts*sizeof(*vbo->svector)); vbo->colours4f = (vec4_t*)((char*)vbo->tvector+maxvboverts*sizeof(*vbo->tvector)); vbo->indicies = (index_t*)vboedata; vbo->meshcount = meshes; vbo->meshlist = BZ_Malloc(meshes*sizeof(*vbo->meshlist)); meshes = 0; for (i=0 ; inumsurfaces ; i++) { if (mod->surfaces[i].texinfo->texture != mod->textures[t]) continue; m = mod->surfaces[i].mesh; if (!m) continue; mod->surfaces[i].mark = &vbo->meshlist[meshes++]; *mod->surfaces[i].mark = NULL; m->vbofirstvert = vcount; m->vbofirstelement = ecount; for (v = 0; v < m->numindexes; v++) vbo->indicies[ecount++] = vcount + m->indexes[v]; for (v = 0; v < m->numvertexes; v++) { vbo->coord[vcount+v][0] = m->xyz_array[v][0]; vbo->coord[vcount+v][1] = m->xyz_array[v][1]; vbo->coord[vcount+v][2] = m->xyz_array[v][2]; if (m->st_array) { vbo->texcoord[vcount+v][0] = m->st_array[v][0]; vbo->texcoord[vcount+v][1] = m->st_array[v][1]; } if (m->lmst_array) { vbo->lmcoord[vcount+v][0] = m->lmst_array[v][0]; vbo->lmcoord[vcount+v][1] = m->lmst_array[v][1]; } if (m->normals_array) { vbo->normals[vcount+v][0] = m->normals_array[v][0]; vbo->normals[vcount+v][1] = m->normals_array[v][1]; vbo->normals[vcount+v][2] = m->normals_array[v][2]; } if (m->snormals_array) { vbo->svector[vcount+v][0] = m->snormals_array[v][0]; vbo->svector[vcount+v][1] = m->snormals_array[v][1]; vbo->svector[vcount+v][2] = m->snormals_array[v][2]; } if (m->tnormals_array) { vbo->tvector[vcount+v][0] = m->tnormals_array[v][0]; vbo->tvector[vcount+v][1] = m->tnormals_array[v][1]; vbo->tvector[vcount+v][2] = m->tnormals_array[v][2]; } if (m->colors4f_array) { vbo->colours4f[vcount+v][0] = m->colors4f_array[v][0]; vbo->colours4f[vcount+v][1] = m->colors4f_array[v][1]; vbo->colours4f[vcount+v][2] = m->colors4f_array[v][2]; vbo->colours4f[vcount+v][3] = m->colors4f_array[v][3]; } } vcount += v; } // if (GL_BuildVBO(vbo, vbovdata, vcount*pervertsize, vboedata, ecount*sizeof(index_t))) { BZ_Free(vbovdata); BZ_Free(vboedata); } } //for (i=0 ; inumsurfaces ; i++) //{ // if (!mod->surfaces[i].mark) // Host_EndGame("Surfaces with bad textures detected\n"); //} } /*Wipes a vbo*/ void D3DBE_ClearVBO(vbo_t *vbo) { } /*upload all lightmaps at the start to reduce lags*/ void BE_UploadLightmaps(qboolean force) { int i; for (i = 0; i < numlightmaps; i++) { if (!lightmap[i]) continue; if (force) { lightmap[i]->rectchange.l = 0; lightmap[i]->rectchange.t = 0; lightmap[i]->rectchange.w = LMBLOCK_WIDTH; lightmap[i]->rectchange.h = LMBLOCK_HEIGHT; } if (lightmap[i]->modified) { IDirect3DTexture9 *tex = lightmap_textures[i].ptr; D3DLOCKED_RECT lock; RECT rect; glRect_t *theRect = &lightmap[i]->rectchange; int r; if (tex) { lightmap[i]->modified = 0; rect.left = theRect->l; rect.right = theRect->l + theRect->w; rect.top = theRect->t; rect.bottom = theRect->t + theRect->h; IDirect3DTexture9_LockRect(tex, 0, &lock, &rect, 