/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // r_main.c #include "quakedef.h" #include "r_local.h" #include "sw_draw.h" int r_viewcluster, r_viewcluster2, r_oldviewcluster, r_oldviewcluster2; extern cvar_t r_netgraph; extern cvar_t r_sirds; //define PASSAGES void *colormap; vec3_t viewlightvec; alight_t r_viewlighting = {128, 192, viewlightvec}; float r_time1; int r_numallocatededges; qboolean r_drawpolys; qboolean r_drawculledpolys; qboolean r_worldpolysbacktofront; qboolean r_recursiveaffinetriangles = true; int r_pixbytes = 1; float r_aliasuvscale = 1.0; int r_outofsurfaces; int r_outofedges; qboolean r_dowarp, r_dowarpold, r_viewchanged; int numbtofpolys; btofpoly_t *pbtofpolys; mvertex_t *r_pcurrentvertbase; int c_surf; int r_maxsurfsseen, r_maxedgesseen, r_cnumsurfs; qboolean r_surfsonstack; int r_clipflags; qbyte *r_warpbuffer; qbyte *r_stack_start; qboolean r_fov_greater_than_90; entity_t r_worldentity; // // view origin // vec3_t vup, base_vup; vec3_t vpn, base_vpn; vec3_t vright, base_vright; vec3_t r_origin; // // screen size info // refdef_t r_refdef; float xcenter, ycenter; float xscale, yscale; float xscaleinv, yscaleinv; float xscaleshrink, yscaleshrink; float aliasxscale, aliasyscale, aliasxcenter, aliasycenter; int screenwidth; float pixelAspect; float screenAspect; float verticalFieldOfView; float xOrigin, yOrigin; float r_wateralphaval; mplane_t screenedge[4]; //colour bits (for 16 bit rendering) int redbits, redshift; int greenbits, greenshift; int bluebits, blueshift; // // refresh flags // int r_framecount = 1; // so frame counts initialized to 0 don't match int r_visframecount; int d_spanpixcount; int r_polycount; int r_drawnpolycount; int r_wholepolycount; int *pfrustum_indexes[4]; int r_frustum_indexes[4*6]; int reinit_surfcache = 1; // if 1, surface cache is currently empty and // must be reinitialized for current cache size mleaf_t *r_viewleaf, *r_oldviewleaf; texture_t *r_notexture_mip; float r_aliastransition, r_resfudge; int d_lightstylevalue[256]; // 8.8 fraction of base light value float dp_time1, dp_time2, db_time1, db_time2, rw_time1, rw_time2; float se_time1, se_time2, de_time1, de_time2, dv_time1, dv_time2; void R_MarkLeaves (void); extern cvar_t r_zgraph; extern cvar_t r_aliastransbase; extern cvar_t r_aliastransadj; extern cvar_t r_fixmodelsbyclip; /* cvar_t r_draworder = {"r_draworder","0"}; cvar_t r_speeds = {"r_speeds","0"}; cvar_t r_timegraph = {"r_timegraph","0"}; cvar_t r_netgraph = {"r_netgraph","0"}; cvar_t r_graphheight = {"r_graphheight","15"}; cvar_t r_clearcolor = {"r_clearcolor","218"}; cvar_t r_waterwarp = {"r_waterwarp","1"}; cvar_t r_fullbright = {"r_fullbright","0"}; cvar_t r_drawentities = {"r_drawentities","1"}; cvar_t r_drawviewmodel = {"r_drawviewmodel","1"}; cvar_t r_aliasstats = {"r_polymodelstats","0"}; cvar_t r_dspeeds = {"r_dspeeds","0"}; cvar_t r_drawflat = {"r_drawflat", "0"}; cvar_t r_ambient = {"r_ambient", "0"}; cvar_t r_reportsurfout = {"r_reportsurfout", "0"}; cvar_t r_maxsurfs = {"r_maxsurfs", "0"}; cvar_t r_numsurfs = {"r_numsurfs", "0"}; cvar_t r_reportedgeout = {"r_reportedgeout", "0"}; cvar_t r_maxedges = {"r_maxedges", "0"}; cvar_t r_numedges = {"r_numedges", "0"}; */ extern cvar_t r_loadlits; extern cvar_t r_stains; extern cvar_t r_stainfadetime; extern cvar_t r_stainfadeammount; qboolean r_usinglits; #ifdef FISH extern cvar_t ffov; #endif extern cvar_t scr_fov; void CreatePassages (void); void SetVisibilityByPassages (void); void R_NetGraph (void); void R_ZGraph (void); /* ================== R_InitTextures ================== * void SWR_InitTextures (void) { int x,y, m; byte *dest; // create a simple checkerboard texture for the default r_notexture_mip = Hunk_AllocName (sizeof(texture_t) + 16*16+8*8+4*4+2*2, "notexture"); r_notexture_mip->width = r_notexture_mip->height = 