/* sha512.c - SHA384 and SHA512 hash functions * Copyright (C) 2003, 2008, 2009 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser general Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ /* Test vectors from FIPS-180-2: * * "abc" * 384: * CB00753F 45A35E8B B5A03D69 9AC65007 272C32AB 0EDED163 * 1A8B605A 43FF5BED 8086072B A1E7CC23 58BAECA1 34C825A7 * 512: * DDAF35A1 93617ABA CC417349 AE204131 12E6FA4E 89A97EA2 0A9EEEE6 4B55D39A * 2192992A 274FC1A8 36BA3C23 A3FEEBBD 454D4423 643CE80E 2A9AC94F A54CA49F * * "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu" * 384: * 09330C33 F71147E8 3D192FC7 82CD1B47 53111B17 3B3B05D2 * 2FA08086 E3B0F712 FCC7C71A 557E2DB9 66C3E9FA 91746039 * 512: * 8E959B75 DAE313DA 8CF4F728 14FC143F 8F7779C6 EB9F7FA1 7299AEAD B6889018 * 501D289E 4900F7E4 331B99DE C4B5433A C7D329EE B6DD2654 5E96E55B 874BE909 * * "a" x 1000000 * 384: * 9D0E1809 716474CB 086E834E 310A4A1C ED149E9C 00F24852 * 7972CEC5 704C2A5B 07B8B3DC 38ECC4EB AE97DDD8 7F3D8985 * 512: * E718483D 0CE76964 4E2E42C7 BC15B463 8E1F98B1 3B204428 5632A803 AFA973EB * DE0FF244 877EA60A 4CB0432C E577C31B EB009C5C 2C49AA2E 4EADB217 AD8CC09B */ #include "quakedef.h" #ifndef SHA2 #define SHA2 256 #include "sha2.c" #undef SHA2 #define SHA2 512 #endif #undef U64_C #undef U64_C_LOW #undef u64 #undef ROUNDS #undef SHA2_CONTEXT #undef sha2trunc_init #undef sha2_init #if SHA2==256 #define U64_C(n) (n##ull>>32) #define U64_C_LOW(n) (u64)(n##ull) #define u64 quint32_t #define ROUNDS 64 #define SHA2_CONTEXT SHA256_CONTEXT #define sha2trunc_init sha224_init #define sha2_init sha256_init #else #define U64_C(n) n##ull #define U64_C_LOW(n) n##ull #define u64 quint64_t #define ROUNDS 80 #define SHA2_CONTEXT SHA512_CONTEXT #define ROTR ROTR64 #define Ch Ch64 #define Maj Maj64 #define Sum0 Sum0_64 #define Sum1 Sum1_64 #define transform transform_64 #define sha2trunc_init sha384_init #define sha2_init sha512_init #define sha2_write sha512_write #define sha2_final sha512_final #endif #define BLOCKBYTES (16*sizeof(u64)) #define byte qbyte typedef struct { u64 h0, h1, h2, h3, h4, h5, h6, h7; u64 nblocks; byte buf[BLOCKBYTES]; int count; } SHA2_CONTEXT; static void sha2_init (void *context) { SHA2_CONTEXT *hd = context; hd->h0 = U64_C(0x6a09e667f3bcc908); hd->h1 = U64_C(0xbb67ae8584caa73b); hd->h2 = U64_C(0x3c6ef372fe94f82b); hd->h3 = U64_C(0xa54ff53a5f1d36f1); hd->h4 = U64_C(0x510e527fade682d1); hd->h5 = U64_C(0x9b05688c2b3e6c1f); hd->h6 = U64_C(0x1f83d9abfb41bd6b); hd->h7 = U64_C(0x5be0cd19137e2179); hd->nblocks = 0; hd->count = 0; } static void sha2trunc_init (void *context) { SHA2_CONTEXT *hd = context; //sha224 uses only the low parts. hd->h0 = U64_C_LOW(0xcbbb9d5dc1059ed8); hd->h1 = U64_C_LOW(0x629a292a367cd507); hd->h2 = U64_C_LOW(0x9159015a3070dd17); hd->h3 = U64_C_LOW(0x152fecd8f70e5939); hd->h4 = U64_C_LOW(0x67332667ffc00b31); hd->h5 = U64_C_LOW(0x8eb44a8768581511); hd->h6 = U64_C_LOW(0xdb0c2e0d64f98fa7); hd->h7 = U64_C_LOW(0x47b5481dbefa4fa4); hd->nblocks = 0; hd->count = 0; } fte_inlinestatic u64 ROTR (u64 x, u64 n) { return ((x >> n) | (x << (sizeof(u64)*8 - n))); } fte_inlinestatic u64 Ch (u64 x, u64 y, u64 z) { return ((x & y) ^ ( ~x & z)); } fte_inlinestatic u64 Maj (u64 x, u64 y, u64 z) { return ((x & y) ^ (x & z) ^ (y & z)); } #undef S0 #undef S1 #if SHA2==256 #define S0(x) (ROTR((x),7) ^ ROTR((x),18) ^ ((x)>>3)) #define S1(x) (ROTR((x),17) ^ ROTR((x),19) ^ ((x)>>10)) fte_inlinestatic u64 Sum0 (u64 x) { return (ROTR (x, 2) ^ ROTR (x, 13) ^ ROTR (x, 22)); } fte_inlinestatic u64 Sum1 (u64 x) { return (ROTR (x, 6) ^ ROTR (x, 11) ^ ROTR (x, 25)); } #else #define S0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7)) #define S1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6)) fte_inlinestatic u64 Sum0 (u64 x) { return (ROTR (x, 28) ^ ROTR (x, 34) ^ ROTR (x, 39)); } fte_inlinestatic u64 Sum1 (u64 x) { return (ROTR (x, 14) ^ ROTR (x, 18) ^ ROTR (x, 41)); } #endif /**************** * Transform the message W which consists of 16 64-bit-words */ static void transform (SHA2_CONTEXT *hd, const unsigned char *data) { u64 a, b, c, d, e, f, g, h; u64 w[ROUNDS]; int t; static const u64 k[] = { U64_C(0x428a2f98d728ae22), U64_C(0x7137449123ef65cd), U64_C(0xb5c0fbcfec4d3b2f), U64_C(0xe9b5dba58189dbbc), U64_C(0x3956c25bf348b538), U64_C(0x59f111f1b605d019), U64_C(0x923f82a4af194f9b), U64_C(0xab1c5ed5da6d8118), U64_C(0xd807aa98a3030242), U64_C(0x12835b0145706fbe), U64_C(0x243185be4ee4b28c), U64_C(0x550c7dc3d5ffb4e2), U64_C(0x72be5d74f27b896f), U64_C(0x80deb1fe3b1696b1), U64_C(0x9bdc06a725c71235), U64_C(0xc19bf174cf692694), U64_C(0xe49b69c19ef14ad2), U64_C(0xefbe4786384f25e3), U64_C(0x0fc19dc68b8cd5b5), U64_C(0x240ca1cc77ac9c65), U64_C(0x2de92c6f592b0275), U64_C(0x4a7484aa6ea6e483), U64_C(0x5cb0a9dcbd41fbd4), U64_C(0x76f988da831153b5), U64_C(0x983e5152ee66dfab), U64_C(0xa831c66d2db43210), U64_C(0xb00327c898fb213f), U64_C(0xbf597fc7beef0ee4), U64_C(0xc6e00bf33da88fc2), U64_C(0xd5a79147930aa725), U64_C(0x06ca6351e003826f), U64_C(0x142929670a0e6e70), U64_C(0x27b70a8546d22ffc), U64_C(0x2e1b21385c26c926), U64_C(0x4d2c6dfc5ac42aed), U64_C(0x53380d139d95b3df), U64_C(0x650a73548baf63de), U64_C(0x766a0abb3c77b2a8), U64_C(0x81c2c92e47edaee6), U64_C(0x92722c851482353b), U64_C(0xa2bfe8a14cf10364), U64_C(0xa81a664bbc423001), U64_C(0xc24b8b70d0f89791), U64_C(0xc76c51a30654be30), U64_C(0xd192e819d6ef5218), U64_C(0xd69906245