0); for (r = 0; r < lightmap[i]->rectchange.h; r++) { memcpy((char*)lock.pBits + r*lock.Pitch, lightmap[i]->lightmaps+(theRect->l+((r+theRect->t)*LMBLOCK_WIDTH))*lightmap_bytes, lightmap[i]->rectchange.w*lightmap_bytes); } IDirect3DTexture9_UnlockRect(tex, 0); theRect->l = LMBLOCK_WIDTH; theRect->t = LMBLOCK_HEIGHT; theRect->h = 0; theRect->w = 0; } else lightmap_textures[i] = R_AllocNewTexture(LMBLOCK_WIDTH, LMBLOCK_HEIGHT); } } } void D3DBE_UploadAllLightmaps(void) { BE_UploadLightmaps(true); } qboolean D3DBE_LightCullModel(vec3_t org, model_t *model) { #ifdef RTLIGHTS if ((shaderstate.mode == BEM_LIGHT || shaderstate.mode == BEM_STENCIL)) { /*true if hidden from current light*/ /*we have no rtlight support, so mneh*/ } #endif return false; } batch_t *D3DBE_GetTempBatch(void) { if (shaderstate.wbatch >= shaderstate.maxwbatches) { shaderstate.wbatch++; return NULL; } return &shaderstate.wbatches[shaderstate.wbatch++]; } static void BE_RotateForEntity (const entity_t *e, const model_t *mod) { float mv[16]; float m[16]; shaderstate.curentity = e; m[0] = e->axis[0][0]; m[1] = e->axis[0][1]; m[2] = e->axis[0][2]; m[3] = 0; m[4] = e->axis[1][0]; m[5] = e->axis[1][1]; m[6] = e->axis[1][2]; m[7] = 0; m[8] = e->axis[2][0]; m[9] = e->axis[2][1]; m[10] = e->axis[2][2]; m[11] = 0; m[12] = e->origin[0]; m[13] = e->origin[1]; m[14] = e->origin[2]; m[15] = 1; if (e->scale != 1 && e->scale != 0) //hexen 2 stuff { float z; float escale; escale = e->scale; switch(e->drawflags&SCALE_TYPE_MASKIN) { default: case SCALE_TYPE_UNIFORM: VectorScale((m+0), escale, (m+0)); VectorScale((m+4), escale, (m+4)); VectorScale((m+8), escale, (m+8)); break; case SCALE_TYPE_XYONLY: VectorScale((m+0), escale, (m+0)); VectorScale((m+4), escale, (m+4)); break; case SCALE_TYPE_ZONLY: VectorScale((m+8), escale, (m+8)); break; } if (mod && (e->drawflags&SCALE_TYPE_MASKIN) != SCALE_TYPE_XYONLY) { switch(e->drawflags&SCALE_ORIGIN_MASKIN) { case SCALE_ORIGIN_CENTER: z = ((mod->maxs[2] + mod->mins[2]) * (1-escale))/2; VectorMA((m+12), z, e->axis[2], (m+12)); break; case SCALE_ORIGIN_BOTTOM: VectorMA((m+12), mod->mins[2]*(1-escale), e->axis[2], (m+12)); break; case SCALE_ORIGIN_TOP: VectorMA((m+12), -mod->maxs[2], e->axis[2], (m+12)); break; } } } else if (mod && !strcmp(mod->name, "progs/eyes.mdl")) { /*resize eyes, to make them easier to see*/ m[14] -= (22 + 8); VectorScale((m+0), 2, (m+0)); VectorScale((m+4), 2, (m+4)); VectorScale((m+8), 2, (m+8)); } if (mod && !ruleset_allow_larger_models.ival && mod->clampscale != 1) { //possibly this should be on a per-frame basis, but that's a real pain to do Con_DPrintf("Rescaling %s by %f\n", mod->name, mod->clampscale); VectorScale((m+0), mod->clampscale, (m+0)); VectorScale((m+4), mod->clampscale, (m+4)); VectorScale((m+8), mod->clampscale, (m+8)); } if (e->flags & Q2RF_WEAPONMODEL && r_refdef.currentplayernum>=0) { float *Matrix4_NewRotation(float a, float x, float y, float z); /*FIXME: no bob*/ float iv[16]; Matrix4_Invert(r_refdef.m_view, iv); Matrix4_NewRotation(90, 1, 0, 0); Matrix4_Multiply(iv, m, mv); Matrix4_Multiply(mv, Matrix4_NewRotation(-90, 1, 0, 0), iv); Matrix4_Multiply(iv, Matrix4_NewRotation(90, 0, 0, 1), mv); IDirect3DDevice9_SetTransform(pD3DDev9, D3DTS_WORLD, (D3DMATRIX*)mv); } else { IDirect3DDevice9_SetTransform(pD3DDev9, D3DTS_WORLD, (D3DMATRIX*)m); } { D3DVIEWPORT9 vport; IDirect3DDevice9_GetViewport(pD3DDev9, &vport); vport.MaxZ = (e->flags & Q2RF_DEPTHHACK)?0.333:1; IDirect3DDevice9_SetViewport(pD3DDev9, &vport); } } void D3DBE_SubmitBatch(batch_t *batch) { shaderstate.nummeshes = batch->meshes - batch->firstmesh; if (!shaderstate.nummeshes) return; if (shaderstate.curentity != batch->ent) { BE_RotateForEntity(batch->ent, batch->ent->model); shaderstate.curtime = r_refdef.time - shaderstate.curentity->shaderTime; } shaderstate.meshlist = batch->mesh + batch->firstmesh; shaderstate.curshader = batch->shader; shaderstate.curtexnums = batch->skin; shaderstate.flags = batch->flags; if (batch->lightmap < 0) shaderstate.curlightmap = r_nulltex; else shaderstate.curlightmap = lightmap_textures[batch->lightmap]; BE_DrawMeshChain_Internal(); } void D3DBE_DrawMesh_List(shader_t *shader, int nummeshes, mesh_t **meshlist, vbo_t *vbo, texnums_t *texnums, unsigned int beflags) { shaderstate.curshader = shader; shaderstate.curtexnums = texnums; shaderstate.curlightmap = r_nulltex; shaderstate.meshlist = meshlist; shaderstate.nummeshes = nummeshes; shaderstate.flags = beflags; BE_DrawMeshChain_Internal(); } void D3DBE_DrawMesh_Single(shader_t *shader, mesh_t *meshchain, vbo_t *vbo, texnums_t *texnums, unsigned int beflags) { shaderstate.curtime = realtime; shaderstate.curshader = shader; shaderstate.curtexnums = texnums?texnums:&shader->defaulttextures; shaderstate.curlightmap = r_nulltex; shaderstate.meshlist = &meshchain; shaderstate.nummeshes = 1; shaderstate.flags = beflags; BE_DrawMeshChain_Internal(); } static void BE_SubmitMeshesSortList(batch_t *sortlist) { batch_t *batch; for (batch = sortlist; batch; batch = batch->next) { if (batch->meshes == batch->firstmesh) continue; if (batch->buildmeshes) batch->buildmeshes(batch); else if (batch->texture) { batch->shader = R_TextureAnimation(batch->ent->framestate.g[FS_REG].frame[0], batch->texture)->shader; batch->skin = &batch->shader->defaulttextures; } if (batch->shader->flags & SHADER_NODLIGHT) if (shaderstate.mode == BEM_LIGHT || shaderstate.mode == BEM_SMAPLIGHT) continue; if (batch->shader->flags & SHADER_SKY) { if (shaderstate.mode == BEM_STANDARD) R_DrawSkyChain (batch); continue; } BE_SubmitBatch(batch); } } /*generates a new modelview matrix, as well as vpn vectors*/ static void R_MirrorMatrix(plane_t *plane) { float mirror[16]; float