16; r_notexture_mip->offsets[0] = sizeof(texture_t); r_notexture_mip->offsets[1] = r_notexture_mip->offsets[0] + 16*16; r_notexture_mip->offsets[2] = r_notexture_mip->offsets[1] + 8*8; r_notexture_mip->offsets[3] = r_notexture_mip->offsets[2] + 4*4; for (m=0 ; m<4 ; m++) { dest = (byte *)r_notexture_mip + r_notexture_mip->offsets[m]; for (y=0 ; y< (16>>m) ; y++) for (x=0 ; x< (16>>m) ; x++) { if ( (y< (8>>m) ) ^ (x< (8>>m) ) ) *dest++ = 0; else *dest++ = 0xff; } } }*/ // callback declares extern cvar_t crosshaircolor, r_skyboxname, r_menutint, v_contrast; extern cvar_t r_floorcolour, r_wallcolour, r_drawflat; void SWCrosshaircolor_Callback(struct cvar_s *var, char *oldvalue); void SWR_Skyboxname_Callback(struct cvar_s *var, char *oldvalue); void SWR_Menutint_Callback(struct cvar_s *var, char *oldvalue); void SWV_Gamma_Callback(struct cvar_s *var, char *oldvalue); void SWR_Floorcolour_Callback(struct cvar_s *var, char *oldvalue); void SWR_Wallcolour_Callback(struct cvar_s *var, char *oldvalue); void SWR_Drawflat_Callback(struct cvar_s *var, char *oldvalue); void SWR_DeInit (void) { Cmd_RemoveCommand ("timerefresh"); Cmd_RemoveCommand ("pointfile"); Cvar_Unhook(&crosshaircolor); Cvar_Unhook(&r_skyboxname); Cvar_Unhook(&r_menutint); Cvar_Unhook(&v_gamma); Cvar_Unhook(&v_contrast); Cvar_Unhook(&r_floorcolour); Cvar_Unhook(&r_wallcolour); Cvar_Unhook(&r_drawflat); SWDraw_Shutdown(); D_Shutdown(); } /* =============== R_Init =============== */ void SWR_Init (void) { int dummy; // get stack position so we can guess if we are going to overflow r_stack_start = (qbyte *)&dummy; R_InitTurb (); Cmd_AddRemCommand ("timerefresh", SWR_TimeRefresh_f); Cvar_Hook(&crosshaircolor, SWCrosshaircolor_Callback); Cvar_Hook(&r_skyboxname, SWR_Skyboxname_Callback); Cvar_Hook(&r_menutint, SWR_Menutint_Callback); Cvar_Hook(&v_gamma, SWV_Gamma_Callback); Cvar_Hook(&v_contrast, SWV_Gamma_Callback); Cvar_Hook(&r_floorcolour, SWR_Floorcolour_Callback); Cvar_Hook(&r_wallcolour, SWR_Wallcolour_Callback); Cvar_Hook(&r_drawflat, SWR_Drawflat_Callback); if (!r_maxedges.value) Cvar_SetValue (&r_maxedges, (float)NUMSTACKEDGES); if (!r_maxsurfs.value) Cvar_SetValue (&r_maxsurfs, (float)NUMSTACKSURFACES); view_clipplanes[0].leftedge = true; view_clipplanes[1].rightedge = true; view_clipplanes[1].leftedge = view_clipplanes[2].leftedge = view_clipplanes[3].leftedge = false; view_clipplanes[0].rightedge = view_clipplanes[2].rightedge = view_clipplanes[3].rightedge = false; r_refdef.xOrigin = XCENTERING; r_refdef.yOrigin = YCENTERING; // TODO: collect 386-specific code in one place #if id386 Sys_MakeCodeWriteable ((long)R_EdgeCodeStart, (long)R_EdgeCodeEnd - (long)R_EdgeCodeStart); #endif // id386 D_Init (); } /* =============== R_NewMap =============== */ void SWR_NewMap (void) { extern cvar_t host_mapname; char namebuf[MAX_OSPATH]; int i; memset (&r_worldentity, 0, sizeof(r_worldentity)); AngleVectors(r_worldentity.angles, r_worldentity.axis[0], r_worldentity.axis[1], r_worldentity.axis[2]); VectorInverse(r_worldentity.axis[1]); r_worldentity.model = cl.worldmodel; // clear out efrags in case the level hasn't been reloaded // FIXME: is this one short? for (i=0 ; inumleafs ; i++) cl.worldmodel->leafs[i].efrags = NULL; r_viewleaf = NULL; P_ClearParticles (); r_cnumsurfs = r_maxsurfs.value; if (r_cnumsurfs <= MINSURFACES) r_cnumsurfs = MINSURFACES; if (r_cnumsurfs > NUMSTACKSURFACES) { surfaces = Hunk_AllocName (r_cnumsurfs * sizeof(surf_t), "surfaces"); surface_p = surfaces; surf_max = &surfaces[r_cnumsurfs]; r_surfsonstack = false; // surface 0 doesn't really exist; it's just a dummy because index 0 // is used to indicate no edge attached to surface surfaces--; R_SurfacePatch (); } else { r_surfsonstack = true; } r_maxedgesseen = 0; r_maxsurfsseen = 0; r_numallocatededges = r_maxedges.value; if (r_numallocatededges < MINEDGES) r_numallocatededges = MINEDGES; if (r_numallocatededges <= NUMSTACKEDGES) { auxedges = NULL; } else { auxedges = Hunk_AllocName (r_numallocatededges * sizeof(edge_t), "edges"); } COM_StripExtension(COM_SkipPath(cl.worldmodel->name), namebuf, sizeof(namebuf)); Cvar_Set(&host_mapname, namebuf); r_dowarpold = false; r_viewchanged = false; #ifdef SWSTAINS SWR_BuildLightmaps(); #endif R_WipeDecals(); R_InitSkyBox(); #ifdef VM_UI UI_Reset(); #endif TP_NewMap(); } /* =============== R_SetVrect =============== */ void R_SetVrect (vrect_t *pvrectin, vrect_t *pvrect, int lineadj) { int h; float size; qboolean full = false; #ifdef SIDEVIEWS if (r_secondaryview==1) return; if (!r_dowarp && !r_dowarpold) return; #endif if (scr_viewsize.value >= 100.0) { size = 100.0; full = true; } else size = scr_viewsize.value; if (cl.intermission) { full = true; size = 100.0; lineadj = 0; } size /= 100.0; if (!cl_sbar.value && full) h = pvrectin->height; else h = pvrectin->height - lineadj; // h = (!cl_sbar.value && size==1.0) ? pvrectin->height : (pvrectin->height - lineadj); // h = pvrectin->height - lineadj; if (full) pvrect->width = pvrectin->width; else pvrect->width = pvrectin->width * size; if (pvrect->width < 96) { size = 96.0 / pvrectin->width; pvrect->width = 96; // min for icons } pvrect->width &= ~7; pvrect->height = pvrectin->height * size; if (cl_sbar.value || !full) { if (pvrect->height > pvrectin->height - lineadj) pvrect->height = pvrectin->height - lineadj; } else if (pvrect->height > pvrectin->height) pvrect->height = pvrectin->height; pvrect->height &= ~1; pvrect->x = (pvrectin->width - pvrect->width)/2; if (full) pvrect->y = 0; else pvrect->y = (h - pvrect->height)/2; } /* =============== R_ViewChanged Called every time the vid structure or r_refdef changes. Guaranteed to be called before the first refresh =============== */ void SWR_ViewChanged (vrect_t *pvrect, int lineadj, float aspect) { int i; float res_scale; r_viewchanged = true; R_SetVrect (pvrect, &r_refdef.vrect, lineadj); r_refdef.horizontalFieldOfView = 2.0 * tan (r_refdef.fov_x/360*M_PI); r_refdef.fvrectx = (float)r_refdef.vrect.x; r_refdef.fvrectx_adj = (float)r_refdef.vrect.x - 0.5; r_refdef.vrect_x_adj_shift20 = (r_refdef.vrect.x<<20) + (1<<19) - 1; r_refdef.fvrecty = (float)r_refdef.vrect.y; r_refdef.fvrecty_adj = (float)r_refdef.vrect.y - 0.5; r_refdef.vrectright = r_refdef.vrect.x + r_refdef.vrect.width; r_refdef.vrectright_adj_shift20 = (r_refdef.vrectright<<20) + (1<<19) - 1; r_refdef.fvrectright = (float)r_refdef.vrectright; r_refdef.fvrectright_adj = (float)r_refdef.vrectright - 0.5; r_refdef.vrectrightedge = (float)r_refdef.vrectright - 0.99; r_refdef.vrectbottom = r_refdef.vrect.y + r_refdef.vrect.height; r_refdef.fvrectbottom = (float)r_refdef.vrectbottom; r_refdef.fvrectbottom_adj = (float)r_refdef.vrectbottom - 0.5; r_refdef.aliasvrect.x = (int)(r_refdef.vrect.x * r_aliasuvscale); r_refdef.aliasvrect.y = (int)(r_refdef.vrect.y * r_aliasuvscale); r_refdef.aliasvrect.width = (int)(r_refdef.vrect.width * r_aliasuvscale); r_refdef.aliasvrect.height = (int)(r_refdef.vrect.height * r_aliasuvscale); r_refdef.aliasvrectright = r_refdef.aliasvrect.x + r_refdef.aliasvrect.width; r_refdef.aliasvrectbottom = r_refdef.aliasvrect.y + r_refdef.aliasvrect.height; #ifdef FISH if (ffov.value && cls.allow_fish) pixelAspect = (float)r_refdef.vrect.height/(float)r_refdef.vrect.width; else #endif pixelAspect = aspect; xOrigin = r_refdef.xOrigin; yOrigin = r_refdef.yOrigin; #ifdef FISH if (ffov.value && cls.allow_fish) screenAspect = 1; else #endif screenAspect = r_refdef.vrect.width*pixelAspect / r_refdef.vrect.height; // 320*200 1.0 pixelAspect = 1.6 screenAspect // 320*240 1.0 pixelAspect = 1.3333 screenAspect // proper 320*200 pixelAspect = 0.8333333 verticalFieldOfView = r_refdef.horizontalFieldOfView / screenAspect; // values for perspective projection // if math were exact, the values would range from 0.5 to to range+0.5 // hopefully they wll be in the 0.000001 to range+.999999 and truncate // the polygon rasterization will never render in the first row or column // but will definately render in the [range] row and column, so adjust the // buffer origin to get an exact edge to edge fill xcenter = ((float)r_refdef.vrect.width * XCENTERING) + r_refdef.vrect.x - 0.5; aliasxcenter = xcenter * r_aliasuvscale; ycenter = ((float)r_refdef.vrect.height * YCENTERING) + r_refdef.vrect.y - 0.5; aliasycenter = ycenter * r_aliasuvscale; xscale = r_refdef.vrect.width / r_refdef.horizontalFieldOfView; aliasxscale = xscale * r_aliasuvscale; xscaleinv = 1.0 / xscale; yscale = xscale * pixelAspect; aliasyscale = yscale * r_aliasuvscale; yscaleinv = 1.0 / yscale; xscaleshrink = (r_refdef.vrect.width-6)/r_refdef.horizontalFieldOfView; yscaleshrink = xscaleshrink*pixelAspect; // left side clip screenedge[0].normal[0] = -1.0 / (xOrigin*r_refdef.horizontalFieldOfView); screenedge[0].normal[1] = 0; screenedge[0].normal[2] = 1; screenedge[0].type = PLANE_ANYZ; // right side clip screenedge[1].normal[0] = 1.0 / ((1.0-xOrigin)*r_refdef.horizontalFieldOfView); screenedge[1].normal[1] = 0; screenedge[1].normal[2] = 1; screenedge[1].type = PLANE_ANYZ; // top side clip screenedge[2].normal[0] = 0; screenedge[2].normal[1] = -1.0 / (yOrigin*verticalFieldOfView); screenedge[2].normal[2] = 1; screenedge[2].type = PLANE_ANYZ; // bottom side clip screenedge[3].normal[0] = 0; screenedge[3].normal[1] = 1.0 / ((1.0-yOrigin)*verticalFieldOfView); screenedge[3].normal[2] = 1; screenedge[3].type = PLANE_ANYZ; for (i=0 ; i<4 ; i++) VectorNormalize (screenedge[i].normal); res_scale = sqrt ((double)(r_refdef.vrect.width * r_refdef.vrect.height) / (320.0 * 152.0)) * (2.0 / r_refdef.horizontalFieldOfView); r_aliastransition = r_aliastransbase.value * res_scale; r_resfudge = r_aliastransadj.value * res_scale; if (scr_fov.value <= 90.0) r_fov_greater_than_90 = false; else r_fov_greater_than_90 = true; // TODO: collect 386-specific code in one place #if id386 if (r_pixbytes == 1) { Sys_MakeCodeWriteable ((long)R_Surf8Start, (long)R_Surf8End - (long)R_Surf8Start); colormap = vid.colormap; R_Surf8Patch (); } else { Sys_MakeCodeWriteable ((long)R_Surf16Start, (long)R_Surf16End - (long)R_Surf16Start); colormap = vid.colormap16; R_Surf16Patch (); } #endif // id386 D_ViewChanged (); //make sure gamma changes and the like take affect. } /* =============== R_MarkLeaves =============== */ qbyte *SWMod_LeafPVS (model_t *model, mleaf_t *leaf, qbyte *buffer); void SWR_MarkLeaves (void) { qbyte *vis; mnode_t *node; int i; #ifdef Q2BSPS if (cl.worldmodel->fromgame == fg_quake2) { qbyte fatvis[MAX_MAP_LEAFS/8]; int c; mleaf_t *leaf; int cluster; // if (r_oldviewcluster == r_viewcluster && r_oldviewcluster2 == r_viewcluster2) // return; r_visframecount++; r_oldviewcluster = r_viewcluster; r_oldviewcluster2 = r_viewcluster2; if (/*r_novis.value || */r_viewcluster == -1 || !cl.worldmodel->vis) { // mark everything for (i=0 ; inumleafs ; i++) cl.worldmodel->leafs[i].visframe = r_visframecount; for (i=0 ; inumnodes ; i++) cl.worldmodel->nodes[i].visframe = r_visframecount; return; } vis = CM_ClusterPVS (cl.worldmodel, r_viewcluster, NULL); // may have to combine two clusters because of solid water boundaries if (r_viewcluster2 != r_viewcluster) { memcpy (fatvis, vis, (cl.worldmodel->numleafs+7)/8); vis = CM_ClusterPVS (cl.worldmodel, r_viewcluster2, NULL);//, cl.worldmodel); c = (cl.worldmodel->numleafs+31)/32; for (i=0 ; ileafs ; inumleafs ; i++, leaf++) { cluster = leaf->cluster; if (cluster == -1) continue; if (vis[cluster>>3] & (1<<(cluster&7))) { node = (mnode_t *)leaf; do { if (node->visframe == r_visframecount) break; node->visframe = r_visframecount; node = node->parent; } while (node); } } return; } #endif if (r_oldviewleaf == r_viewleaf) return; r_visframecount++; r_oldviewleaf = r_viewleaf; vis = SWMod_LeafPVS (cl.worldmodel, r_viewleaf, NULL); for (i=0 ; inumleafs ; i++) { if (vis[i>>3] & (1<<(i&7))) { node = (mnode_t *)&cl.worldmodel->leafs[i+1]; do { if (node->visframe == r_visframecount) break; node->visframe = r_visframecount; node = node->parent; } while (node); } } } //temporary void SWR_DrawBeam(entity_t *e) { particle_t p; vec3_t o1, o2; vec3_t dir; int len; VectorSubtract(e->origin, e->oldorigin, dir); VectorCopy(e->oldorigin, o1); len = VectorNormalize(dir); p.alpha = 1; p.color = 15; for (; len>=0; len--) { VectorAdd(o1, dir, o2); D_DrawSparkTrans (&p, o1, o2, 0); VectorCopy(o2, o1); } } /* ============= R_DrawEntitiesOnList ============= */ void SWR_DrawEntitiesOnList (void) { extern cvar_t gl_part_flame; int i, j; int lnum; alight_t lighting; // FIXME: remove and do real lighting float lightvec[3] = {-1, 0, 0}; vec3_t dist; float add; if (!r_drawentities.value) return; for (i=0 ; ikeynum == (cl.viewentity[r_refdef.currentplayernum]?cl.viewentity[r_refdef.currentplayernum]:(cl.playernum[r_refdef.currentplayernum]+1))) continue; // if (cl.viewentity[r_refdef.currentplayernum] && currententity->keynum == cl.viewentity[r_refdef.currentplayernum]) // continue; if (!Cam_DrawPlayer(0, currententity->keynum-1)) continue; } if (currententity->flags & Q2RF_BEAM) { SWR_DrawBeam(currententity); continue; } if (!currententity->model) continue; if (cls.allow_anyparticles || currententity->visframe) //allowed or static { if (gl_part_flame.value) { if (currententity->model->engineflags & MDLF_ENGULPHS) continue; } } switch (currententity->model->type) { case mod_sprite: VectorCopy (currententity->origin, r_entorigin); VectorSubtract (r_origin, r_entorigin, modelorg); R_DrawSprite (); break; case mod_alias: VectorCopy (currententity->origin, r_entorigin); VectorSubtract (r_origin, r_entorigin, modelorg); // see if the bounding box lets us trivially reject, also sets // trivial accept status if (R_AliasCheckBBox ()) { float *org; extern cvar_t r_fullbrightSkins; extern cvar_t r_fb_models; float fb = r_fullbrightSkins.value; if (fb > cls.allow_fbskins) fb = cls.allow_fbskins; if (fb < 0) fb = 0; if (currententity->flags & Q2RF_WEAPONMODEL) org = cl.viewent[r_refdef.currentplayernum].origin; else org = currententity->origin; if (fb >= 1 && r_fb_models.value) { lighting.ambientlight = 4096; lighting.shadelight = 4096; lighting.plightvec = lightvec; } else { j = SWR_LightPoint (org); lighting.ambientlight = j+fb * 120; lighting.shadelight = j+fb * 120; lighting.plightvec = lightvec; for (lnum=0 ; lnum 0) lighting.ambientlight += add; } } // clamp lighting so it doesn't overbright as much if (lighting.ambientlight > 128) lighting.ambientlight = 128; if (lighting.ambientlight + lighting.shadelight > 192) lighting.shadelight = 192 - lighting.ambientlight; } R_AliasDrawModel (&lighting); } break; default: break; } } } /* ============= R_BmodelCheckBBox ============= */ int R_BmodelCheckBBox (model_t *clmodel, float *minmaxs) { int i, *pindex, clipflags; vec3_t acceptpt, rejectpt; double d; clipflags = 0; if (currententity->angles[0] || currententity->angles[1] || currententity->angles[2]) { for (i=0 ; i<4 ; i++) { d = DotProduct (currententity->origin, view_clipplanes[i].normal); d -= view_clipplanes[i].dist; if (d <= -clmodel->radius) return BMODEL_FULLY_CLIPPED; if (d <= clmodel->radius) clipflags |= (1<nodes; while (1) { if (node->visframe != r_visframecount) return NULL; // not visible at all if (node->contents != -1) { if (node->contents != Q2CONTENTS_SOLID) return node; // we've reached a non-solid leaf, so it's // visible and not BSP clipped return NULL; // in solid, so