565a910), U64_C(0xf40e35855771202a), U64_C(0x106aa07032bbd1b8), U64_C(0x19a4c116b8d2d0c8), U64_C(0x1e376c085141ab53), U64_C(0x2748774cdf8eeb99), U64_C(0x34b0bcb5e19b48a8), U64_C(0x391c0cb3c5c95a63), U64_C(0x4ed8aa4ae3418acb), U64_C(0x5b9cca4f7763e373), U64_C(0x682e6ff3d6b2b8a3), U64_C(0x748f82ee5defb2fc), U64_C(0x78a5636f43172f60), U64_C(0x84c87814a1f0ab72), U64_C(0x8cc702081a6439ec), U64_C(0x90befffa23631e28), U64_C(0xa4506cebde82bde9), U64_C(0xbef9a3f7b2c67915), U64_C(0xc67178f2e372532b), U64_C(0xca273eceea26619c), U64_C(0xd186b8c721c0c207), U64_C(0xeada7dd6cde0eb1e), U64_C(0xf57d4f7fee6ed178), U64_C(0x06f067aa72176fba), U64_C(0x0a637dc5a2c898a6), U64_C(0x113f9804bef90dae), U64_C(0x1b710b35131c471b), U64_C(0x28db77f523047d84), U64_C(0x32caab7b40c72493), U64_C(0x3c9ebe0a15c9bebc), U64_C(0x431d67c49c100d4c), U64_C(0x4cc5d4becb3e42b6), U64_C(0x597f299cfc657e2a), U64_C(0x5fcb6fab3ad6faec), U64_C(0x6c44198c4a475817) }; /* get values from the chaining vars */ a = hd->h0; b = hd->h1; c = hd->h2; d = hd->h3; e = hd->h4; f = hd->h5; g = hd->h6; h = hd->h7; #ifdef WORDS_BIGENDIAN memcpy (w, data, BLOCKBYTES); #else { int i; byte *p2; for (i = 0, p2 = (byte *) w; i < 16; i++, p2 += sizeof(*w)) { #if SHA2==512 p2[7] = *data++; p2[6] = *data++; p2[5] = *data++; p2[4] = *data++; #endif p2[3] = *data++; p2[2] = *data++; p2[1] = *data++; p2[0] = *data++; } } #endif for (t = 16; t < ROUNDS; t++) w[t] = S1 (w[t - 2]) + w[t - 7] + S0 (w[t - 15]) + w[t - 16]; for (t = 0; t < ROUNDS; ) { u64 t1, t2; /* Performance on a AMD Athlon(tm) Dual Core Processor 4050e with gcc 4.3.3 using gcry_md_hash_buffer of each 10000 bytes initialized to 0,1,2,3...255,0,... and 1000 iterations: Not unrolled with macros: 440ms Unrolled with macros: 350ms Unrolled with inline: 330ms */ #if 0 /* Not unrolled. */ t1 = h + Sum1 (e) + Ch (e, f, g) + k[t] + w[t]; t2 = Sum0 (a) + Maj (a, b, c); h = g; g = f; f = e; e = d + t1; d = c; c = b; b = a; a = t1 + t2; t++; #else /* Unrolled to interweave the chain variables. */ t1 = h + Sum1 (e) + Ch (e, f, g) + k[t] + w[t]; t2 = Sum0 (a) + Maj (a, b, c); d += t1; h = t1 + t2; t1 = g + Sum1 (d) + Ch (d, e, f) + k[t+1] + w[t+1]; t2 = Sum0 (h) + Maj (h, a, b); c += t1; g = t1 + t2; t1 = f + Sum1 (c) + Ch (c, d, e) + k[t+2] + w[t+2]; t2 = Sum0 (g) + Maj (g, h, a); b += t1; f = t1 + t2; t1 = e + Sum1 (b) + Ch (b, c, d) + k[t+3] + w[t+3]; t2 = Sum0 (f) + Maj (f, g, h); a += t1; e = t1 + t2; t1 = d + Sum1 (a) + Ch (a, b, c) + k[t+4] + w[t+4]; t2 = Sum0 (e) + Maj (e, f, g); h += t1; d = t1 + t2; t1 = c + Sum1 (h) + Ch (h, a, b) + k[t+5] + w[t+5]; t2 = Sum0 (d) + Maj (d, e, f); g += t1; c = t1 + t2; t1 = b + Sum1 (g) + Ch (g, h, a) + k[t+6] + w[t+6]; t2 = Sum0 (c) + Maj (c, d, e); f += t1; b = t1 + t2; t1 = a + Sum1 (f) + Ch (f, g, h) + k[t+7] + w[t+7]; t2 = Sum0 (b) + Maj (b, c, d); e += t1; a = t1 + t2; t += 8; #endif } /* Update chaining vars. */ hd->h0 += a; hd->h1 += b; hd->h2 += c; hd->h3 += d; hd->h4 += e; hd->h5 += f; hd->h6 += g; hd->h7 += h; } /* Update the message digest with the contents * of INBUF with length INLEN. */ static void sha2_write (void *context, const void *inbuf_arg, size_t inlen) { const unsigned char *inbuf = inbuf_arg; SHA2_CONTEXT *hd = context; if (hd->count == BLOCKBYTES) { /* flush the buffer */ transform (hd, hd->buf); hd->count = 0; hd->nblocks++; } if (!inbuf) return; if (hd->count) { for (; inlen && hd->count < BLOCKBYTES; inlen--) hd->buf[hd->count++] = *inbuf++; sha2_write (context, NULL, 0); if (!inlen) return; } while (inlen >= BLOCKBYTES) { transform (hd, inbuf); hd->count = 0; hd->nblocks++; inlen -= BLOCKBYTES; inbuf += BLOCKBYTES; } for (; inlen && hd->count < BLOCKBYTES; inlen--) hd->buf[hd->count++] = *inbuf++; } /* The routine final terminates the computation and * returns the digest. * The handle is prepared for a new cycle, but adding bytes to the * handle will the destroy the returned buffer. * Returns: 64 bytes representing the digest. When used for sha384, * we take the leftmost 48 of those bytes. */ static void sha2_final (void *context) { SHA2_CONTEXT *hd = context; u64 t, msb, lsb; byte *p; sha2_write (context, NULL, 0); /* flush */ ; t = hd->nblocks; /* multiply by 128 to make a byte count */ lsb = t * BLOCKBYTES; msb = t >> (sizeof(u64)*8-((BLOCKBYTES==128)?7:6)); /* add the count */ t = lsb; if ((lsb += hd->count) < t) msb++; /* multiply by 8 to make a bit count */ t = lsb; lsb <<= 3; msb <<= 3; msb |= t >> (sizeof(u64)*8-3); if (hd->count < BLOCKBYTES-sizeof(u64)*2) { /* enough room */ hd->buf[hd->count++] = 0x80; /* pad */ while (hd->count < BLOCKBYTES-sizeof(u64)*2) hd->buf[hd->count++] = 0; /* pad */ } else { /* need one extra block */ hd->buf[hd->count++] = 0x80; /* pad character */ while (hd->count < BLOCKBYTES) hd->buf[hd->count++] = 0; sha2_write (context, NULL, 0); /* flush */ ; memset (hd->buf, 0, BLOCKBYTES-sizeof(u64)*2); /* fill next block with zeroes */ } #if SHA2==256 #define X(a) do { *p++ = hd->h##a >> 24; *p++ = hd->h##a >> 16; \ *p++ = hd->h##a >> 8; *p++ = hd->h##a; } while (0) /* append the 128 bit count */ hd->buf[56] = msb >> 24; hd->buf[57] = msb >> 16; hd->buf[58] = msb >> 8; hd->buf[59] = msb; hd->buf[60] = lsb >> 24; hd->buf[61] = lsb >> 16; hd->buf[62] = lsb >> 8; hd->buf[63] = lsb; #else #define X(a) do { *p++ = hd->h##a >> 56; *p++ = hd->h##a >> 48; \ *p++ = hd->h##a >> 40; *p++ = hd->h##a >> 32; \ *p++ = hd->h##a >> 24; *p++ = hd->h##a >> 16; \ *p++ = hd->h##a >> 8; *p++ = hd->h##a; } while (0) /* append the 128 bit count */ hd->buf[112] = msb >> 56; hd->buf[113] = msb >> 48; hd->buf[114] = msb >> 40; hd->buf[115] = msb >> 32; hd->buf[116] = msb >> 24; hd->buf[117] = msb >> 16; hd->buf[118] = msb >> 8; hd->buf[119] = msb; hd->buf[120] = lsb >> 56; hd->buf[121] = lsb >> 48; hd->buf[122] = lsb >> 40; hd->buf[123] = lsb >> 32; hd->buf[124] = lsb >> 24; hd->buf[125] = lsb >> 16; hd->buf[126] = lsb >> 8; hd->buf[127] = lsb; #endif transform (hd, hd->buf); p = hd->buf; #ifdef WORDS_BIGENDIAN #undef X #define X(a) do { *(u64*)p = hd->h##a ; p += sizeof(u64); } while (0) #endif X (0); X (1); X (2); X (3); X (4); X (5); /* Note that these last two chunks are included even for SHA384. We just ignore them. */ X (6); X (7); #undef X } #if SHA2==256 static void sha224_finish (qbyte *digest, void *context) { SHA2_CONTEXT *hd = (SHA2_CONTEXT *) context; sha2_final(context); memcpy(digest, hd->buf, 224/8); //only the first 224 bits of the result... } static void sha256_finish (qbyte *digest, void *context) { SHA2_CONTEXT *hd = (SHA2_CONTEXT *) context; sha2_final(context); memcpy(digest, hd->buf, 256/8); } hashfunc_t hash_sha2_224 = { 224/8, sizeof(SHA2_CONTEXT), sha224_init, sha2_write, sha224_finish }; hashfunc_t hash_sha2_256 = { 256/8, sizeof(SHA2_CONTEXT), sha256_init, sha2_write, sha256_finish }; /*#if defined(HAVE_SERVER) && !defined(HAVE_CLIENT) __attribute__((constructor)) void sha2_256_unit_test(void) { qbyte digest[256/8]; qbyte need[sizeof(digest)]; CalcHash(&hash_sha2_256, digest, sizeof(digest), (qbyte*)(volatile qbyte*)"", 0); Base16_DecodeBlock("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", need, sizeof(need)); if (memcmp(digest, need, sizeof(digest))) printf("%s %i fail\n", __func__, __LINE__), abort(); CalcHash(&hash_sha2_256, digest, sizeof(digest), (qbyte*)(volatile qbyte*)"abc", 3); Base16_DecodeBlock("ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad", need, sizeof(need)); if (memcmp(digest, need, sizeof(digest))) printf("%s %i fail\n", __func__, __LINE__), abort(); } #endif*/ #endif #if SHA2==512 static void sha384_finish (qbyte *digest, void *context) { SHA2_CONTEXT *hd = (SHA2_CONTEXT *) context; sha2_final(context); memcpy(digest, hd->buf, 384/8); } static void sha512_finish (qbyte *digest, void *context) { SHA2_CONTEXT *hd = (SHA2_CONTEXT *) context; sha2_final(context); memcpy(digest, hd->buf, 512/8); } hashfunc_t hash_sha2_384 = { 384/8, sizeof(SHA2_CONTEXT), sha384_init, sha2_write, sha384_finish }; hashfunc_t hash_sha2_512 = { 512/8, sizeof(SHA2_CONTEXT), sha512_init, sha2_write, sha512_finish }; #endif