view[16]; float result[16]; vec3_t pnorm; VectorNegate(plane->normal, pnorm); mirror[0] = 1-2*pnorm[0]*pnorm[0]; mirror[1] = -2*pnorm[0]*pnorm[1]; mirror[2] = -2*pnorm[0]*pnorm[2]; mirror[3] = 0; mirror[4] = -2*pnorm[1]*pnorm[0]; mirror[5] = 1-2*pnorm[1]*pnorm[1]; mirror[6] = -2*pnorm[1]*pnorm[2] ; mirror[7] = 0; mirror[8] = -2*pnorm[2]*pnorm[0]; mirror[9] = -2*pnorm[2]*pnorm[1]; mirror[10] = 1-2*pnorm[2]*pnorm[2]; mirror[11] = 0; mirror[12] = -2*pnorm[0]*plane->dist; mirror[13] = -2*pnorm[1]*plane->dist; mirror[14] = -2*pnorm[2]*plane->dist; mirror[15] = 1; view[0] = vpn[0]; view[1] = vpn[1]; view[2] = vpn[2]; view[3] = 0; view[4] = -vright[0]; view[5] = -vright[1]; view[6] = -vright[2]; view[7] = 0; view[8] = vup[0]; view[9] = vup[1]; view[10] = vup[2]; view[11] = 0; view[12] = r_refdef.vieworg[0]; view[13] = r_refdef.vieworg[1]; view[14] = r_refdef.vieworg[2]; view[15] = 1; VectorMA(r_refdef.vieworg, 0.25, plane->normal, r_refdef.pvsorigin); Matrix4_Multiply(mirror, view, result); vpn[0] = result[0]; vpn[1] = result[1]; vpn[2] = result[2]; vright[0] = -result[4]; vright[1] = -result[5]; vright[2] = -result[6]; vup[0] = result[8]; vup[1] = result[9]; vup[2] = result[10]; r_refdef.vieworg[0] = result[12]; r_refdef.vieworg[1] = result[13]; r_refdef.vieworg[2] = result[14]; } static entity_t *R_NearestPortal(plane_t *plane) { int i; entity_t *best = NULL; float dist, bestd = 0; for (i = 0; i < cl_numvisedicts; i++) { if (cl_visedicts[i].rtype == RT_PORTALSURFACE) { dist = DotProduct(cl_visedicts[i].origin, plane->normal)-plane->dist; dist = fabs(dist); if (dist < 64 && (!best || dist < bestd)) best = &cl_visedicts[i]; } } return best; } static void TransformCoord(vec3_t in, vec3_t planea[3], vec3_t planeo, vec3_t viewa[3], vec3_t viewo, vec3_t result) { int i; vec3_t local; vec3_t transformed; float d; local[0] = in[0] - planeo[0]; local[1] = in[1] - planeo[1]; local[2] = in[2] - planeo[2]; VectorClear(transformed); for ( i = 0 ; i < 3 ; i++ ) { d = DotProduct(local, planea[i]); VectorMA(transformed, d, viewa[i], transformed); } result[0] = transformed[0] + viewo[0]; result[1] = transformed[1] + viewo[1]; result[2] = transformed[2] + viewo[2]; } static void TransformDir(vec3_t in, vec3_t planea[3], vec3_t viewa[3], vec3_t result) { int i; float d; vec3_t tmp; VectorCopy(in, tmp); VectorClear(result); for ( i = 0 ; i < 3 ; i++ ) { d = DotProduct(tmp, planea[i]); VectorMA(result, d, viewa[i], result); } } static void R_RenderScene(void) { IDirect3DDevice9_SetTransform(pD3DDev9, D3DTS_PROJECTION, (D3DMATRIX*)r_refdef.m_projection); IDirect3DDevice9_SetTransform(pD3DDev9, D3DTS_VIEW, (D3DMATRIX*)r_refdef.m_view); R_SetFrustum (r_refdef.m_projection, r_refdef.m_view); Surf_DrawWorld(); } static void R_DrawPortal(batch_t *batch, batch_t **blist) { entity_t *view; float glplane[4]; plane_t plane; refdef_t oldrefdef; mesh_t *mesh = batch->mesh[batch->firstmesh]; int sort; if (r_refdef.recurse) return; VectorCopy(mesh->normals_array[0], plane.normal); plane.dist = DotProduct(mesh->xyz_array[0], plane.normal); //if we're too far away from the surface, don't draw anything if (batch->shader->flags & SHADER_AGEN_PORTAL) { /*there's a portal alpha blend on that surface, that fades out after this distance*/ if (DotProduct(r_refdef.vieworg, plane.normal)-plane.dist > batch->shader->portaldist) return; } //if we're behind it, then also don't draw anything. if (DotProduct(r_refdef.vieworg, plane.normal)-plane.dist < 0) return; view = R_NearestPortal(&plane); //if (!view) // return; oldrefdef = r_refdef; r_refdef.recurse = true; r_refdef.externalview = true; if (!view || VectorCompare(view->origin, view->oldorigin)) { r_refdef.flipcull ^= true; R_MirrorMatrix(&plane); } else { float d; vec3_t paxis[3], porigin, vaxis[3], vorg; void PerpendicularVector( vec3_t dst, const vec3_t src ); /*calculate where the surface is meant to be*/ VectorCopy(mesh->normals_array[0], paxis[0]); PerpendicularVector(paxis[1], paxis[0]); CrossProduct(paxis[0], paxis[1], paxis[2]); d = DotProduct(view->origin, plane.normal) - plane.dist; VectorMA(view->origin, -d, paxis[0], porigin); /*grab the camera origin*/ VectorNegate(view->axis[0], vaxis[0]); VectorNegate(view->axis[1], vaxis[1]); VectorCopy(view->axis[2], vaxis[2]); VectorCopy(view->oldorigin, vorg); VectorCopy(vorg, r_refdef.pvsorigin); /*rotate it a bit*/ RotatePointAroundVector(vaxis[1], vaxis[0], view->axis[1], sin(realtime)*4); CrossProduct(vaxis[0], vaxis[1], vaxis[2]); TransformCoord(oldrefdef.vieworg, paxis, porigin, vaxis, vorg, r_refdef.vieworg); TransformDir(vpn, paxis, vaxis, vpn); TransformDir(vright, paxis, vaxis, vright); TransformDir(vup, paxis, vaxis, vup); } Matrix4_ModelViewMatrixFromAxis(r_refdef.m_view, vpn, vright, vup, r_refdef.vieworg); VectorAngles(vpn, vup, r_refdef.viewangles); VectorCopy(r_refdef.vieworg, r_origin); /*FIXME: the batch stuff should be done in renderscene*/ /*fixup the first mesh index*/ for (sort = 0; sort < SHADER_SORT_COUNT; sort++) for (batch = blist[sort]; batch; batch = batch->next) { batch->firstmesh = batch->meshes; } /*FIXME: can we get away with stenciling the screen?*/ /*Add to frustum culling instead of clip planes?*/ glplane[0] = plane.normal[0]; glplane[1] = plane.normal[1]; glplane[2] = plane.normal[2]; glplane[3] = -plane.dist; IDirect3DDevice9_SetClipPlane(pD3DDev9, 0, glplane); IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_CLIPPLANEENABLE, D3DCLIPPLANE0); R_RenderScene(); IDirect3DDevice9_SetRenderState(pD3DDev9, D3DRS_CLIPPLANEENABLE, 0); for (sort = 0; sort < SHADER_SORT_COUNT; sort++) for (batch = blist[sort]; batch; batch = batch->next) { batch->firstmesh = 0; } r_refdef = oldrefdef; /*broken stuff*/ AngleVectors (r_refdef.viewangles, vpn, vright, vup); VectorCopy (r_refdef.vieworg, r_origin); IDirect3DDevice9_SetTransform(pD3DDev9, D3DTS_PROJECTION, (D3DMATRIX*)r_refdef.m_projection); IDirect3DDevice9_SetTransform(pD3DDev9, D3DTS_VIEW, (D3DMATRIX*)r_refdef.m_view); R_SetFrustum (r_refdef.m_projection, r_refdef.m_view); } static void BE_SubmitMeshesPortals(batch_t **worldlist, batch_t *dynamiclist) { batch_t *batch, *old; int i; /*attempt to draw portal shaders*/ if (shaderstate.mode == BEM_STANDARD) { for (i = 0; i < 2; i++) { for (batch = i?dynamiclist:worldlist[SHADER_SORT_PORTAL]; batch; batch = batch->next) { if (batch->meshes == batch->firstmesh) continue; if (batch->buildmeshes) batch->buildmeshes(batch); else batch->shader = R_TextureAnimation(batch->ent->framestate.g[FS_REG].frame[0], batch->texture)->shader; /*draw already-drawn portals as depth-only, to ensure that their contents are not harmed*/ BE_SelectMode(BEM_DEPTHONLY); for (old = worldlist[SHADER_SORT_PORTAL]; old && old != batch; old = old->next) { if (old->meshes == old->firstmesh) continue; BE_SubmitBatch(old); } if (!old) { for (old = dynamiclist; old != batch; old = old->next) { if (old->meshes == old->firstmesh) continue; BE_SubmitBatch(old); } } BE_SelectMode(BEM_STANDARD); R_DrawPortal(batch, worldlist); /*clear depth again*/ IDirect3DDevice9_Clear(pD3DDev9, 0, NULL, D3DCLEAR_ZBUFFER, D3DCOLOR_XRGB(0,0,0), 1, 0); } } } } void BE_SubmitMeshes (qboolean drawworld, batch_t **blist) { model_t *model = cl.worldmodel; int i; for (i = SHADER_SORT_PORTAL; i < SHADER_SORT_COUNT; i++) { if (drawworld) { if (i == SHADER_SORT_PORTAL /*&& !r_noportals.ival*/ && !r_refdef.recurse) BE_SubmitMeshesPortals(model->batches, blist[i]); BE_SubmitMeshesSortList(model->batches[i]); } BE_SubmitMeshesSortList(blist[i]); } } void D3DBE_DrawWorld (qbyte *vis) { batch_t *batches[SHADER_SORT_COUNT]; RSpeedLocals(); shaderstate.curentity = NULL; if (!r_refdef.recurse) { if (shaderstate.wbatch > shaderstate.maxwbatches) { int newm = shaderstate.wbatch; shaderstate.wbatches = BZ_Realloc(shaderstate.wbatches, newm * sizeof(*shaderstate.wbatches)); memset(shaderstate.wbatches + shaderstate.maxwbatches, 0, (newm - shaderstate.maxwbatches) * sizeof(*shaderstate.wbatches)); shaderstate.maxwbatches = newm; } shaderstate.wbatch = 0; } BE_GenModelBatches(batches); if (vis) { BE_UploadLightmaps(false); //make sure the world draws correctly r_worldentity.shaderRGBAf[0] = 1; r_worldentity.shaderRGBAf[1] = 1; r_worldentity.shaderRGBAf[2] = 1; r_worldentity.shaderRGBAf[3] = 1; r_worldentity.axis[0][0] = 1; r_worldentity.axis[1][1] = 1; r_worldentity.axis[2][2] = 1; BE_SelectMode(BEM_STANDARD); RSpeedRemark(); BE_SubmitMeshes(true, batches); RSpeedEnd(RSPEED_WORLD); } else { RSpeedRemark(); BE_SubmitMeshes(false, batches); RSpeedEnd(RSPEED_DRAWENTITIES); } BE_RotateForEntity(&r_worldentity, NULL); } #endif