not visible } splitplane = node->plane; sides = BOX_ON_PLANE_SIDE(mins, maxs, splitplane); if (sides == 3) return node; // this is the splitter // not split yet; recurse down the contacted side if (sides & 1) node = node->children[0]; else node = node->children[1]; } } void RotatedBBox (vec3_t mins, vec3_t maxs, vec3_t angles, vec3_t tmins, vec3_t tmaxs) { vec3_t tmp, v; int i, j; vec3_t forward, right, up; if (!angles[0] && !angles[1] && !angles[2]) { VectorCopy (mins, tmins); VectorCopy (maxs, tmaxs); return; } for (i=0 ; i<3 ; i++) { tmins[i] = 99999; tmaxs[i] = -99999; } AngleVectors (angles, forward, right, up); for ( i = 0; i < 8; i++ ) { if ( i & 1 ) tmp[0] = mins[0]; else tmp[0] = maxs[0]; if ( i & 2 ) tmp[1] = mins[1]; else tmp[1] = maxs[1]; if ( i & 4 ) tmp[2] = mins[2]; else tmp[2] = maxs[2]; VectorScale (forward, tmp[0], v); VectorMA (v, -tmp[1], right, v); VectorMA (v, tmp[2], up, v); for (j=0 ; j<3 ; j++) { if (v[j] < tmins[j]) tmins[j] = v[j]; if (v[j] > tmaxs[j]) tmaxs[j] = v[j]; } } } /* ============= R_DrawBEntitiesOnList ============= */ void R_DrawBEntitiesOnList (void) { int i, j, k, clipflags; vec3_t oldorigin; model_t *clmodel; float minmaxs[6]; vec3_t mins, maxs; mnode_t *topnode; model_t *currentmodel; if (!r_drawentities.value) return; VectorCopy (modelorg, oldorigin); insubmodel = true; r_dlightframecount = r_framecount; for (i=0 ; imodel) continue; if (currententity->flags & Q2RF_BEAM) continue; switch (currententity->model->type) { case mod_brush: if (cl.worldmodel->fromgame == fg_quake2) { currentmodel = currententity->model; if (!currentmodel) continue; if (currentmodel->nummodelsurfaces == 0) continue; // clip brush only // if ( currententity->flags & RF_BEAM ) // continue; // if (currentmodel->type != mod_brush) // continue; // see if the bounding box lets us trivially reject, also sets // trivial accept status RotatedBBox (currentmodel->mins, currentmodel->maxs, currententity->angles, mins, maxs); VectorAdd (mins, currententity->origin, minmaxs); VectorAdd (maxs, currententity->origin, (minmaxs+3)); clipflags = R_BmodelCheckBBox (currentmodel, minmaxs); if (clipflags == BMODEL_FULLY_CLIPPED) continue; // off the edge of the screen topnode = R_FindTopnode (minmaxs, minmaxs+3); if (!topnode) continue; // no part in a visible leaf VectorCopy (currententity->origin, r_entorigin); VectorSubtract (r_origin, r_entorigin, modelorg); r_pcurrentvertbase = currentmodel->vertexes; // FIXME: stop transforming twice R_RotateBmodel (); // calculate dynamic lighting for bmodel // R_PushDlights (currentmodel); currententity->topnode = r_pefragtopnode = topnode; if (topnode->contents == -1) { // not a leaf; has to be clipped to the world BSP r_clipflags = clipflags; R_DrawSolidClippedSubmodelPolygons (currentmodel); } else { // falls entirely in one leaf, so we just put all the // edges in the edge list and let 1/z sorting handle // drawing order R_DrawSubmodelPolygons (currentmodel, clipflags);//, topnode); } r_pefragtopnode = NULL; // put back world rotation and frustum clipping // FIXME: R_RotateBmodel should just work off base_vxx VectorCopy (base_vpn, vpn); VectorCopy (base_vup, vup); VectorCopy (base_vright, vright); VectorCopy (oldorigin, modelorg); R_TransformFrustum (); } else //q1/hl levels { clmodel = currententity->model; // see if the bounding box lets us trivially reject, also sets // trivial accept status for (j=0 ; j<3 ; j++) { minmaxs[j] = currententity->origin[j] + clmodel->mins[j]; minmaxs[3+j] = currententity->origin[j] + clmodel->maxs[j]; } clipflags = R_BmodelCheckBBox (clmodel, minmaxs); if (clipflags != BMODEL_FULLY_CLIPPED) { VectorCopy (currententity->origin, r_entorigin); VectorSubtract (r_origin, r_entorigin, modelorg); // FIXME: is this needed? VectorCopy (modelorg, r_worldmodelorg); r_pcurrentvertbase = clmodel->vertexes; // FIXME: stop transforming twice R_RotateBmodel (); // calculate dynamic lighting for bmodel if it's not an // instanced model if (clmodel->firstmodelsurface != 0) { for (k=0 ; knodes + clmodel->hulls[0].firstclipnode); } } // if the driver wants polygons, deliver those. Z-buffering is on // at this point, so no clipping to the world tree is needed, just // frustum clipping if (r_drawpolys | r_drawculledpolys) { R_ZDrawSubmodelPolys (clmodel); } else { if (cl.worldmodel->fromgame == fg_quake2) { r_pefragtopnode = R_FindTopnode (minmaxs, minmaxs+3); if (r_pefragtopnode) { currententity->topnode = r_pefragtopnode; if (r_pefragtopnode->contents == -1) { // not a leaf; has to be clipped to the world BSP r_clipflags = clipflags; R_DrawSolidClippedSubmodelPolygons (clmodel); } else { // falls entirely in one leaf, so we just put all the // edges in the edge list and let 1/z sorting handle // drawing order R_DrawSubmodelPolygons (clmodel, clipflags); } currententity->topnode = NULL; } } else { r_pefragtopnode = NULL; for (j=0 ; j<3 ; j++) { r_emins[j] = minmaxs[j]; r_emaxs[j] = minmaxs[3+j]; } R_Q1BSP_SplitEntityOnNode2 (cl.worldmodel->nodes); if (r_pefragtopnode) { currententity->topnode = r_pefragtopnode; if (r_pefragtopnode->contents >= 0) { // not a leaf; has to be clipped to the world BSP r_clipflags = clipflags; R_DrawSolidClippedSubmodelPolygons (clmodel); } else { // falls entirely in one leaf, so we just put all the // edges in the edge list and let 1/z sorting handle // drawing order R_DrawSubmodelPolygons (clmodel, clipflags); } currententity->topnode = NULL; } } } // put back world rotation and frustum clipping // FIXME: R_RotateBmodel should just work off base_vxx VectorCopy (base_vpn, vpn); VectorCopy (base_vup, vup); VectorCopy (base_vright, vright); VectorCopy (base_modelorg, modelorg); VectorCopy (oldorigin, modelorg); R_TransformFrustum (); } } break; default: break; } } insubmodel = false; } /* ================ R_EdgeDrawing ================ */ void R_EdgeDrawing (void) { edge_t ledges[NUMSTACKEDGES + ((CACHE_SIZE - 1) / sizeof(edge_t)) + 1]; surf_t lsurfs[NUMSTACKSURFACES + ((CACHE_SIZE - 1) / sizeof(surf_t)) + 1]; if (auxedges) { r_edges = auxedges; } else { r_edges = (edge_t *) (((long)&ledges[0] + CACHE_SIZE - 1) & ~(CACHE_SIZE - 1)); } if (r_surfsonstack) { surfaces = (surf_t *) (((long)&lsurfs[0] + CACHE_SIZE - 1) & ~(CACHE_SIZE - 1)); surf_max = &surfaces[r_cnumsurfs]; // surface 0 doesn't really exist; it's just a dummy because index 0 // is used to indicate no edge attached to surface surfaces--; R_SurfacePatch (); } R_BeginEdgeFrame (); if (r_dspeeds.value) { rw_time1 = Sys_DoubleTime (); } R_RenderWorld (); if (r_drawculledpolys) R_ScanEdges (); // only the world can be drawn back to front with no z reads or compares, just // z writes, so have the driver turn z compares on now D_TurnZOn (); if (r_dspeeds.value) { rw_time2 = Sys_DoubleTime (); db_time1 = rw_time2; } R_DrawBEntitiesOnList (); if (r_dspeeds.value) { db_time2 = Sys_DoubleTime (); se_time1 = db_time2; } if (!r_dspeeds.value) { S_ExtraUpdate (); // don't let sound get messed up if going slow } if (!(r_drawpolys | r_drawculledpolys)) R_ScanEdges (); SWR_DrawAlphaSurfaces(); } void R_ApplySIRDAlgorithum(void); qboolean r_dosirds = true; /* ================ R_RenderView r_refdef must be set before the first call ================ */ void SWR_RenderView_ (void) { qbyte warpbuffer[WARP_WIDTH * WARP_HEIGHT]; r_warpbuffer = warpbuffer; r_dosirds = r_sirds.value; #ifdef FISH if (ffov.value && cls.allow_fish) //THAT's HORRIBLE! r_dosirds = false; #endif if (r_timegraph.value || r_speeds.value || r_dspeeds.value) r_time1 = Sys_DoubleTime (); SWR_SetupFrame (); if (r_refdef.flags & 1) { D_ClearDepth(); SWR_DrawEntitiesOnList (); return; } #ifdef PASSAGES SetVisibilityByPassages (); #else SWR_MarkLeaves (); // done here so we know if we're in water #endif // make FDIV fast. This reduces timing precision after we've been running for a // while, so we don't do it globally. This also sets chop mode, and we do it // here so that setup stuff like the refresh area calculations match what's // done in screen.c Sys_LowFPPrecision (); if (!r_worldentity.model || !cl.worldmodel) Sys_Error ("R_RenderView: NULL worldmodel"); if (!r_dspeeds.value) { S_ExtraUpdate (); // don't let sound get messed up if going slow } R_EdgeDrawing (); if (!r_dspeeds.value) { VID_UnlockBuffer (); S_ExtraUpdate (); // don't let sound get messed up if going slow VID_LockBuffer (); } if (r_dspeeds.value) { se_time2 = Sys_DoubleTime (); de_time1 = se_time2; } SWR_DrawEntitiesOnList (); if (r_dspeeds.value) { de_time2 = Sys_DoubleTime (); dv_time1 = de_time2; } if (r_dspeeds.value) { dv_time2 = Sys_DoubleTime (); dp_time1 = Sys_DoubleTime (); } P_DrawParticles (); if (r_dspeeds.value) dp_time2 = Sys_DoubleTime (); if (r_dosirds) { R_ApplySIRDAlgorithum(); } else if (r_dowarp) D_WarpScreen (); V_SetContentsColor (r_viewleaf->contents); if (r_timegraph.value) R_TimeGraph (); if (r_netgraph.value) SWR_NetGraph (); if (r_zgraph.value) R_ZGraph (); if (r_aliasstats.value) R_PrintAliasStats (); if (r_speeds.value) R_PrintTimes (); if (r_dspeeds.value) R_PrintDSpeeds (); if (r_reportsurfout.value && r_outofsurfaces) Con_Printf ("Short %d surfaces\n", r_outofsurfaces); if (r_reportedgeout.value && r_outofedges) Con_Printf ("Short roughly %d edges\n", r_outofedges * 2 / 3); // back to high floating-point precision Sys_HighFPPrecision (); } void SWR_RenderView (void) { int dummy; int delta; delta = (qbyte *)&dummy - r_stack_start; if (delta < -10000 || delta > 10000) Sys_Error ("R_RenderView: called without enough stack"); if ( Hunk_LowMark() & 3 ) Sys_Error ("Hunk is missaligned"); if ( (long)(&dummy) & 3 ) Sys_Error ("Stack is missaligned"); if ( (long)(&r_warpbuffer) & 3 ) Sys_Error ("Globals are missaligned"); SWR_RenderView_ (); } /* ================ R_InitTurb ================ */ void R_InitTurb (void) { int i; for (i=0 ; i>= 1; mask &= (mask << b); } else { mask &= (mask << (b >> 1)); mask >>= b; b >>= 1; } } return p; } #endif static int R_SIRDZFunc(int sub) { int e; //special case the sky. if (sub == R_SIRD_ZofSky) return 0; #if id386 && defined(_MSC_VER) e = sub; //calculate the log (base 2) of the number. In other //words the index of the highest set bit. bsr is undefined //if it's input is 0, so special case that. if (e!=0) { __asm { mov ebx, e bsr eax, ebx mov e, eax } } #else e = UShortLog(sub); #endif //clip the exponent if (e < R_SIRDIgnoreExponents) return 0; // based on the power, shift the z so that // it's as high as it can get while still staying // under 0x100 if (e > 8) { sub >>= (e-8); } else { if (e < 8) { sub <<= (8-e); } } // Lower the power of the number, this helps scaling and removes // small z values. e -= R_SIRDIgnoreExponents; // contruct the height value. The power is used as the primary calculator, // and then the extra bits are used to offset. In this way you // get more detail than just the log of the z value, and it works // as a pretty good approximation of it. e *= R_SIRDstepsPerExponent; e += ((sub * R_SIRDstepsPerExponent) >> 8); //make sure we stay under maximum height. return ((e<=R_SIRDmaxDiff)? e : R_SIRDmaxDiff ); } #if 0 void R_ApplyFog(void) { // test code for fog, the real implementation should use a lookup table qbyte *pbuf; short *zbuf; extern short *d_pzbuffer; int y, x; float v; for (y=0 ; y=0; y--) { curz = (d_pzbuffer + (vid.width * y)); oldz = (d_pzbuffer + (vid.width * ((y*WARP_HEIGHT)/vid.height) )); k = (zinc * (vid.width-1)); for (x=vid.width-1; x>=0; x--) { curz[x] = oldz[k >> 16]; k -= zinc; } } } //SIRDify each line for (y=0; y