#include "quakedef.h" #include "com_mesh.h" extern model_t *loadmodel; extern char loadname[]; qboolean r_loadbumpmapping; extern cvar_t dpcompat_psa_ungroup; extern cvar_t r_noframegrouplerp; //Common loader function. void Mod_DoCRC(model_t *mod, char *buffer, int buffersize) { #ifndef SERVERONLY //we've got to have this bit if (loadmodel->engineflags & MDLF_DOCRC) { unsigned short crc; qbyte *p; int len; char st[40]; QCRC_Init(&crc); for (len = buffersize, p = buffer; len; len--, p++) QCRC_ProcessByte(&crc, *p); sprintf(st, "%d", (int) crc); Info_SetValueForKey (cls.userinfo[0], (loadmodel->engineflags & MDLF_PLAYER) ? pmodel_name : emodel_name, st, sizeof(cls.userinfo[0])); if (cls.state >= ca_connected) { CL_SendClientCommand(true, "setinfo %s %d", (loadmodel->engineflags & MDLF_PLAYER) ? pmodel_name : emodel_name, (int)crc); } if (!(loadmodel->engineflags & MDLF_PLAYER)) { //eyes loadmodel->tainted = (crc != 6967); } } #endif } #if 1 #ifdef _WIN32 #include #else #include #endif extern cvar_t gl_part_flame, r_fullbrightSkins, r_fb_models; extern cvar_t r_noaliasshadows; extern cvar_t r_skin_overlays; extern cvar_t mod_md3flags; typedef struct { char *name; float furthestallowedextremety; //this field is the combined max-min square, added together //note that while this allows you to move models about a little, you cannot resize the visible part } clampedmodel_t; //these should be rounded up slightly. //really this is only to catch spiked models. This doesn't prevent more visible models, just bigger ones. clampedmodel_t clampedmodel[] = { {"maps/b_bh100.bsp", 3440}, {"progs/player.mdl", 22497}, {"progs/eyes.mdl", 755}, {"progs/gib1.mdl", 374}, {"progs/gib2.mdl", 1779}, {"progs/gib3.mdl", 2066}, {"progs/bolt2.mdl", 1160}, {"progs/end1.mdl", 764}, {"progs/end2.mdl", 981}, {"progs/end3.mdl", 851}, {"progs/end4.mdl", 903}, {"progs/g_shot.mdl", 3444}, {"progs/g_nail.mdl", 2234}, {"progs/g_nail2.mdl", 3660}, {"progs/g_rock.mdl", 3441}, {"progs/g_rock2.mdl", 3660}, {"progs/g_light.mdl", 2698}, {"progs/invisibl.mdl", 196}, {"progs/quaddama.mdl", 2353}, {"progs/invulner.mdl", 2746}, {"progs/suit.mdl", 3057}, {"progs/missile.mdl", 416}, {"progs/grenade.mdl", 473}, {"progs/spike.mdl", 112}, {"progs/s_spike.mdl", 112}, {"progs/backpack.mdl", 1117}, {"progs/armor.mdl", 2919}, {"progs/s_bubble.spr", 100}, {"progs/s_explod.spr", 1000}, //and now TF models #ifdef warningmsg #pragma warningmsg("FIXME: these are placeholders") #endif {"progs/disp.mdl", 3000}, {"progs/tf_flag.mdl", 3000}, {"progs/tf_stan.mdl", 3000}, {"progs/turrbase.mdl", 3000}, {"progs/turrgun.mdl", 3000} }; void Mod_AccumulateTextureVectors(vecV_t *vc, vec2_t *tc, vec3_t *nv, vec3_t *sv, vec3_t *tv, index_t *idx, int numidx) { int i; float *v0, *v1, *v2; float *tc0, *tc1, *tc2; vec3_t d1, d2; float td1, td2; vec3_t norm, t, s; vec3_t temp; for (i = 0; i < numidx; i += 3) { //this is the stuff we're working from v0 = vc[idx[i+0]]; v1 = vc[idx[i+1]]; v2 = vc[idx[i+2]]; tc0 = tc[idx[i+0]]; tc1 = tc[idx[i+1]]; tc2 = tc[idx[i+2]]; //calc perpendicular directions VectorSubtract(v1, v0, d1); VectorSubtract(v2, v0, d2); //calculate s as the pependicular of the t dir td1 = tc1[1] - tc0[1]; td2 = tc2[1] - tc0[1]; s[0] = td1 * d2[0] - td2 * d1[0]; s[1] = td1 * d2[1] - td2 * d1[1]; s[2] = td1 * d2[2] - td2 * d1[2]; //calculate t as the pependicular of the s dir td1 = tc1[0] - tc0[0]; td2 = tc2[0] - tc0[0]; t[0] = td1 * d2[0] - td2 * d1[0]; t[1] = td1 * d2[1] - td2 * d1[1]; t[2] = td1 * d2[2] - td2 * d1[2]; //the surface might be a back face and thus textured backwards //calc the normal twice and compare. norm[0] = d2[1] * d1[2] - d2[2] * d1[1]; norm[1] = d2[2] * d1[0] - d2[0] * d1[2]; norm[2] = d2[0] * d1[1] - d2[1] * d1[0]; CrossProduct(t, s, temp); if (DotProduct(temp, norm) < 0) { VectorNegate(s, s); VectorNegate(t, t); } //and we're done, accumulate the result VectorAdd(sv[idx[i+0]], s, sv[idx[i+0]]); VectorAdd(sv[idx[i+1]], s, sv[idx[i+1]]); VectorAdd(sv[idx[i+2]], s, sv[idx[i+2]]); VectorAdd(tv[idx[i+0]], t, tv[idx[i+0]]); VectorAdd(tv[idx[i+1]], t, tv[idx[i+1]]); VectorAdd(tv[idx[i+2]], t, tv[idx[i+2]]); } } void Mod_AccumulateMeshTextureVectors(mesh_t *m) { Mod_AccumulateTextureVectors(m->xyz_array, m->st_array, m->normals_array, m->snormals_array, m->tnormals_array, m->indexes, m->numindexes); } void Mod_NormaliseTextureVectors(vec3_t *n, vec3_t *s, vec3_t *t, int v) { int i; float f; vec3_t tmp; for (i = 0; i < v; i++) { f = -DotProduct(s[i], n[i]); VectorMA(s[i], f, n[i], tmp); VectorNormalize2(tmp, s[i]); f = -DotProduct(t[i], n[i]); VectorMA(t[i], f, n[i], tmp); VectorNormalize2(tmp, t[i]); } } #ifdef SKELETALMODELS static void GenMatrixPosQuat4Scale(vec3_t pos, vec4_t quat, vec3_t scale, float result[12]) { float xx, xy, xz, xw, yy, yz, yw, zz, zw; float x2, y2, z2; float s; x2 = quat[0] + quat[0]; y2 = quat[1] + quat[1]; z2 = quat[2] + quat[2]; xx = quat[0] * x2; xy = quat[0] * y2; xz = quat[0] * z2; yy = quat[1] * y2; yz = quat[1] * z2; zz = quat[2] * z2; xw = quat[3] * x2; yw = quat[3] * y2; zw = quat[3] * z2; s = scale[0]; result[0*4+0] = s*(1.0f - (yy + zz)); result[1*4+0] = s*(xy + zw); result[2*4+0] = s*(xz - yw); s = scale[1]; result[0*4+1] = s*(xy - zw); result[1*4+1] = s*(1.0f - (xx + zz)); result[2*4+1] = s*(yz + xw); s = scale[2]; result[0*4+2] = s*(xz + yw); result[1*4+2] = s*(yz - xw); result[2*4+2] = s*(1.0f - (xx + yy)); result[0*4+3] = pos[0]; result[1*4+3] = pos[1]; result[2*4+3] = pos[2]; } /*like above, but guess the quat.w*/ static void GenMatrixPosQuat3Scale(vec3_t pos, vec3_t quat3, vec3_t scale, float result[12]) { vec4_t quat4; float term = 1 - DotProduct(quat3, quat3); if (term < 0) quat4[3] = 0; else quat4[3] = - (float) sqrt(term); VectorCopy(quat3, quat4); GenMatrixPosQuat4Scale(pos, quat4, scale, result); } static void GenMatrix(float x, float y, float z, float qx, float qy, float qz, float result[12]) { float qw; { //figure out qw float term = 1 - (qx*qx) - (qy*qy) - (qz*qz); if (term < 0) qw = 0; else qw = - (float) sqrt(term); } { //generate the matrix /* float xx = qx * qx; float xy = qx * qy; float xz = qx * qz; float xw = qx * qw; float yy = qy * qy; float yz = qy * qz; float yw = qy * qw; float zz = qz * qz; float zw = qz * qw; result[0*4+0] = 1 - 2 * ( yy + zz ); result[0*4+1] = 2 * ( xy - zw ); result[0*4+2] = 2 * ( xz + yw ); result[0*4+3] = x; result[1*4+0] = 2 * ( xy + zw ); result[1*4+1] = 1 - 2 * ( xx + zz ); result[1*4+2] = 2 * ( yz - xw ); result[1*4+3] = y; result[2*4+0] = 2 * ( xz - yw ); result[2*4+1] = 2 * ( yz + xw ); result[2*4+2] = 1 - 2 * ( xx + yy ); result[2*4+3] = z; */ float xx, xy, xz, xw, yy, yz, yw, zz, zw; float x2, y2, z2; x2 = qx + qx; y2 = qy + qy; z2 = qz + qz; xx = qx * x2; xy = qx * y2; xz = qx * z2; yy = qy * y2; yz = qy * z2; zz = qz * z2; xw = qw * x2; yw = qw * y2; zw = qw * z2; result[0*4+0] = 1.0f - (yy + zz); result[1*4+0] = xy + zw; result[2*4+0] = xz - yw; result[0*4+1] = xy - zw; result[1*4+1] = 1.0f - (xx + zz); result[2*4+1] = yz + xw; result[0*4+2] = xz + yw; result[1*4+2] = yz - xw; result[2*4+2] = 1.0f - (xx + yy); result[0*4+3] = x; result[1*4+3] = y; result[2*4+3] = z; } } static void PSKGenMatrix(float x, float y, float z, float qx, float qy, float qz, float qw, float result[12]) { float xx, xy, xz, xw, yy, yz, yw, zz, zw; float x2, y2, z2; x2 = qx + qx; y2 = qy + qy; z2 = qz + qz; xx = qx * x2; xy = qx * y2; xz = qx * z2; yy = qy * y2; yz = qy * z2; zz = qz * z2; xw = qw * x2; yw = qw * y2; zw = qw * z2; result[0*4+0] = 1.0f - (yy + zz); result[1*4+0] = xy + zw; result[2*4+0] = xz - yw; result[0*4+1] = xy - zw; result[1*4+1] = 1.0f - (xx + zz); result[2*4+1] = yz + xw; result[0*4+2] = xz + yw; result[1*4+2] = yz - xw; result[2*4+2] = 1.0f - (xx + yy); result[0*4+3] = x; result[1*4+3] = y; result[2*4+3] = z; } #if 0 /*transforms some skeletal vecV_t values*/ static void Alias_TransformVerticies_V(float *bonepose, int vertcount, qbyte *bidx, float *weights, float *xyzin, float *fte_restrict xyzout) { int i; float *matrix; for (i = 0; i < vertcount; i++, xyzout+=sizeof(vecV_t)/sizeof(vec_t), xyzin+=sizeof(vecV_t)/sizeof(vec_t), bidx+=4, weights+=4) { matrix = &bonepose[12*bidx[0]]; xyzout[0] = weights[0] * (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + xyzin[3] * matrix[ 3]); xyzout[1] = weights[0] * (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + xyzin[3] * matrix[ 7]); xyzout[2] = weights[0] * (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + xyzin[3] * matrix[11]); if (bidx[1] != ~(qbyte)0) { matrix = &bonepose[12*bidx[1]]; xyzout[0] += weights[1] * (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + xyzin[3] * matrix[ 3]); xyzout[1] += weights[1] * (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + xyzin[3] * matrix[ 7]); xyzout[2] += weights[1] * (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + xyzin[3] * matrix[11]); if (bidx[2] != ~(qbyte)0) { matrix = &bonepose[12*bidx[2]]; xyzout[0] += weights[2] * (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + xyzin[3] * matrix[ 3]); xyzout[1] += weights[2] * (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + xyzin[3] * matrix[ 7]); xyzout[2] += weights[2] * (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + xyzin[3] * matrix[11]); if (bidx[3] != ~(qbyte)0) { matrix = &bonepose[12*bidx[3]]; xyzout[0] += weights[3] * (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + xyzin[3] * matrix[ 3]); xyzout[1] += weights[3] * (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + xyzin[3] * matrix[ 7]); xyzout[2] += weights[3] * (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + xyzin[3] * matrix[11]); } } } } } #endif /*transforms some skeletal vecV_t values*/ static void Alias_TransformVerticies_VN(float *bonepose, int vertcount, qbyte *bidx, float *weights, float *xyzin, float *fte_restrict xyzout, float *normin, float *fte_restrict normout) { int i, j; float *matrix; float mat[12]; for (i = 0; i < vertcount; i++, xyzout+=sizeof(vecV_t)/sizeof(vec_t), xyzin+=sizeof(vecV_t)/sizeof(vec_t), normout+=sizeof(vec3_t)/sizeof(vec_t), normin+=sizeof(vec3_t)/sizeof(vec_t), bidx+=4, weights+=4) { matrix = &bonepose[12*bidx[0]]; for (j = 0; j < 12; j++) mat[j] = weights[0] * matrix[j]; if (weights[1]) { matrix = &bonepose[12*bidx[1]]; for (j = 0; j < 12; j++) mat[j] += weights[1] * matrix[j]; if (weights[2]) { matrix = &bonepose[12*bidx[2]]; for (j = 0; j < 12; j++) mat[j] += weights[2] * matrix[j]; if (weights[3]) { matrix = &bonepose[12*bidx[3]]; for (j = 0; j < 12; j++) mat[j] += weights[3] * matrix[j]; } } } matrix = mat; xyzout[0] = (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + matrix[ 3]); xyzout[1] = (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + matrix[ 7]); xyzout[2] = (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + matrix[11]); normout[0] = (normin[0] * matrix[0] + normin[1] * matrix[1] + normin[2] * matrix[ 2]); normout[1] = (normin[0] * matrix[4] + normin[1] * matrix[5] + normin[2] * matrix[ 6]); normout[2] = (normin[0] * matrix[8] + normin[1] * matrix[9] + normin[2] * matrix[10]); } } #if 0 /*transforms some skeletal vec3_t values*/ static void Alias_TransformVerticies_3(float *fte_restrict bonepose, int vertcount, qbyte *bidx, float *weights, float *xyzin, float *fte_restrict xyzout) { int i; float *matrix; for (i = 0; i < vertcount; i++, xyzout+=sizeof(vec3_t)/sizeof(vec_t), xyzin+=sizeof(vec3_t)/sizeof(vec_t), bidx+=4, weights+=4) { matrix = &bonepose[12*bidx[0]]; xyzout[0] = weights[0] * (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + xyzin[3] * matrix[ 3]); xyzout[1] = weights[0] * (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + xyzin[3] * matrix[ 7]); xyzout[2] = weights[0] * (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + xyzin[3] * matrix[11]); if (bidx[1] != ~(qbyte)0) { matrix = &bonepose[12*bidx[1]]; xyzout[0] += weights[1] * (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + xyzin[3] * matrix[ 3]); xyzout[1] += weights[1] * (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + xyzin[3] * matrix[ 7]); xyzout[2] += weights[1] * (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + xyzin[3] * matrix[11]); if (bidx[2] != ~(qbyte)0) { matrix = &bonepose[12*bidx[2]]; xyzout[0] += weights[2] * (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + xyzin[3] * matrix[ 3]); xyzout[1] += weights[2] * (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + xyzin[3] * matrix[ 7]); xyzout[2] += weights[2] * (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + xyzin[3] * matrix[11]); if (bidx[3] != ~(qbyte)0) { matrix = &bonepose[12*bidx[3]]; xyzout[0] += weights[3] * (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + xyzin[3] * matrix[ 3]); xyzout[1] += weights[3] * (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + xyzin[3] * matrix[ 7]); xyzout[2] += weights[3] * (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + xyzin[3] * matrix[11]); } } } } } #endif static void Alias_TransformVerticies_SW(float *bonepose, galisskeletaltransforms_t *weights, int numweights, vecV_t *xyzout, vec3_t *normout) { int i; float *out, *matrix; galisskeletaltransforms_t *v = weights; #ifndef SERVERONLY float *normo; if (normout) { for (i = 0;i < numweights;i++, v++) { out = xyzout[v->vertexindex]; normo = normout[v->vertexindex]; matrix = bonepose+v->boneindex*12; // FIXME: this can very easily be optimized with SSE or 3DNow out[0] += v->org[0] * matrix[0] + v->org[1] * matrix[1] + v->org[2] * matrix[ 2] + v->org[3] * matrix[ 3]; out[1] += v->org[0] * matrix[4] + v->org[1] * matrix[5] + v->org[2] * matrix[ 6] + v->org[3] * matrix[ 7]; out[2] += v->org[0] * matrix[8] + v->org[1] * matrix[9] + v->org[2] * matrix[10] + v->org[3] * matrix[11]; normo[0] += v->normal[0] * matrix[0] + v->normal[1] * matrix[1] + v->normal[2] * matrix[ 2]; normo[1] += v->normal[0] * matrix[4] + v->normal[1] * matrix[5] + v->normal[2] * matrix[ 6]; normo[2] += v->normal[0] * matrix[8] + v->normal[1] * matrix[9] + v->normal[2] * matrix[10]; } } else #elif defined(_DEBUG) if (normout) Sys_Error("norms error"); #endif { for (i = 0;i < numweights;i++, v++) { out = xyzout[v->vertexindex]; matrix = bonepose+v->boneindex*12; // FIXME: this can very easily be optimized with SSE or 3DNow out[0] += v->org[0] * matrix[0] + v->org[1] * matrix[1] + v->org[2] * matrix[ 2] + v->org[3] * matrix[ 3]; out[1] += v->org[0] * matrix[4] + v->org[1] * matrix[5] + v->org[2] * matrix[ 6] + v->org[3] * matrix[ 7]; out[2] += v->org[0] * matrix[8] + v->org[1] * matrix[9] + v->org[2] * matrix[10] + v->org[3] * matrix[11]; } } } static float Alias_CalculateSkeletalNormals(galiasinfo_t *model) { #ifndef SERVERONLY //servers don't need normals. except maybe for tracing... but hey. The normal is calculated on a per-triangle basis. #define TriangleNormal(a,b,c,n) ( \ (n)[0] = ((a)[1] - (b)[1]) * ((c)[2] - (b)[2]) - ((a)[2] - (b)[2]) * ((c)[1] - (b)[1]), \ (n)[1] = ((a)[2] - (b)[2]) * ((c)[0] - (b)[0]) - ((a)[0] - (b)[0]) * ((c)[2] - (b)[2]), \ (n)[2] = ((a)[0] - (b)[0]) * ((c)[1] - (b)[1]) - ((a)[1] - (b)[1]) * ((c)[0] - (b)[0]) \ ) int i, j; vecV_t *xyz; vec3_t *normals; int *mvert; float *inversepose; galiasinfo_t *next; vec3_t tn; vec3_t d1, d2; index_t *idx; float *bonepose = NULL; float angle; float maxvdist = 0, d, maxbdist = 0; float absmatrix[MAX_BONES*12]; float bonedist[MAX_BONES]; int modnum = 0; int bcmodnum = -1; int vcmodnum = -1; while (model) { int numbones = model->numbones; galisskeletaltransforms_t *v = (galisskeletaltransforms_t*)((char*)model+model->ofsswtransforms); int numweights = model->numswtransforms; int numverts = model->numverts; if (model->nextsurf) next = (galiasinfo_t*)((char*)model + model->nextsurf); else next = NULL; xyz = Z_Malloc(numverts*sizeof(vecV_t)); normals = Z_Malloc(numverts*sizeof(vec3_t)); inversepose = Z_Malloc(numbones*sizeof(float)*9); mvert = Z_Malloc(numverts*sizeof(*mvert)); if (bcmodnum != model->shares_bones) { galiasgroup_t *g; galiasbone_t *bones = (galiasbone_t *)((char*)model + model->ofsbones); bcmodnum = model->shares_bones; if (model->baseframeofs) bonepose = (float*)((char*)model + model->baseframeofs); else { if (!model->groups) return 0; g = (galiasgroup_t*)((char*)model+model->groupofs); if (g->numposes < 1) return 0; bonepose = (float*)((char*)g+g->poseofs); if (g->isheirachical) { /*needs to be an absolute skeleton*/ for (i = 0; i < model->numbones; i++) { if (bones[i].parent >= 0) R_ConcatTransforms((void*)(absmatrix + bones[i].parent*12), (void*)(bonepose+i*12), (void*)(absmatrix+i*12)); else for (j = 0;j < 12;j++) //parentless absmatrix[i*12+j] = (bonepose)[i*12+j]; } bonepose = absmatrix; } } /*calculate the bone sizes (assuming the bones are strung up and hanging or such)*/ for (i = 0; i < model->numbones; i++) { vec3_t d; float *b; b = bonepose + i*12; d[0] = b[3]; d[1] = b[7]; d[2] = b[11]; if (bones[i].parent >= 0) { b = bonepose + bones[i].parent*12; d[0] -= b[3]; d[1] -= b[7]; d[2] -= b[11]; } bonedist[i] = Length(d); if (bones[i].parent >= 0) bonedist[i] += bonedist[bones[i].parent]; if (maxbdist < bonedist[i]) maxbdist = bonedist[i]; } for (i = 0; i < numbones; i++) Matrix3x4_InvertTo3x3(bonepose+i*12, inversepose+i*9); } for (i = 0; i < numweights; i++) { d = Length(v[i].org); if (maxvdist < d) maxvdist = d; } //build the actual base pose positions Alias_TransformVerticies_SW(bonepose, v, numweights, xyz, NULL); //work out which verticies are identical //this is needed as two verts can have same origin but different tex coords //without this, we end up with a seam that splits the normals each side on arms, etc for (i = 0; i < numverts; i++) { mvert[i] = i; for (j = 0; j < i; j++) { if ( xyz[i][0] == xyz[j][0] && xyz[i][1] == xyz[j][1] && xyz[i][2] == xyz[j][2]) { mvert[i] = j; break; } } } //use that base pose to calculate the normals memset(normals, 0, numverts*sizeof(vec3_t)); vcmodnum = modnum; idx = (index_t*)((char*)model + model->ofs_indexes); //calculate the triangle normal and accumulate them for (i = 0; i < model->numindexes; i+=3, idx+=3) { TriangleNormal(xyz[idx[0]], xyz[idx[1]], xyz[idx[2]], tn); //note that tn is relative to the size of the triangle //Imagine a cube, each side made of two triangles VectorSubtract(xyz[idx[1]], xyz[idx[0]], d1); VectorSubtract(xyz[idx[2]], xyz[idx[0]], d2); angle = acos(DotProduct(d1, d2)/(Length(d1)*Length(d2))); VectorMA(normals[mvert[idx[0]]], angle, tn, normals[mvert[idx[0]]]); VectorSubtract(xyz[idx[0]], xyz[idx[1]], d1); VectorSubtract(xyz[idx[2]], xyz[idx[1]], d2); angle = acos(DotProduct(d1, d2)/(Length(d1)*Length(d2))); VectorMA(normals[mvert[idx[1]]], angle, tn, normals[mvert[idx[1]]]); VectorSubtract(xyz[idx[0]], xyz[idx[2]], d1); VectorSubtract(xyz[idx[1]], xyz[idx[2]], d2); angle = acos(DotProduct(d1, d2)/(Length(d1)*Length(d2))); VectorMA(normals[mvert[idx[2]]], angle, tn, normals[mvert[idx[2]]]); } /*skip over each additional surface that shares the same verts*/ for(;;) { if (next && next->shares_verts == vcmodnum) { modnum++; model = next; if (model->nextsurf) next = (galiasinfo_t*)((char*)model + model->nextsurf); else next = NULL; } else break; } //the normals are not normalized yet. for (i = 0; i < numverts; i++) { VectorNormalize(normals[i]); } for (i = 0; i < numweights; i++, v++) { v->normal[0] = DotProduct(normals[mvert[v->vertexindex]], inversepose+9*v->boneindex+0) * v->org[3]; v->normal[1] = DotProduct(normals[mvert[v->vertexindex]], inversepose+9*v->boneindex+3) * v->org[3]; v->normal[2] = DotProduct(normals[mvert[v->vertexindex]], inversepose+9*v->boneindex+6) * v->org[3]; } if (model->ofs_skel_norm) memcpy((char*)model + model->ofs_skel_norm, normals, numverts*sizeof(vec3_t)); //FIXME: save off the xyz+normals for this base pose as an optimisation for world objects. Z_Free(inversepose); Z_Free(normals); Z_Free(xyz); Z_Free(mvert); model = next; modnum++; } return maxvdist+maxbdist; #else return 0; #endif } static int Alias_BuildLerps(float plerp[4], float *pose[4], int numbones, galiasgroup_t *g1, galiasgroup_t *g2, float lerpfrac, float fg1time, float fg2time) { int frame1; int frame2; float mlerp; //minor lerp, poses within a group. int l = 0; if (g1 == g2) lerpfrac = 0; if (fg1time < 0) fg1time = 0; mlerp = (fg1time)*g1->rate; frame1=mlerp; frame2=frame1+1; mlerp-=frame1; if (g1->loop) { frame1=frame1%g1->numposes; frame2=frame2%g1->numposes; } else { frame1=(frame1>g1->numposes-1)?g1->numposes-1:frame1; frame2=(frame2>g1->numposes-1)?g1->numposes-1:frame2; } if (frame1 == frame2 || r_noframegrouplerp.ival) mlerp = 0; plerp[l] = (1-mlerp)*(1-lerpfrac); if (plerp[l]>0) pose[l++] = (float *)((char *)g1 + g1->poseofs + sizeof(float)*numbones*12*frame1); plerp[l] = (mlerp)*(1-lerpfrac); if (plerp[l]>0) pose[l++] = (float *)((char *)g1 + g1->poseofs + sizeof(float)*numbones*12*frame2); if (lerpfrac) { if (fg2time < 0) fg2time = 0; mlerp = (fg2time)*g2->rate; frame1=mlerp; frame2=frame1+1; mlerp-=frame1; if (g2->loop) { frame1=frame1%g2->numposes; frame2=frame2%g2->numposes; } else { frame1=(frame1>g2->numposes-1)?g2->numposes-1:frame1; frame2=(frame2>g2->numposes-1)?g2->numposes-1:frame2; } if (frame1 == frame2 || r_noframegrouplerp.ival) mlerp = 0; plerp[l] = (1-mlerp)*(lerpfrac); if (plerp[l]>0) pose[l++] = (float *)((char *)g2 + g2->poseofs + sizeof(float)*numbones*12*frame1); plerp[l] = (mlerp)*(lerpfrac); if (plerp[l]>0) pose[l++] = (float *)((char *)g2 + g2->poseofs + sizeof(float)*numbones*12*frame2); } return l; } //ignores any skeletal objects int Alias_GetBoneRelations(galiasinfo_t *inf, framestate_t *fstate, float *result, int firstbone, int lastbones) { #ifdef SKELETALMODELS if (inf->numbones) { galiasgroup_t *g1, *g2; float *matrix; //the matrix for a single bone in a single pose. int b, k; //counters float *pose[4]; //the per-bone matricies (one for each pose) float plerp[4]; //the ammount of that pose to use (must combine to 1) int numposes = 0; int frame1, frame2; float f1time, f2time; float f2ness; int bonegroup; int cbone = 0; int endbone; if (lastbones > inf->numbones) lastbones = inf->numbones; if (!lastbones) return 0; for (bonegroup = 0; bonegroup < FS_COUNT; bonegroup++) { endbone = fstate->g[bonegroup].endbone; if (bonegroup == FS_COUNT-1 || endbone > lastbones) endbone = lastbones; if (endbone == cbone) continue; frame1 = fstate->g[bonegroup].frame[0]; frame2 = fstate->g[bonegroup].frame[1]; f1time = fstate->g[bonegroup].frametime[0]; f2time = fstate->g[bonegroup].frametime[1]; f2ness = fstate->g[bonegroup].lerpfrac; //FIXME: fixup these framestates earlier, because this just isn't nice if (frame1 < 0 || frame1 >= inf->groups) { if (frame2 < 0 || frame2 >= inf->groups || f2ness == 0) { if (bonegroup != FS_COUNT-1) continue; //just ignore this group //there's no escaping it, both are bad. use the base pose f2ness = 0; frame1 = frame2 = 0; } else { //kill it, just use frame2 f2ness = 1; frame1 = frame2; } } else { if (frame2 < 0 || frame2 >= inf->groups) { //kill this anim f2ness = 0; frame2 = frame1; } } //the higher level merges old/new anims, but we still need to blend between automated frame-groups. g1 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*frame1); g2 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*frame2); if (!g1->isheirachical) return 0; if (!g2->isheirachical) g2 = g1; numposes = Alias_BuildLerps(plerp, pose, inf->numbones, g1, g2, f2ness, f1time, f2time); if (numposes == 1) { memcpy(result, pose[0]+cbone*12, (lastbones-cbone)*12*sizeof(float)); result += (lastbones-cbone)*12; cbone = lastbones; } else { //set up the identity matrix for (; cbone < lastbones; cbone++) { //set up the per-bone transform matrix for (k = 0;k < 12;k++) result[k] = 0; for (b = 0;b < numposes;b++) { matrix = pose[b] + cbone*12; for (k = 0;k < 12;k++) result[k] += matrix[k] * plerp[b]; } result += 12; } } } return cbone; } #endif return 0; } //_may_ write into bonepose, return value is the real result. obtains absolute values float *Alias_GetBonePositions(galiasinfo_t *inf, framestate_t *fstate, float *buffer, int buffersize, qboolean renderable) { #ifdef SKELETALMODELS float relationsbuf[MAX_BONES][12]; float *relations = NULL; galiasbone_t *bones = (galiasbone_t *)((char*)inf+inf->ofsbones); int numbones; if (buffersize < inf->numbones) numbones = 0; else if (fstate->bonestate && fstate->bonecount >= inf->numbones) { relations = fstate->bonestate; numbones = inf->numbones; if (fstate->boneabs) { /*we may need to invert by the inverse of the base pose to get the bones into the proper positions*/ if (!inf->numswtransforms && renderable) { int i; for (i = 0; i < inf->numbones; i++) { R_ConcatTransforms((void*)(relations + i*12), (void*)(bones[i].inverse), (void*)(buffer + i*12)); } return buffer; } return relations; } } else { numbones = Alias_GetBoneRelations(inf, fstate, (float*)relationsbuf, 0, inf->numbones); if (numbones == inf->numbones) relations = (float*)relationsbuf; } if (relations) { int i, k; if (!inf->numswtransforms && renderable) { float absbuf[MAX_BONES][12]; for (i = 0; i < numbones; i++) { if (bones[i].parent >= 0) R_ConcatTransforms((void*)(absbuf[bones[i].parent]), (void*)((float*)relations+i*12), (void*)absbuf[i]); else for (k = 0;k < 12;k++) //parentless absbuf[i][k] = ((float*)relations)[i*12+k]; R_ConcatTransforms((void*)absbuf[i], (void*)bones[i].inverse, (void*)(buffer+i*12)); } } else { for (i = 0; i < numbones; i++) { if (bones[i].parent >= 0) R_ConcatTransforms((void*)(buffer + bones[i].parent*12), (void*)((float*)relations+i*12), (void*)(buffer+i*12)); else for (k = 0;k < 12;k++) //parentless buffer[i*12+k] = ((float*)relations)[i*12+k]; } } return buffer; } else { int i, k; int l=0; float plerp[4]; float *pose[4]; int numposes; int f; float lerpfrac = fstate->g[FS_REG].lerpfrac; galiasgroup_t *g1, *g2; //galiasbone_t *bones = (galiasbone_t *)((char*)inf+inf->ofsbones); //unsed variable if (buffersize < inf->numbones) return NULL; f = fstate->g[FS_REG].frame[0]; if (f < 0 || f >= inf->groups) f = 0; g1 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*bound(0, f, inf->groups-1)); f = fstate->g[FS_REG].frame[1]; if (f < 0 || f >= inf->groups) g2 = g1; else g2 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*bound(0, f, inf->groups-1)); if (g2->isheirachical) g2 = g1; numposes = Alias_BuildLerps(plerp, pose, inf->numbones, g1, g2, lerpfrac, fstate->g[FS_REG].frametime[0], fstate->g[FS_REG].frametime[1]); { //this is not hierachal, using base frames is not a good idea. //just blend the poses here if (numposes == 1) return pose[0]; else if (numposes == 2) { for (i = 0; i < inf->numbones*12; i++) { ((float*)buffer)[i] = pose[0][i]*plerp[0] + pose[1][i]*plerp[1]; } } else { for (i = 0; i < inf->numbones; i++) { for (l = 0; l < 12; l++) buffer[i*12+l] = 0; for (k = 0; k < numposes; k++) { for (l = 0; l < 12; l++) buffer[i*12+l] += pose[k][i*12+l] * plerp[k]; } } } } return buffer; } #endif return NULL; } static void R_LerpBones(float *plerp, float **pose, int poses, galiasbone_t *bones, int bonecount, float bonepose[MAX_BONES][12]) { int i, k, b; float *matrix, m[12]; if (poses == 1) { // vertex weighted skeletal // interpolate matrices and concatenate them to their parents for (i = 0;i < bonecount;i++) { matrix = pose[0] + i*12; if (bones[i].parent >= 0) R_ConcatTransforms((void*)bonepose[bones[i].parent], (void*)matrix, (void*)bonepose[i]); else for (k = 0;k < 12;k++) //parentless bonepose[i][k] = matrix[k]; } } else { // vertex weighted skeletal // interpolate matrices and concatenate them to their parents for (i = 0;i < bonecount;i++) { for (k = 0;k < 12;k++) m[k] = 0; for (b = 0;b < poses;b++) { matrix = pose[b] + i*12; for (k = 0;k < 12;k++) m[k] += matrix[k] * plerp[b]; } if (bones[i].parent >= 0) R_ConcatTransforms((void*)bonepose[bones[i].parent], (void*)m, (void*)bonepose[i]); else for (k = 0;k < 12;k++) //parentless bonepose[i][k] = m[k]; } } } #endif #if defined(D3DQUAKE) || defined(GLQUAKE) struct { int numcolours; avec4_t *colours; int numcoords; vecV_t *coords; int numnorm; vec3_t *norm; int surfnum; entity_t *ent; #ifdef SKELETALMODELS float bonepose[MAX_BONES*12]; float *usebonepose; int bonecount; #endif vecV_t *acoords1; vecV_t *acoords2; vec3_t *anorm; vec3_t *anorms; vec3_t *anormt; vbo_t vbo; vbo_t *vbop; } meshcache; //#define SSE_INTRINSICS #ifdef SSE_INTRINSICS #include #endif void R_LightArraysByte_BGR(const entity_t *entity, vecV_t *coords, byte_vec4_t *colours, int vertcount, vec3_t *normals) { int i; int c; float l; byte_vec4_t ambientlightb; byte_vec4_t shadelightb; const float *lightdir = entity->light_dir; for (i = 0; i < 3; i++) { l = entity->light_avg[2-i]*255; ambientlightb[i] = bound(0, l, 255); l = entity->light_range[2-i]*255; shadelightb[i] = bound(0, l, 255); } if (ambientlightb[0] == shadelightb[0] && ambientlightb[1] == shadelightb[1] && ambientlightb[2] == shadelightb[2]) { for (i = vertcount-1; i >= 0; i--) { *(int*)colours[i] = *(int*)ambientlightb; // colours[i][0] = ambientlightb[0]; // colours[i][1] = ambientlightb[1]; // colours[i][2] = ambientlightb[2]; } } else { for (i = vertcount-1; i >= 0; i--) { l = DotProduct(normals[i], lightdir); c = l*shadelightb[0]; c += ambientlightb[0]; colours[i][0] = bound(0, c, 255); c = l*shadelightb[1]; c += ambientlightb[1]; colours[i][1] = bound(0, c, 255); c = l*shadelightb[2]; c += ambientlightb[2]; colours[i][2] = bound(0, c, 255); } } } void R_LightArrays(const entity_t *entity, vecV_t *coords, avec4_t *colours, int vertcount, vec3_t *normals, float scale) { extern cvar_t r_vertexdlights; int i; float l; //float *lightdir = currententity->light_dir; //unused variable if (!entity->light_range[0] && !entity->light_range[1] && !entity->light_range[2]) { for (i = vertcount-1; i >= 0; i--) { colours[i][0] = entity->light_avg[0]; colours[i][1] = entity->light_avg[1]; colours[i][2] = entity->light_avg[2]; } } else { vec3_t la, lr; VectorScale(entity->light_avg, scale, la); VectorScale(entity->light_range, scale, lr); #ifdef SSE_INTRINSICS __m128 va, vs, vl, vr; va = _mm_load_ps(ambientlight); vs = _mm_load_ps(shadelight); va.m128_f32[3] = 0; vs.m128_f32[3] = 1; #endif /*dotproduct will return a value between 1 and -1, so increase the ambient to be correct for normals facing away from the light*/ for (i = vertcount-1; i >= 0; i--) { l = DotProduct(normals[i], entity->light_dir); #ifdef SSE_INTRINSICS vl = _mm_load1_ps(&l); vr = _mm_mul_ss(va,vl); vr = _mm_add_ss(vr,vs); _mm_storeu_ps(colours[i], vr); //stomp on colour[i][3] (will be set to 1) #else colours[i][0] = l*lr[0]+la[0]; colours[i][1] = l*lr[1]+la[1]; colours[i][2] = l*lr[2]+la[2]; #endif } } if (r_vertexdlights.ival && r_dynamic.ival) { unsigned int lno, v; vec3_t dir, rel; float dot, d, a; //don't include world lights for (lno = rtlights_first; lno < RTL_FIRST; lno++) { if (cl_dlights[lno].radius) { VectorSubtract (cl_dlights[lno].origin, entity->origin, dir); if (Length(dir)>cl_dlights[lno].radius+256) //far out man! continue; rel[0] = -DotProduct(dir, entity->axis[0]); rel[1] = -DotProduct(dir, entity->axis[1]); rel[2] = -DotProduct(dir, entity->axis[2]); for (v = 0; v < vertcount; v++) { VectorSubtract(coords[v], rel, dir); dot = DotProduct(dir, normals[v]); if (dot>0) { d = DotProduct(dir, dir); a = 1/d; if (a>0) { a *= 10000000*dot/sqrt(d); colours[v][0] += a*cl_dlights[lno].color[0]; colours[v][1] += a*cl_dlights[lno].color[1]; colours[v][2] += a*cl_dlights[lno].color[2]; } } } } } } } static void R_LerpFrames(mesh_t *mesh, galiaspose_t *p1, galiaspose_t *p2, float lerp, float expand) { extern cvar_t r_nolerp; // r_nolightdir is unused float blerp = 1-lerp; int i; vecV_t *p1v, *p2v; vec3_t *p1n, *p2n; vec3_t *p1s, *p2s; vec3_t *p1t, *p2t; p1v = (vecV_t *)((char *)p1 + p1->ofsverts); p2v = (vecV_t *)((char *)p2 + p2->ofsverts); p1n = (vec3_t *)((char *)p1 + p1->ofsnormals); p2n = (vec3_t *)((char *)p2 + p2->ofsnormals); p1s = (vec3_t *)((char *)p1 + p1->ofssvector); p2s = (vec3_t *)((char *)p2 + p2->ofssvector); p1t = (vec3_t *)((char *)p1 + p1->ofstvector); p2t = (vec3_t *)((char *)p2 + p2->ofstvector); mesh->snormals_array = blerp>0.5?p2s:p1s; //never lerp mesh->tnormals_array = blerp>0.5?p2t:p1t; //never lerp mesh->colors4f_array = NULL; //not generated if (p1v == p2v || r_nolerp.value || !blerp) { mesh->normals_array = p1n; mesh->snormals_array = p1s; mesh->tnormals_array = p1t; if (expand) { for (i = 0; i < mesh->numvertexes; i++) { mesh->xyz_array[i][0] = p1v[i][0] + p1n[i][0]*expand; mesh->xyz_array[i][1] = p1v[i][1] + p1n[i][1]*expand; mesh->xyz_array[i][2] = p1v[i][2] + p1n[i][2]*expand; } return; } else mesh->xyz_array = p1v; } else { for (i = 0; i < mesh->numvertexes; i++) { mesh->normals_array[i][0] = p1n[i][0]*lerp + p2n[i][0]*blerp; mesh->normals_array[i][1] = p1n[i][1]*lerp + p2n[i][1]*blerp; mesh->normals_array[i][2] = p1n[i][2]*lerp + p2n[i][2]*blerp; mesh->xyz_array[i][0] = p1v[i][0]*lerp + p2v[i][0]*blerp; mesh->xyz_array[i][1] = p1v[i][1]*lerp + p2v[i][1]*blerp; mesh->xyz_array[i][2] = p1v[i][2]*lerp + p2v[i][2]*blerp; } if (expand) { for (i = 0; i < mesh->numvertexes; i++) { mesh->xyz_array[i][0] += mesh->normals_array[i][0]*expand; mesh->xyz_array[i][1] += mesh->normals_array[i][1]*expand; mesh->xyz_array[i][2] += mesh->normals_array[i][2]*expand; } } } } #ifdef SKELETALMODELS #ifndef SERVERONLY static void Alias_BuildSkeletalMesh(mesh_t *mesh, float *bonepose, galiasinfo_t *inf) { galisskeletaltransforms_t *weights = (galisskeletaltransforms_t *)((char*)inf+inf->ofsswtransforms); int numweights = inf->numswtransforms; if (inf->ofs_skel_idx) { float *fte_restrict xyzout = mesh->xyz_array[0]; float *fte_restrict normout = mesh->normals_array[0]; qbyte *fte_restrict bidx = (qbyte*)((char*)inf + inf->ofs_skel_idx); float *fte_restrict xyzin = (float*)((char*)inf + inf->ofs_skel_xyz); float *fte_restrict normin = (float*)((char*)inf + inf->ofs_skel_norm); // float *fte_restrict svect = (float*)((char*)inf + inf->ofs_skel_svect); // float *fte_restrict tvect = (float*)((char*)inf + inf->ofs_skel_tvect); float *fte_restrict weight = (float*)((char*)inf + inf->ofs_skel_weight); Alias_TransformVerticies_VN(bonepose, inf->numverts, bidx, weight, xyzin, xyzout, normin, normout); // Alias_TransformVerticies_3(bonepose, inf->numverts, bidx, weight, svect, mesh->snormals_array[0]); // Alias_TransformVerticies_3(bonepose, inf->numverts, bidx, weight, tvect, mesh->tnormals_array[0]); } else { memset(mesh->xyz_array, 0, mesh->numvertexes*sizeof(vecV_t)); memset(mesh->normals_array, 0, mesh->numvertexes*sizeof(vec3_t)); Alias_TransformVerticies_SW(bonepose, weights, numweights, mesh->xyz_array, mesh->normals_array); } } #ifdef GLQUAKE #include "glquake.h" static void Alias_GLDrawSkeletalBones(galiasbone_t *bones, float *bonepose, int bonecount) { PPL_RevertToKnownState(); BE_SelectEntity(currententity); qglColor3f(1, 0, 0); { int i; int p; vec3_t org, dest; qglBegin(GL_LINES); for (i = 0; i < bonecount; i++) { p = bones[i].parent; if (p < 0) p = 0; qglVertex3f(bonepose[i*12+3], bonepose[i*12+7], bonepose[i*12+11]); qglVertex3f(bonepose[p*12+3], bonepose[p*12+7], bonepose[p*12+11]); } qglEnd(); qglColor3f(1, 1, 1); qglBegin(GL_LINES); for (i = 0; i < bonecount; i++) { p = bones[i].parent; if (p < 0) p = 0; org[0] = bonepose[i*12+3]; org[1] = bonepose[i*12+7]; org[2] = bonepose[i*12+11]; qglVertex3fv(org); qglVertex3f(bonepose[p*12+3], bonepose[p*12+7], bonepose[p*12+11]); dest[0] = org[0]+bonepose[i*12+0];dest[1] = org[1]+bonepose[i*12+1];dest[2] = org[2]+bonepose[i*12+2]; qglVertex3fv(org); qglVertex3fv(dest); qglVertex3fv(dest); qglVertex3f(bonepose[p*12+3], bonepose[p*12+7], bonepose[p*12+11]); dest[0] = org[0]+bonepose[i*12+4];dest[1] = org[1]+bonepose[i*12+5];dest[2] = org[2]+bonepose[i*12+6]; qglVertex3fv(org); qglVertex3fv(dest); qglVertex3fv(dest); qglVertex3f(bonepose[p*12+3], bonepose[p*12+7], bonepose[p*12+11]); dest[0] = org[0]+bonepose[i*12+8];dest[1] = org[1]+bonepose[i*12+9];dest[2] = org[2]+bonepose[i*12+10]; qglVertex3fv(org); qglVertex3fv(dest); qglVertex3fv(dest); qglVertex3f(bonepose[p*12+3], bonepose[p*12+7], bonepose[p*12+11]); } qglEnd(); // mesh->numindexes = 0; //don't draw this mesh, as that would obscure the bones. :( } } #endif //GLQUAKE #endif //!SERVERONLY #endif //SKELETALMODELS void Alias_FlushCache(void) { meshcache.ent = NULL; } void Alias_Shutdown(void) { if (meshcache.colours) BZ_Free(meshcache.colours); meshcache.colours = NULL; meshcache.numcolours = 0; if (meshcache.norm) BZ_Free(meshcache.norm); meshcache.norm = NULL; meshcache.numnorm = 0; if (meshcache.coords) BZ_Free(meshcache.coords); meshcache.coords = NULL; meshcache.numcoords = 0; } qboolean Alias_GAliasBuildMesh(mesh_t *mesh, vbo_t **vbop, galiasinfo_t *inf, int surfnum, entity_t *e, qboolean usebones) { extern cvar_t r_nolerp; galiasgroup_t *g1, *g2; int frame1; int frame2; float lerp; float fg1time; // float fg2time; if (!inf->groups) { Con_DPrintf("Model with no frames (%s)\n", e->model->name); return false; } if (meshcache.numcolours < inf->numverts) { if (meshcache.colours) BZ_Free(meshcache.colours); meshcache.colours = BZ_Malloc(sizeof(*meshcache.colours)*inf->numverts); meshcache.numcolours = inf->numverts; } if (meshcache.numnorm < inf->numverts) { if (meshcache.norm) BZ_Free(meshcache.norm); meshcache.norm = BZ_Malloc(sizeof(*meshcache.norm)*inf->numverts*3); meshcache.numnorm = inf->numverts; } if (meshcache.numcoords < inf->numverts) { if (meshcache.coords) BZ_Free(meshcache.coords); meshcache.coords = BZ_Malloc(sizeof(*meshcache.coords)*inf->numverts); meshcache.numcoords = inf->numverts; } mesh->numvertexes = inf->numverts; mesh->indexes = (index_t*)((char *)inf + inf->ofs_indexes); mesh->numindexes = inf->numindexes; mesh->st_array = (vec2_t*)((char *)inf + inf->ofs_st_array); mesh->trneighbors = (int *)((char *)inf + inf->ofs_trineighbours); mesh->colors4f_array = meshcache.colours; if (meshcache.surfnum == inf->shares_verts && meshcache.ent == e) { mesh->xyz_array = meshcache.acoords1; mesh->xyz2_array = meshcache.acoords2; mesh->normals_array = meshcache.anorm; mesh->snormals_array = meshcache.anorms; mesh->tnormals_array = meshcache.anormt; if (vbop) *vbop = meshcache.vbop; #ifdef SKELETALMODELS if (meshcache.usebonepose) { mesh->bonenums = (byte_vec4_t*)((char*)inf + inf->ofs_skel_idx); mesh->boneweights = (vec4_t*)((char*)inf + inf->ofs_skel_weight); mesh->bones = meshcache.usebonepose; mesh->numbones = inf->numbones; } #endif return false; //don't generate the new vertex positions. We still have them all. } meshcache.surfnum = inf->shares_verts; meshcache.ent = e; #ifndef SERVERONLY mesh->st_array = (vec2_t*)((char *)inf + inf->ofs_st_array); mesh->trneighbors = (int *)((char *)inf + inf->ofs_trineighbours); mesh->normals_array = meshcache.norm; mesh->snormals_array = meshcache.norm+meshcache.numnorm; mesh->tnormals_array = meshcache.norm+meshcache.numnorm*2; #endif mesh->xyz_array = meshcache.coords; //we don't support meshes with one pose skeletal and annother not. //we don't support meshes with one group skeletal and annother not. #ifdef SKELETALMODELS meshcache.usebonepose = NULL; meshcache.vbop = NULL; if (vbop) *vbop = NULL; if (inf->ofs_skel_xyz && !inf->ofs_skel_weight) { //if we have skeletal xyz info, but no skeletal weights, then its a partial model that cannot possibly be animated. meshcache.usebonepose = NULL; mesh->xyz_array = (vecV_t*)((char*)inf + inf->ofs_skel_xyz); mesh->xyz2_array = NULL; mesh->normals_array = (vec3_t*)((char*)inf + inf->ofs_skel_norm); mesh->snormals_array = (vec3_t*)((char*)inf + inf->ofs_skel_svect); mesh->tnormals_array = (vec3_t*)((char*)inf + inf->ofs_skel_tvect); if (vbop) { meshcache.vbo.indicies = inf->vboindicies; meshcache.vbo.indexcount = inf->numindexes; meshcache.vbo.vertcount = inf->numverts; meshcache.vbo.texcoord = inf->vbotexcoords; meshcache.vbo.coord = inf->vbo_skel_verts; memset(&meshcache.vbo.coord2, 0, sizeof(meshcache.vbo.coord2)); meshcache.vbo.normals = inf->vbo_skel_normals; meshcache.vbo.svector = inf->vbo_skel_svector; meshcache.vbo.tvector = inf->vbo_skel_tvector; meshcache.vbo.bonenums = inf->vbo_skel_bonenum; meshcache.vbo.boneweights = inf->vbo_skel_bweight; if (meshcache.vbo.indicies.dummy) *vbop = meshcache.vbop = &meshcache.vbo; } } else if (inf->numbones) { mesh->xyz2_array = NULL; meshcache.usebonepose = Alias_GetBonePositions(inf, &e->framestate, meshcache.bonepose, MAX_BONES, true); if (e->fatness || !inf->ofs_skel_idx || !usebones || inf->numswtransforms) { //software bone animation //there are two ways to animate a skeleton, one is to transform Alias_BuildSkeletalMesh(mesh, meshcache.usebonepose, inf); #ifdef PEXT_FATNESS if (e->fatness) { int i; for (i = 0; i < mesh->numvertexes; i++) { VectorMA(mesh->xyz_array[i], e->fatness, mesh->normals_array[i], meshcache.coords[i]); } mesh->xyz_array = meshcache.coords; } #endif #ifdef GLQUAKE if (!inf->numswtransforms && qrenderer == QR_OPENGL) { Alias_GLDrawSkeletalBones((galiasbone_t*)((char*)inf + inf->ofsbones), (float *)meshcache.usebonepose, inf->numbones); } #endif meshcache.usebonepose = NULL; } else { //hardware bone animation mesh->xyz_array = (vecV_t*)((char*)inf + inf->ofs_skel_xyz); mesh->normals_array = (vec3_t*)((char*)inf + inf->ofs_skel_norm); mesh->snormals_array = (vec3_t*)((char*)inf + inf->ofs_skel_svect); mesh->tnormals_array = (vec3_t*)((char*)inf + inf->ofs_skel_tvect); } } else #endif { frame1 = e->framestate.g[FS_REG].frame[0]; frame2 = e->framestate.g[FS_REG].frame[1]; lerp = e->framestate.g[FS_REG].lerpfrac; fg1time = e->framestate.g[FS_REG].frametime[0]; //fg2time = e->framestate.g[FS_REG].frametime[1]; if (frame1 < 0) { Con_DPrintf("Negative frame (%s)\n", e->model->name); frame1 = 0; } if (frame2 < 0) { Con_DPrintf("Negative frame (%s)\n", e->model->name); frame2 = frame1; } if (frame1 >= inf->groups) { Con_DPrintf("Too high frame %i (%s)\n", frame1, e->model->name); frame1 %= inf->groups; } if (frame2 >= inf->groups) { Con_DPrintf("Too high frame %i (%s)\n", frame2, e->model->name); frame2 = frame1; } if (lerp <= 0) frame2 = frame1; else if (lerp >= 1) frame1 = frame2; g1 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*frame1); g2 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*frame2); if (g1 == g2) //lerping within group is only done if not changing group { lerp = fg1time*g1->rate; if (lerp < 0) lerp = 0; //hrm frame1=lerp; frame2=frame1+1; lerp-=frame1; if (r_noframegrouplerp.ival) lerp = 0; if (g1->loop) { frame1=frame1%g1->numposes; frame2=frame2%g1->numposes; } else { frame1=(frame1>g1->numposes-1)?g1->numposes-1:frame1; frame2=(frame2>g1->numposes-1)?g1->numposes-1:frame2; } } else //don't bother with a four way lerp. Yeah, this will produce jerkyness with models with just framegroups. { frame1=0; frame2=0; } if (r_shadow_realtime_world.ival || r_shadow_realtime_dlight.ival || qrenderer != QR_OPENGL) { mesh->xyz2_array = NULL; mesh->xyz_blendw[0] = 1; mesh->xyz_blendw[1] = 0; R_LerpFrames(mesh, (galiaspose_t *)((char *)g1 + g1->poseofs + sizeof(galiaspose_t)*frame1), (galiaspose_t *)((char *)g2 + g2->poseofs + sizeof(galiaspose_t)*frame2), 1-lerp, e->fatness); } else { galiaspose_t *p1 = (galiaspose_t *)((char *)g1 + g1->poseofs + sizeof(galiaspose_t)*frame1); galiaspose_t *p2 = (galiaspose_t *)((char *)g2 + g2->poseofs + sizeof(galiaspose_t)*frame2); mesh->normals_array = (vec3_t *)((char *)p1 + p1->ofsnormals); mesh->snormals_array = (vec3_t *)((char *)p1 + p1->ofssvector); mesh->tnormals_array = (vec3_t *)((char *)p1 + p1->ofstvector); meshcache.vbo.indicies = inf->vboindicies; meshcache.vbo.indexcount = inf->numindexes; meshcache.vbo.vertcount = inf->numverts; meshcache.vbo.texcoord = inf->vbotexcoords; meshcache.vbo.normals = p1->vbonormals; meshcache.vbo.svector = p1->vbosvector; meshcache.vbo.tvector = p1->vbotvector; if (p1 == p2 || r_nolerp.ival) { meshcache.vbo.coord = p1->vboverts; memset(&meshcache.vbo.coord2, 0, sizeof(meshcache.vbo.coord2)); mesh->xyz_array = (vecV_t *)((char *)p1 + p1->ofsverts); mesh->xyz2_array = NULL; } else { meshcache.vbo.coord = p1->vboverts; meshcache.vbo.coord2 = p2->vboverts; mesh->xyz_blendw[0] = 1-lerp; mesh->xyz_blendw[1] = lerp; mesh->xyz_array = (vecV_t *)((char *)p1 + p1->ofsverts); mesh->xyz2_array = (vecV_t *)((char *)p2 + p2->ofsverts); } if (vbop && meshcache.vbo.indicies.dummy) *vbop = meshcache.vbop = &meshcache.vbo; } } meshcache.acoords1 = mesh->xyz_array; meshcache.acoords2 = mesh->xyz2_array; meshcache.anorm = mesh->normals_array; meshcache.anorms = mesh->snormals_array; meshcache.anormt = mesh->tnormals_array; if (vbop) meshcache.vbop = *vbop; #ifdef SKELETALMODELS if (meshcache.usebonepose) { mesh->bonenums = (byte_vec4_t*)((char*)inf + inf->ofs_skel_idx); mesh->boneweights = (vec4_t*)((char*)inf + inf->ofs_skel_weight); mesh->bones = meshcache.usebonepose; mesh->numbones = inf->numbones; } #endif return true; //to allow the mesh to be dlighted. } #endif //The whole reason why model loading is supported in the server. qboolean Mod_Trace(model_t *model, int forcehullnum, int frame, vec3_t axis[3], vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, unsigned int contentsmask, trace_t *trace) { galiasinfo_t *mod = Mod_Extradata(model); galiasgroup_t *group; galiaspose_t *pose; int i; float *p1, *p2, *p3; vec3_t edge1, edge2, edge3; vec3_t normal; vec3_t edgenormal; float planedist; float diststart, distend; float frac; // float temp; vec3_t impactpoint; vecV_t *posedata; index_t *indexes; int surfnum = 0; int cursurfnum = -1; while(mod) { indexes = (index_t*)((char*)mod + mod->ofs_indexes); group = (galiasgroup_t*)((char*)mod + mod->groupofs); pose = (galiaspose_t*)((char*)&group[0] + group[0].poseofs); posedata = (vecV_t*)((char*)pose + pose->ofsverts); #ifdef SKELETALMODELS if (mod->numbones && mod->shares_verts != cursurfnum) { float bonepose[MAX_BONES][12]; posedata = alloca(mod->numverts*sizeof(vecV_t)); frac = 1; if (group->isheirachical) { if (mod->shares_bones != cursurfnum) R_LerpBones(&frac, (float**)posedata, 1, (galiasbone_t*)((char*)mod + mod->ofsbones), mod->numbones, bonepose); Alias_TransformVerticies_SW((float*)bonepose, (galisskeletaltransforms_t*)((char*)mod + mod->ofsswtransforms), mod->numswtransforms, posedata, NULL); } else Alias_TransformVerticies_SW((float*)posedata, (galisskeletaltransforms_t*)((char*)mod + mod->ofsswtransforms), mod->numswtransforms, posedata, NULL); cursurfnum = mod->shares_verts; } #endif for (i = 0; i < mod->numindexes; i+=3) { p1 = posedata[indexes[i+0]]; p2 = posedata[indexes[i+1]]; p3 = posedata[indexes[i+2]]; VectorSubtract(p1, p2, edge1); VectorSubtract(p3, p2, edge2); CrossProduct(edge1, edge2, normal); planedist = DotProduct(p1, normal); diststart = DotProduct(start, normal); if (diststart <= planedist) continue; //start on back side. distend = DotProduct(end, normal); if (distend >= planedist) continue; //end on front side (as must start - doesn't cross). frac = (diststart - planedist) / (diststart-distend); if (frac >= trace->fraction) //already found one closer. continue; impactpoint[0] = start[0] + frac*(end[0] - start[0]); impactpoint[1] = start[1] + frac*(end[1] - start[1]); impactpoint[2] = start[2] + frac*(end[2] - start[2]); // temp = DotProduct(impactpoint, normal)-planedist; CrossProduct(edge1, normal, edgenormal); // temp = DotProduct(impactpoint, edgenormal)-DotProduct(p2, edgenormal); if (DotProduct(impactpoint, edgenormal) > DotProduct(p2, edgenormal)) continue; CrossProduct(normal, edge2, edgenormal); if (DotProduct(impactpoint, edgenormal) > DotProduct(p3, edgenormal)) continue; VectorSubtract(p1, p3, edge3); CrossProduct(normal, edge3, edgenormal); if (DotProduct(impactpoint, edgenormal) > DotProduct(p1, edgenormal)) continue; trace->fraction = frac; VectorCopy(impactpoint, trace->endpos); VectorCopy(normal, trace->plane.normal); } if (mod->nextsurf) mod = (galiasinfo_t*)((char*)mod + mod->nextsurf); else mod = NULL; surfnum++; } trace->allsolid = false; return trace->fraction != 1; } static void Mod_ClampModelSize(model_t *mod) { #ifndef SERVERONLY int i; float rad=0, axis; axis = (mod->maxs[0] - mod->mins[0]); rad += axis*axis; axis = (mod->maxs[1] - mod->mins[1]); rad += axis*axis; axis = (mod->maxs[2] - mod->mins[2]); rad += axis*axis; mod->tainted = false; if (mod->engineflags & MDLF_DOCRC) { if (!strcmp(mod->name, "progs/eyes.mdl")) { //this is checked elsewhere to make sure the crc matches (this is to make sure the crc check was actually called) if (mod->type != mod_alias || mod->fromgame != fg_quake || mod->flags) mod->tainted = true; } } mod->clampscale = 1; for (i = 0; i < sizeof(clampedmodel)/sizeof(clampedmodel[0]); i++) { if (!strcmp(mod->name, clampedmodel[i].name)) { if (rad > clampedmodel[i].furthestallowedextremety) { axis = clampedmodel[i].furthestallowedextremety; mod->clampscale = axis/rad; Con_DPrintf("\"%s\" will be clamped.\n", mod->name); } return; } } Con_DPrintf("Don't know what size to clamp \"%s\" to (size:%f).\n", mod->name, rad); #endif } #ifdef GLQUAKE static int R_FindTriangleWithEdge (index_t *indexes, int numtris, int start, int end, int ignore) { int i; int match, count; count = 0; match = -1; for (i = 0; i < numtris; i++, indexes += 3) { if ( (indexes[0] == start && indexes[1] == end) || (indexes[1] == start && indexes[2] == end) || (indexes[2] == start && indexes[0] == end) ) { if (i != ignore) match = i; count++; } else if ( (indexes[1] == start && indexes[0] == end) || (indexes[2] == start && indexes[1] == end) || (indexes[0] == start && indexes[2] == end) ) { count++; } } // detect edges shared by three triangles and make them seams if (count > 2) match = -1; return match; } static void Mod_BuildTriangleNeighbours ( int *neighbours, index_t *indexes, int numtris ) { int i, *n; index_t *index; for (i = 0, index = indexes, n = neighbours; i < numtris; i++, index += 3, n += 3) { n[0] = R_FindTriangleWithEdge (indexes, numtris, index[1], index[0], i); n[1] = R_FindTriangleWithEdge (indexes, numtris, index[2], index[1], i); n[2] = R_FindTriangleWithEdge (indexes, numtris, index[0], index[2], i); } } #endif void Mod_CompileTriangleNeighbours(galiasinfo_t *galias) { #ifdef GLQUAKE if (qrenderer != QR_OPENGL) return; if (r_shadow_realtime_dlight_shadows.ival || r_shadow_realtime_world_shadows.ival) { int *neighbours; neighbours = Hunk_Alloc(sizeof(int)*galias->numindexes/3*3); galias->ofs_trineighbours = (qbyte *)neighbours - (qbyte *)galias; Mod_BuildTriangleNeighbours(neighbours, (index_t*)((char*)galias + galias->ofs_indexes), galias->numindexes/3); } #endif } typedef struct { int firstpose; int posecount; float fps; qboolean loop; char name[MAX_QPATH]; } frameinfo_t; static frameinfo_t *ParseFrameInfo(char *modelname, int *numgroups) { int count = 0; int maxcount = 0; char *line, *file; frameinfo_t *frames = NULL; line = file = FS_LoadMallocFile(va("%s.framegroups", modelname)); if (!file) return NULL; while(line && *line) { line = Cmd_TokenizeString(line, false, false); if (Cmd_Argc()) { if (count == maxcount) { maxcount += 32; frames = realloc(frames, sizeof(*frames)*maxcount); } frames[count].firstpose = atoi(Cmd_Argv(0)); frames[count].posecount = atoi(Cmd_Argv(1)); frames[count].fps = atof(Cmd_Argv(2)); frames[count].loop = !!atoi(Cmd_Argv(3)); Q_strncpyz(frames[count].name, Cmd_Argv(4), sizeof(frames[count].name)); count++; } } BZ_Free(file); *numgroups = count; return frames; } //called for non-skeletal model formats. void Mod_BuildTextureVectors(galiasinfo_t *galias) //vec3_t *vc, vec2_t *tc, vec3_t *nv, vec3_t *sv, vec3_t *tv, index_t *idx, int numidx, int numverts) { #ifndef SERVERONLY int i, p; galiasgroup_t *group; galiaspose_t *pose; vecV_t *vc; vec3_t *nv, *sv, *tv; vec2_t *tc; index_t *idx; int vbospace = 0; vbobctx_t vboctx; //don't fail on dedicated servers if (!BE_VBO_Begin) return; idx = (index_t*)((char*)galias + galias->ofs_indexes); tc = (vec2_t*)((char*)galias + galias->ofs_st_array); group = (galiasgroup_t*)((char*)galias + galias->groupofs); //determine the amount of space we need for our vbos. vbospace += sizeof(*tc) * galias->numverts; for (i = 0; i < galias->groups; i++) { vbospace += group[i].numposes * galias->numverts * (sizeof(vecV_t)+sizeof(vec3_t)*3); } BE_VBO_Begin(&vboctx, vbospace); BE_VBO_Data(&vboctx, tc, sizeof(*tc) * galias->numverts, &galias->vbotexcoords); for (i = 0; i < galias->groups; i++, group++) { pose = (galiaspose_t*)((char*)group + group->poseofs); for (p = 0; p < group->numposes; p++, pose++) { vc = (vecV_t *)((char*)pose + pose->ofsverts); nv = (vec3_t *)((char*)pose + pose->ofsnormals); if (pose->ofssvector != 0 && pose->ofstvector != 0) { sv = (vec3_t *)((char*)pose + pose->ofssvector); tv = (vec3_t *)((char*)pose + pose->ofstvector); Mod_AccumulateTextureVectors(vc, tc, nv, sv, tv, idx, galias->numindexes); Mod_NormaliseTextureVectors(nv, sv, tv, galias->numverts); } else { //shouldn't really happen... make error? sv = NULL; tv = NULL; } BE_VBO_Data(&vboctx, vc, sizeof(*vc) * galias->numverts, &pose->vboverts); BE_VBO_Data(&vboctx, nv, sizeof(*nv) * galias->numverts, &pose->vbonormals); BE_VBO_Data(&vboctx, sv, sizeof(*sv) * galias->numverts, &pose->vbosvector); BE_VBO_Data(&vboctx, tv, sizeof(*tv) * galias->numverts, &pose->vbotvector); } } BE_VBO_Finish(&vboctx, idx, sizeof(*idx) * galias->numindexes, &galias->vboindicies); #endif } #if defined(D3DQUAKE) || defined(GLQUAKE) /* ================= Mod_FloodFillSkin Fill background pixels so mipmapping doesn't have haloes - Ed ================= */ typedef struct { short x, y; } floodfill_t; // must be a power of 2 #define FLOODFILL_FIFO_SIZE 0x1000 #define FLOODFILL_FIFO_MASK (FLOODFILL_FIFO_SIZE - 1) #define FLOODFILL_STEP( off, dx, dy ) \ { \ if (pos[off] == fillcolor) \ { \ pos[off] = 255; \ fifo[inpt].x = x + (dx), fifo[inpt].y = y + (dy); \ inpt = (inpt + 1) & FLOODFILL_FIFO_MASK; \ } \ else if (pos[off] != 255) fdc = pos[off]; \ } void Mod_FloodFillSkin( qbyte *skin, int skinwidth, int skinheight ) { qbyte fillcolor = *skin; // assume this is the pixel to fill floodfill_t fifo[FLOODFILL_FIFO_SIZE]; int inpt = 0, outpt = 0; int filledcolor = -1; int i; if (filledcolor == -1) { filledcolor = 0; // attempt to find opaque black for (i = 0; i < 256; ++i) if (d_8to24rgbtable[i] == (255 << 0)) // alpha 1.0 { filledcolor = i; break; } } // can't fill to filled color or to transparent color (used as visited marker) if ((fillcolor == filledcolor) || (fillcolor == 255)) { //printf( "not filling skin from %d to %d\n", fillcolor, filledcolor ); return; } fifo[inpt].x = 0, fifo[inpt].y = 0; inpt = (inpt + 1) & FLOODFILL_FIFO_MASK; while (outpt != inpt) { int x = fifo[outpt].x, y = fifo[outpt].y; int fdc = filledcolor; qbyte *pos = &skin[x + skinwidth * y]; outpt = (outpt + 1) & FLOODFILL_FIFO_MASK; if (x > 0) FLOODFILL_STEP( -1, -1, 0 ); if (x < skinwidth - 1) FLOODFILL_STEP( 1, 1, 0 ); if (y > 0) FLOODFILL_STEP( -skinwidth, 0, -1 ); if (y < skinheight - 1) FLOODFILL_STEP( skinwidth, 0, 1 ); skin[x + skinwidth * y] = fdc; } } #endif //additional skin loading char ** skinfilelist; int skinfilecount; static qboolean VARGS Mod_TryAddSkin(const char *skinname, ...) { va_list argptr; char string[MAX_QPATH]; //make sure we don't add it twice int i; va_start (argptr, skinname); vsnprintf (string,sizeof(string)-1, skinname,argptr); va_end (argptr); string[MAX_QPATH-1] = '\0'; for (i = 0; i < skinfilecount; i++) { if (!strcmp(skinfilelist[i], string)) return true; //already added } if (!COM_FCheckExists(string)) return false; skinfilelist = BZ_Realloc(skinfilelist, sizeof(*skinfilelist)*(skinfilecount+1)); skinfilelist[skinfilecount] = Z_Malloc(strlen(string)+1); strcpy(skinfilelist[skinfilecount], string); skinfilecount++; return true; } int QDECL Mod_EnumerateSkins(const char *name, int size, void *param, void *spath) { Mod_TryAddSkin(name); return true; } int Mod_BuildSkinFileList(char *modelname) { int i; char skinfilename[MAX_QPATH]; //flush the old list for (i = 0; i < skinfilecount; i++) { Z_Free(skinfilelist[i]); skinfilelist[i] = NULL; } skinfilecount=0; COM_StripExtension(modelname, skinfilename, sizeof(skinfilename)); //try and add numbered skins, and then try fixed names. for (i = 0; ; i++) { if (!Mod_TryAddSkin("%s_%i.skin", modelname, i)) { if (i == 0) { if (!Mod_TryAddSkin("%s_default.skin", skinfilename, i)) break; } else if (i == 1) { if (!Mod_TryAddSkin("%s_blue.skin", skinfilename, i)) break; } else if (i == 2) { if (!Mod_TryAddSkin("%s_red.skin", skinfilename, i)) break; } else if (i == 3) { if (!Mod_TryAddSkin("%s_green.skin", skinfilename, i)) break; } else if (i == 4) { if (!Mod_TryAddSkin("%s_yellow.skin", skinfilename, i)) break; } else break; } } // if (strstr(modelname, "lower") || strstr(modelname, "upper") || strstr(modelname, "head")) // { COM_EnumerateFiles(va("%s_*.skin", modelname), Mod_EnumerateSkins, NULL); COM_EnumerateFiles(va("%s_*.skin", skinfilename), Mod_EnumerateSkins, NULL); // } // else // COM_EnumerateFiles("*.skin", Mod_EnumerateSkins, NULL); return skinfilecount; } //This is a hack. It uses an assuption about q3 player models. void Mod_ParseQ3SkinFile(char *out, char *surfname, char *modelname, int skinnum, char *skinfilename) { const char *f = NULL, *p; int len; if (skinnum >= skinfilecount) return; if (skinfilename) strcpy(skinfilename, skinfilelist[skinnum]); f = COM_LoadTempMoreFile(skinfilelist[skinnum]); while(f) { f = COM_ParseToken(f,NULL); if (!f) return; if (!strcmp(com_token, "replace")) { f = COM_ParseToken(f, NULL); len = strlen(com_token); //copy surfname -> out, until we meet the part we need to replace while(*surfname) { if (!strncmp(com_token, surfname, len)) //found it { surfname+=len; f = COM_ParseToken(f, NULL); p = com_token; while(*p) //copy the replacement *out++ = *p++; while(*surfname) //copy the remaining *out++ = *surfname++; *out++ = '\0'; //we didn't find it. return; } *out++ = *surfname++; } *out++ = '\0'; //we didn't find it. return; } else { while(*f == ' ' || *f == '\t') f++; if (*f == ',') { if (!strcmp(com_token, surfname)) { f++; COM_ParseToken(f, NULL); strcpy(out, com_token); return; } } } p = strchr(f, '\n'); if (!p) f = f+strlen(f); else f = p+1; if (!*f) break; } } #if defined(D3DQUAKE) || defined(GLQUAKE) shader_t *Mod_LoadSkinFile(shader_t **shaders, char *surfacename, int skinnumber, unsigned char *rawdata, int width, int height, unsigned char *palette) { shader_t *shader; char shadername[MAX_QPATH]; Q_strncpyz(shadername, surfacename, sizeof(shadername)); Mod_ParseQ3SkinFile(shadername, surfacename, loadmodel->name, skinnumber, NULL); shader = R_RegisterSkin(shadername, loadmodel->name); R_BuildDefaultTexnums(&shader->defaulttextures, shader); if (shader->flags & SHADER_NOIMAGE) Con_Printf("Unable to load texture for shader \"%s\" for model \"%s\"\n", shader->name, loadmodel->name); return shader; } #endif //Q1 model loading #if 1 static galiasinfo_t *galias; static dmdl_t *pq1inmodel; #define NUMVERTEXNORMALS 162 extern float r_avertexnormals[NUMVERTEXNORMALS][3]; // mdltype 0 = q1, 1 = qtest, 2 = rapo/h2 static void Alias_LoadPose(vecV_t *verts, vec3_t *normals, vec3_t *svec, vec3_t *tvec, dtrivertx_t *pinframe, int *seamremaps, int mdltype) { int j; if (mdltype == 2) { for (j = 0; j < galias->numverts; j++) { verts[j][0] = pinframe[seamremaps[j]].v[0]*pq1inmodel->scale[0]+pq1inmodel->scale_origin[0]; verts[j][1] = pinframe[seamremaps[j]].v[1]*pq1inmodel->scale[1]+pq1inmodel->scale_origin[1]; verts[j][2] = pinframe[seamremaps[j]].v[2]*pq1inmodel->scale[2]+pq1inmodel->scale_origin[2]; #ifndef SERVERONLY VectorCopy(r_avertexnormals[pinframe[seamremaps[j]].lightnormalindex], normals[j]); #endif } } else { for (j = 0; j < pq1inmodel->numverts; j++) { verts[j][0] = pinframe[j].v[0]*pq1inmodel->scale[0]+pq1inmodel->scale_origin[0]; verts[j][1] = pinframe[j].v[1]*pq1inmodel->scale[1]+pq1inmodel->scale_origin[1]; verts[j][2] = pinframe[j].v[2]*pq1inmodel->scale[2]+pq1inmodel->scale_origin[2]; #ifndef SERVERONLY VectorCopy(r_avertexnormals[pinframe[j].lightnormalindex], normals[j]); #endif if (seamremaps[j] != j) { VectorCopy(verts[j], verts[seamremaps[j]]); #ifndef SERVERONLY VectorCopy(normals[j], normals[seamremaps[j]]); #endif } } } } static void *Alias_LoadFrameGroup (daliasframetype_t *pframetype, int *seamremaps, int mdltype) { galiaspose_t *pose; galiasgroup_t *frame = (galiasgroup_t*)((char *)galias + galias->groupofs); dtrivertx_t *pinframe; daliasframe_t *frameinfo; int i, k; daliasgroup_t *ingroup; daliasinterval_t *intervals; float sinter; vec3_t *normals, *svec, *tvec; vecV_t *verts; int aliasframesize = (mdltype == 1) ? sizeof(daliasframe_t)-16 : sizeof(daliasframe_t); #ifdef SERVERONLY normals = NULL; svec = NULL; tvec = NULL; #endif for (i = 0; i < pq1inmodel->numframes; i++) { switch(LittleLong(pframetype->type)) { case ALIAS_SINGLE: frameinfo = (daliasframe_t*)((char *)(pframetype+1)); // qtest aliasframe is a subset pinframe = (dtrivertx_t*)((char*)frameinfo+aliasframesize); #ifndef SERVERONLY pose = (galiaspose_t *)Hunk_Alloc(sizeof(galiaspose_t) + (sizeof(vecV_t)+sizeof(vec3_t)*3)*galias->numverts); #else pose = (galiaspose_t *)Hunk_Alloc(sizeof(galiaspose_t) + (sizeof(vecV_t))*galias->numverts); #endif frame->poseofs = (char *)pose - (char *)frame; frame->numposes = 1; galias->groups++; if (mdltype == 1) frame->name[0] = '\0'; else Q_strncpyz(frame->name, frameinfo->name, sizeof(frame->name)); verts = (vecV_t *)(pose+1); pose->ofsverts = (char *)verts - (char *)pose; #ifndef SERVERONLY normals = (vec3_t*)&verts[galias->numverts]; svec = &normals[galias->numverts]; tvec = &svec[galias->numverts]; pose->ofsnormals = (char *)normals - (char *)pose; pose->ofssvector = (char *)svec - (char *)pose; pose->ofstvector = (char *)tvec - (char *)pose; #endif Alias_LoadPose(verts, normals, svec, tvec, pinframe, seamremaps, mdltype); // GL_GenerateNormals((float*)verts, (float*)normals, (int *)((char *)galias + galias->ofs_indexes), galias->numindexes/3, galias->numverts); pframetype = (daliasframetype_t *)&pinframe[pq1inmodel->numverts]; break; case ALIAS_GROUP: case ALIAS_GROUP_SWAPPED: // prerelease ingroup = (daliasgroup_t *)(pframetype+1); frame->numposes = LittleLong(ingroup->numframes); #ifdef SERVERONLY pose = (galiaspose_t *)Hunk_Alloc(frame->numposes*(sizeof(galiaspose_t) + sizeof(vecV_t)*galias->numverts)); verts = (vecV_t *)(pose+frame->numposes); #else pose = (galiaspose_t *)Hunk_Alloc(frame->numposes*(sizeof(galiaspose_t) + (sizeof(vecV_t)+sizeof(vec3_t)*3)*galias->numverts)); verts = (vecV_t *)(pose+frame->numposes); normals = (vec3_t*)&verts[galias->numverts]; svec = &normals[galias->numverts]; tvec = &svec[galias->numverts]; #endif frame->poseofs = (char *)pose - (char *)frame; frame->loop = true; galias->groups++; intervals = (daliasinterval_t *)(ingroup+1); sinter = LittleFloat(intervals->interval); if (sinter <= 0) sinter = 0.1; frame->rate = 1/sinter; pinframe = (dtrivertx_t *)(intervals+frame->numposes); for (k = 0; k < frame->numposes; k++) { pose->ofsverts = (char *)verts - (char *)pose; #ifndef SERVERONLY pose->ofsnormals = (char *)normals - (char *)pose; pose->ofssvector = (char *)svec - (char *)pose; pose->ofstvector = (char *)tvec - (char *)pose; #endif frameinfo = (daliasframe_t*)pinframe; pinframe = (dtrivertx_t *)((char *)frameinfo + aliasframesize); if (k == 0) { if (mdltype == 1) frame->name[0] = '\0'; else Q_strncpyz(frame->name, frameinfo->name, sizeof(frame->name)); } Alias_LoadPose(verts, normals, svec, tvec, pinframe, seamremaps, mdltype); #ifndef SERVERONLY verts = (vecV_t*)&tvec[galias->numverts]; normals = (vec3_t*)&verts[galias->numverts]; svec = &normals[galias->numverts]; tvec = &svec[galias->numverts]; #else verts = &verts[galias->numverts]; #endif pose++; pinframe += pq1inmodel->numverts; } // GL_GenerateNormals((float*)verts, (float*)normals, (int *)((char *)galias + galias->ofs_indexes), galias->numindexes/3, galias->numverts); pframetype = (daliasframetype_t *)pinframe; break; default: Con_Printf(CON_ERROR "Bad frame type in %s\n", loadmodel->name); return NULL; } frame++; } return pframetype; } //greatly reduced version of Q1_LoadSkins //just skips over the data static void *Q1_LoadSkins_SV (daliasskintype_t *pskintype, qboolean alpha) { int i; int s; int *count; float *intervals; qbyte *data; s = pq1inmodel->skinwidth*pq1inmodel->skinheight; for (i = 0; i < pq1inmodel->numskins; i++) { switch(LittleLong(pskintype->type)) { case ALIAS_SKIN_SINGLE: pskintype = (daliasskintype_t *)((char *)(pskintype+1)+s); break; default: count = (int *)(pskintype+1); intervals = (float *)(count+1); data = (qbyte *)(intervals + LittleLong(*count)); data += s*LittleLong(*count); pskintype = (daliasskintype_t *)data; break; } } galias->numskins=pq1inmodel->numskins; return pskintype; } #if defined(GLQUAKE) || defined(D3DQUAKE) static void *Q1_LoadSkins_GL (daliasskintype_t *pskintype, unsigned int skintranstype) { shader_t **shaders; int *ofstexels; char skinname[MAX_QPATH]; int i; int s, t; float sinter; daliasskingroup_t *count; daliasskininterval_t *intervals; qbyte *data, *saved; galiasskin_t *outskin = (galiasskin_t *)((char *)galias + galias->ofsskins); texid_t texture; texid_t fbtexture; texid_t bumptexture; s = pq1inmodel->skinwidth*pq1inmodel->skinheight; for (i = 0; i < pq1inmodel->numskins; i++) { switch(LittleLong(pskintype->type)) { case ALIAS_SKIN_SINGLE: outskin->skinwidth = pq1inmodel->skinwidth; outskin->skinheight = pq1inmodel->skinheight; //LH's naming scheme ("models" is likly to be ignored) fbtexture = r_nulltex; bumptexture = r_nulltex; snprintf(skinname, sizeof(skinname), "%s_%i", loadmodel->name, i); texture = R_LoadReplacementTexture(skinname, "models", IF_NOALPHA); if (TEXVALID(texture)) { if (TEXVALID(texture) && r_fb_models.ival) { snprintf(skinname, sizeof(skinname), "%s_%i_luma", loadmodel->name, i); fbtexture = R_LoadReplacementTexture(skinname, "models", 0); } if (r_loadbumpmapping) { snprintf(skinname, sizeof(skinname), "%s_%i_bump", loadmodel->name, i); bumptexture = R_LoadBumpmapTexture(skinname, "models"); } } else { snprintf(skinname, sizeof(skinname), "%s_%i", loadname, i); texture = R_LoadReplacementTexture(skinname, "models", IF_NOALPHA); if (TEXVALID(texture) && r_fb_models.ival) { snprintf(skinname, sizeof(skinname), "%s_%i_luma", loadname, i); fbtexture = R_LoadReplacementTexture(skinname, "models", 0); } if (TEXVALID(texture) && r_loadbumpmapping) { snprintf(skinname, sizeof(skinname), "%s_%i_bump", loadname, i); bumptexture = R_LoadBumpmapTexture(skinname, "models"); } } //but only preload it if we have no replacement. if (!TEXVALID(texture) || (loadmodel->engineflags & MDLF_NOTREPLACEMENTS)) { //we're not using 24bits shaders = Hunk_Alloc(sizeof(*shaders)+sizeof(*ofstexels)+s); ofstexels = (int*)(shaders+1); saved = (qbyte*)(ofstexels+1); outskin->ofstexels = (qbyte *)ofstexels - (qbyte *)outskin; ofstexels[0] = (qbyte *)saved - (qbyte *)ofstexels; memcpy(saved, pskintype+1, s); Mod_FloodFillSkin(saved, outskin->skinwidth, outskin->skinheight); //the extra underscore is to stop replacement matches if (!TEXVALID(texture)) { snprintf(skinname, sizeof(skinname), "%s__%i", loadname, i); switch (skintranstype) { default: texture = R_LoadTexture(skinname,outskin->skinwidth,outskin->skinheight, TF_SOLID8, saved, IF_NOALPHA|IF_NOGAMMA); if (r_fb_models.ival) { snprintf(skinname, sizeof(skinname), "%s__%i_luma", loadname, i); fbtexture = R_LoadTextureFB(skinname, outskin->skinwidth, outskin->skinheight, saved, IF_NOGAMMA); } if (r_loadbumpmapping) { snprintf(skinname, sizeof(skinname), "%s__%i_bump", loadname, i); bumptexture = R_LoadTexture8BumpPal(skinname, outskin->skinwidth, outskin->skinheight, saved, IF_NOGAMMA); } break; case 2: texture = R_LoadTexture(skinname,outskin->skinwidth,outskin->skinheight, TF_H2_T7G1, saved, IF_NOGAMMA); break; case 3: texture = R_LoadTexture(skinname,outskin->skinwidth,outskin->skinheight, TF_H2_TRANS8_0, saved, IF_NOGAMMA); break; case 4: texture = R_LoadTexture(skinname,outskin->skinwidth,outskin->skinheight, TF_H2_T4A4, saved, IF_NOGAMMA); break; } } } else shaders = Hunk_Alloc(sizeof(*shaders)); outskin->numshaders=1; outskin->ofsshaders = (char *)shaders - (char *)outskin; Q_snprintfz(skinname, sizeof(skinname), "%s_%i", loadname, i); if (skintranstype == 4) shaders[0] = R_RegisterShader(skinname, "{\n" "{\n" "map $diffuse\n" "blendfunc gl_one_minus_src_alpha gl_src_alpha\n" "rgbgen lightingDiffuse\n" "cull disable\n" "depthwrite\n" "}\n" "}\n"); else if (skintranstype == 3) shaders[0] = R_RegisterShader(skinname, "{\n" "{\n" "map $diffuse\n" "alphafunc ge128\n" "rgbgen lightingDiffuse\n" "depthwrite\n" "}\n" "}\n"); else if (skintranstype) shaders[0] = R_RegisterShader(skinname, "{\n" "{\n" "map $diffuse\n" "blendfunc gl_src_alpha gl_one_minus_src_alpha\n" "rgbgen lightingDiffuse\n" "depthwrite\n" "}\n" "}\n"); else shaders[0] = R_RegisterSkin(skinname, loadmodel->name); shaders[0]->defaulttextures.base = texture; shaders[0]->defaulttextures.fullbright = fbtexture; shaders[0]->defaulttextures.bump = bumptexture; //13/4/08 IMPLEMENTME if (r_skin_overlays.ival) { snprintf(skinname, sizeof(skinname), "%s_%i_pants", loadname, i); shaders[0]->defaulttextures.loweroverlay = R_LoadReplacementTexture(skinname, "models", 0); snprintf(skinname, sizeof(skinname), "%s_%i_shirt", loadname, i); shaders[0]->defaulttextures.upperoverlay = R_LoadReplacementTexture(skinname, "models", 0); } R_BuildDefaultTexnums(&shaders[0]->defaulttextures, shaders[0]); pskintype = (daliasskintype_t *)((char *)(pskintype+1)+s); break; default: outskin->skinwidth = pq1inmodel->skinwidth; outskin->skinheight = pq1inmodel->skinheight; count = (daliasskingroup_t*)(pskintype+1); intervals = (daliasskininterval_t *)(count+1); outskin->numshaders = LittleLong(count->numskins); data = (qbyte *)(intervals + outskin->numshaders); shaders = Hunk_Alloc(sizeof(*shaders)*outskin->numshaders + sizeof(*ofstexels)*outskin->numshaders); ofstexels = (int*)(shaders+outskin->numshaders); outskin->ofsshaders = (char *)shaders - (char *)outskin; outskin->ofstexels = (char *)ofstexels - (char *)outskin; sinter = LittleFloat(intervals[0].interval); if (sinter <= 0) sinter = 0.1; outskin->skinspeed = 1/sinter; for (t = 0; t < outskin->numshaders; t++,data+=s) { texture = r_nulltex; fbtexture = r_nulltex; //LH naming scheme if (!TEXVALID(texture)) { Q_snprintfz(skinname, sizeof(skinname), "%s_%i_%i", loadmodel->name, i, t); texture = R_LoadReplacementTexture(skinname, "models", IF_NOALPHA); } if (!TEXVALID(fbtexture) && r_fb_models.ival) { Q_snprintfz(skinname, sizeof(skinname), "%s_%i_%i_luma", loadmodel->name, i, t); fbtexture = R_LoadReplacementTexture(skinname, "models", 0); } //Fuhquake naming scheme if (!TEXVALID(texture)) { Q_snprintfz(skinname, sizeof(skinname), "%s_%i_%i", loadname, i, t); texture = R_LoadReplacementTexture(skinname, "models", IF_NOALPHA); } if (!TEXVALID(fbtexture) && r_fb_models.ival) { Q_snprintfz(skinname, sizeof(skinname), "%s_%i_%i_luma", loadname, i, t); fbtexture = R_LoadReplacementTexture(skinname, "models", 0); } if (!TEXVALID(texture) || (!TEXVALID(fbtexture) && r_fb_models.ival)) { saved = Hunk_Alloc(s); ofstexels[t] = (qbyte *)(saved) - (qbyte *)ofstexels; memcpy(saved, data, s); Mod_FloodFillSkin(saved, outskin->skinwidth, outskin->skinheight); if (!TEXVALID(texture)) { Q_snprintfz(skinname, sizeof(skinname), "%s_%i_%i", loadname, i, t); texture = R_LoadTexture8(skinname, outskin->skinwidth, outskin->skinheight, saved, (skintranstype?0:IF_NOALPHA)|IF_NOGAMMA, skintranstype); } if (!TEXVALID(fbtexture) && r_fb_models.value) { Q_snprintfz(skinname, sizeof(skinname), "%s_%i_%i_luma", loadname, i, t); fbtexture = R_LoadTextureFB(skinname, outskin->skinwidth, outskin->skinheight, saved, IF_NOGAMMA); } } Q_snprintfz(skinname, sizeof(skinname), "%s_%i_%i", loadname, i, t); shaders[t] = R_RegisterSkin(skinname, loadmodel->name); TEXASSIGN(shaders[t]->defaulttextures.base, texture); TEXASSIGN(shaders[t]->defaulttextures.fullbright, fbtexture); TEXASSIGN(shaders[t]->defaulttextures.loweroverlay, r_nulltex); TEXASSIGN(shaders[t]->defaulttextures.upperoverlay, r_nulltex); R_BuildDefaultTexnums(&shaders[t]->defaulttextures, shaders[t]); } pskintype = (daliasskintype_t *)data; break; } outskin++; } galias->numskins=pq1inmodel->numskins; return pskintype; } #endif qboolean Mod_LoadQ1Model (model_t *mod, void *buffer) { #ifndef SERVERONLY vec2_t *st_array; int j; #endif int hunkstart, hunkend, hunktotal; int version; int i, onseams; dstvert_t *pinstverts; dtriangle_t *pinq1triangles; dh2triangle_t *pinh2triangles; int *seamremap; index_t *indexes; daliasskintype_t *skinstart; int skintranstype; int size; unsigned int hdrsize; void *end; qboolean qtest = false; qboolean rapo = false; loadmodel=mod; hunkstart = Hunk_LowMark (); pq1inmodel = (dmdl_t *)buffer; hdrsize = sizeof(dmdl_t) - sizeof(int); loadmodel->engineflags |= MDLF_NEEDOVERBRIGHT; version = LittleLong(pq1inmodel->version); if (version == QTESTALIAS_VERSION) { hdrsize = (size_t)&((dmdl_t*)NULL)->flags; qtest = true; } else if (version == 50) { hdrsize = sizeof(dmdl_t); rapo = true; } else if (version != ALIAS_VERSION) { Con_Printf (CON_ERROR "%s has wrong version number (%i should be %i)\n", mod->name, version, ALIAS_VERSION); return false; } seamremap = (int*)pq1inmodel; //I like overloading locals. i = hdrsize/4 - 1; for (; i >= 0; i--) seamremap[i] = LittleLong(seamremap[i]); if (pq1inmodel->numframes < 1 || pq1inmodel->numskins < 1 || pq1inmodel->numtris < 1 || pq1inmodel->numverts < 3 || pq1inmodel->skinheight < 1 || pq1inmodel->skinwidth < 1) { Con_Printf(CON_ERROR "Model %s has an invalid quantity\n", mod->name); return false; } if (qtest) mod->flags = 0; // Qtest has no flags in header else mod->flags = pq1inmodel->flags; size = sizeof(galiasinfo_t) #ifndef SERVERONLY + pq1inmodel->numskins*sizeof(galiasskin_t) #endif + pq1inmodel->numframes*sizeof(galiasgroup_t); galias = Hunk_Alloc(size); galias->groupofs = sizeof(*galias); #ifndef SERVERONLY galias->ofsskins = sizeof(*galias)+pq1inmodel->numframes*sizeof(galiasgroup_t); #endif galias->nextsurf = 0; loadmodel->numframes = pq1inmodel->numframes; //skins skinstart = (daliasskintype_t *)((char*)pq1inmodel+hdrsize); if( mod->flags & MFH2_HOLEY ) skintranstype = 3; //hexen2 else if( mod->flags & MFH2_TRANSPARENT ) skintranstype = 2; //hexen2 else if( mod->flags & MFH2_SPECIAL_TRANS ) skintranstype = 4; //hexen2 else skintranstype = 0; switch(qrenderer) { default: #ifndef SERVERONLY pinstverts = (dstvert_t *)Q1_LoadSkins_GL(skinstart, skintranstype); break; #endif case QR_NONE: pinstverts = (dstvert_t *)Q1_LoadSkins_SV(skinstart, skintranstype); break; } if (rapo) { /*each triangle can use one coord and one st, for each vert, that's a lot of combinations*/ #ifdef SERVERONLY /*separate st + vert lists*/ pinh2triangles = (dh2triangle_t *)&pinstverts[pq1inmodel->num_st]; seamremap = BZ_Malloc(sizeof(*seamremap)*pq1inmodel->numtris*3); galias->numverts = pq1inmodel->numverts; galias->numindexes = pq1inmodel->numtris*3; indexes = Hunk_Alloc(galias->numindexes*sizeof(*indexes)); galias->ofs_indexes = (char *)indexes - (char *)galias; for (i = 0; i < pq1inmodel->numverts; i++) seamremap[i] = i; for (i = 0; i < pq1inmodel->numtris; i++) { indexes[i*3+0] = LittleShort(pinh2triangles[i].vertindex[0]); indexes[i*3+1] = LittleShort(pinh2triangles[i].vertindex[1]); indexes[i*3+2] = LittleShort(pinh2triangles[i].vertindex[2]); } #else int t, v, k; int *stremap; /*separate st + vert lists*/ pinh2triangles = (dh2triangle_t *)&pinstverts[pq1inmodel->num_st]; seamremap = BZ_Malloc(sizeof(int)*pq1inmodel->numtris*6); stremap = seamremap + pq1inmodel->numtris*3; /*output the indicies as we figure out which verts we want*/ galias->numindexes = pq1inmodel->numtris*3; indexes = Hunk_Alloc(galias->numindexes*sizeof(*indexes)); galias->ofs_indexes = (char *)indexes - (char *)galias; for (i = 0; i < pq1inmodel->numtris; i++) { for (j = 0; j < 3; j++) { v = LittleShort(pinh2triangles[i].vertindex[j]); t = LittleShort(pinh2triangles[i].stindex[j]); if (pinstverts[t].onseam && !pinh2triangles[i].facesfront) t += pq1inmodel->num_st; for (k = 0; k < galias->numverts; k++) /*big fatoff slow loop*/ { if (stremap[k] == t && seamremap[k] == v) break; } if (k == galias->numverts) { galias->numverts++; stremap[k] = t; seamremap[k] = v; } indexes[i*3+j] = k; } } st_array = Hunk_Alloc(sizeof(*st_array)*(galias->numverts)); galias->ofs_st_array = (char *)st_array - (char *)galias; /*generate our st_array now we know which vertexes we want*/ for (k = 0; k < galias->numverts; k++) { if (stremap[k] > pq1inmodel->num_st) { /*onseam verts? shrink the index, and add half a texture width to the s coord*/ st_array[k][0] = 0.5+(LittleLong(pinstverts[stremap[k]-pq1inmodel->num_st].s)+0.5)/(float)pq1inmodel->skinwidth; st_array[k][1] = (LittleLong(pinstverts[stremap[k]-pq1inmodel->num_st].t)+0.5)/(float)pq1inmodel->skinheight; } else { st_array[k][0] = (LittleLong(pinstverts[stremap[k]].s)+0.5)/(float)pq1inmodel->skinwidth; st_array[k][1] = (LittleLong(pinstverts[stremap[k]].t)+0.5)/(float)pq1inmodel->skinheight; } } #endif end = &pinh2triangles[pq1inmodel->numtris]; if (Alias_LoadFrameGroup((daliasframetype_t *)end, seamremap, 2) == NULL) { BZ_Free(seamremap); Hunk_FreeToLowMark (hunkstart); return false; } BZ_Free(seamremap); } else { /*onseam means +=skinwidth/2 verticies that are marked as onseam potentially generate two output verticies. the triangle chooses which side based upon its 'onseam' field. */ //count number of verts that are onseam. for (onseams=0,i = 0; i < pq1inmodel->numverts; i++) { if (pinstverts[i].onseam) onseams++; } seamremap = BZ_Malloc(sizeof(*seamremap)*pq1inmodel->numverts); galias->numverts = pq1inmodel->numverts+onseams; //st #ifndef SERVERONLY st_array = Hunk_Alloc(sizeof(*st_array)*(pq1inmodel->numverts+onseams)); galias->ofs_st_array = (char *)st_array - (char *)galias; for (j=pq1inmodel->numverts,i = 0; i < pq1inmodel->numverts; i++) { st_array[i][0] = (LittleLong(pinstverts[i].s)+0.5)/(float)pq1inmodel->skinwidth; st_array[i][1] = (LittleLong(pinstverts[i].t)+0.5)/(float)pq1inmodel->skinheight; if (pinstverts[i].onseam) { st_array[j][0] = st_array[i][0]+0.5; st_array[j][1] = st_array[i][1]; seamremap[i] = j; j++; } else seamremap[i] = i; } #else for (i = 0; i < pq1inmodel->numverts; i++) { seamremap[i] = i; } #endif //trianglelists; pinq1triangles = (dtriangle_t *)&pinstverts[pq1inmodel->numverts]; galias->numindexes = pq1inmodel->numtris*3; indexes = Hunk_Alloc(galias->numindexes*sizeof(*indexes)); galias->ofs_indexes = (char *)indexes - (char *)galias; for (i=0 ; inumtris ; i++) { if (!pinq1triangles[i].facesfront) { indexes[i*3+0] = seamremap[LittleLong(pinq1triangles[i].vertindex[0])]; indexes[i*3+1] = seamremap[LittleLong(pinq1triangles[i].vertindex[1])]; indexes[i*3+2] = seamremap[LittleLong(pinq1triangles[i].vertindex[2])]; } else { indexes[i*3+0] = LittleLong(pinq1triangles[i].vertindex[0]); indexes[i*3+1] = LittleLong(pinq1triangles[i].vertindex[1]); indexes[i*3+2] = LittleLong(pinq1triangles[i].vertindex[2]); } } end = &pinq1triangles[pq1inmodel->numtris]; //frames if (Alias_LoadFrameGroup((daliasframetype_t *)end, seamremap, qtest ? 1 : 0) == NULL) { BZ_Free(seamremap); Hunk_FreeToLowMark (hunkstart); return false; } BZ_Free(seamremap); } Mod_CompileTriangleNeighbours(galias); Mod_BuildTextureVectors(galias); VectorCopy (pq1inmodel->scale_origin, mod->mins); VectorMA (mod->mins, 255, pq1inmodel->scale, mod->maxs); mod->type = mod_alias; Mod_ClampModelSize(mod); // // move the complete, relocatable alias model to the cache // hunkend = Hunk_LowMark (); Hunk_Alloc(0); hunktotal = hunkend - hunkstart; Cache_Alloc (&mod->cache, hunktotal, loadname); if (!mod->cache.data) { Hunk_FreeToLowMark (hunkstart); return false; } memcpy (mod->cache.data, galias, hunktotal); Hunk_FreeToLowMark (hunkstart); mod->funcs.NativeTrace = Mod_Trace; return true; } #endif int Mod_ReadFlagsFromMD1(char *name, int md3version) { dmdl_t *pinmodel; char fname[MAX_QPATH]; COM_StripExtension(name, fname, sizeof(fname)); COM_DefaultExtension(fname, ".mdl", sizeof(fname)); if (strcmp(name, fname)) //md3 renamed as mdl { COM_StripExtension(name, fname, sizeof(fname)); //seeing as the md3 is named over the mdl, COM_DefaultExtension(fname, ".md1", sizeof(fname));//read from a file with md1 (one, not an ell) return 0; } pinmodel = (dmdl_t *)COM_LoadTempFile(fname); if (!pinmodel) //not found return 0; if (LittleLong(pinmodel->ident) != IDPOLYHEADER) return 0; if (LittleLong(pinmodel->version) != ALIAS_VERSION) return 0; return LittleLong(pinmodel->flags); } #ifdef MD2MODELS //////////////////////////////////////////////////////////////////////////////////////////////////////////////// //Q2 model loading typedef struct { float scale[3]; // multiply qbyte verts by this float translate[3]; // then add this char name[16]; // frame name from grabbing dtrivertx_t verts[1]; // variable sized } dmd2aliasframe_t; //static galiasinfo_t *galias; //static md2_t *pq2inmodel; #define Q2NUMVERTEXNORMALS 162 extern vec3_t bytedirs[Q2NUMVERTEXNORMALS]; static void Q2_LoadSkins(md2_t *pq2inmodel, char *skins) { #ifndef SERVERONLY int i; shader_t **shaders; galiasskin_t *outskin = (galiasskin_t *)((char *)galias + galias->ofsskins); for (i = 0; i < LittleLong(pq2inmodel->num_skins); i++, outskin++) { shaders = Hunk_Alloc(sizeof(*shaders)); outskin->ofsshaders = (char *)shaders - (char *)outskin; outskin->numshaders=1; COM_CleanUpPath(skins); //blooming tanks. shaders[0] = R_RegisterSkin(skins, loadmodel->name); TEXASSIGN(shaders[0]->defaulttextures.base, R_LoadReplacementTexture(skins, "models", IF_NOALPHA)); R_BuildDefaultTexnums(NULL, shaders[0]); outskin->skinwidth = 0; outskin->skinheight = 0; outskin->skinspeed = 0; skins += MD2MAX_SKINNAME; } #endif galias->numskins = LittleLong(pq2inmodel->num_skins); /* #ifndef SERVERONLY outskin = (galiasskin_t *)((char *)galias + galias->ofsskins); outskin += galias->numskins - 1; if (galias->numskins) { if (*(shader_t**)((char *)outskin + outskin->ofstexnums)) return; galias->numskins--; } #endif */ } #define MD2_MAX_TRIANGLES 4096 qboolean Mod_LoadQ2Model (model_t *mod, void *buffer) { #ifndef SERVERONLY dmd2stvert_t *pinstverts; vec2_t *st_array; vec3_t *normals; #endif md2_t *pq2inmodel; int hunkstart, hunkend, hunktotal; int version; int i, j; dmd2triangle_t *pintri; index_t *indexes; int numindexes; vec3_t min; vec3_t max; galiaspose_t *pose; galiasgroup_t *poutframe; dmd2aliasframe_t *pinframe; int framesize; vecV_t *verts; int indremap[MD2_MAX_TRIANGLES*3]; unsigned short ptempindex[MD2_MAX_TRIANGLES*3], ptempstindex[MD2_MAX_TRIANGLES*3]; int numverts; int size; loadmodel=mod; loadmodel->engineflags |= MDLF_NEEDOVERBRIGHT; hunkstart = Hunk_LowMark (); pq2inmodel = (md2_t *)buffer; version = LittleLong (pq2inmodel->version); if (version != MD2ALIAS_VERSION) { Con_Printf (CON_ERROR "%s has wrong version number (%i should be %i)\n", mod->name, version, MD2ALIAS_VERSION); return false; } if (LittleLong(pq2inmodel->num_frames) < 1 || LittleLong(pq2inmodel->num_skins) < 0 || LittleLong(pq2inmodel->num_tris) < 1 || LittleLong(pq2inmodel->num_xyz) < 3 || LittleLong(pq2inmodel->num_st) < 3 || LittleLong(pq2inmodel->skinheight) < 1 || LittleLong(pq2inmodel->skinwidth) < 1) { Con_Printf(CON_ERROR "Model %s has an invalid quantity\n", mod->name); return false; } mod->flags = 0; loadmodel->numframes = LittleLong(pq2inmodel->num_frames); size = sizeof(galiasinfo_t) #ifndef SERVERONLY + LittleLong(pq2inmodel->num_skins)*sizeof(galiasskin_t) #endif + LittleLong(pq2inmodel->num_frames)*sizeof(galiasgroup_t); galias = Hunk_Alloc(size); galias->groupofs = sizeof(*galias); #ifndef SERVERONLY galias->ofsskins = sizeof(*galias)+LittleLong(pq2inmodel->num_frames)*sizeof(galiasgroup_t); #endif galias->nextsurf = 0; //skins Q2_LoadSkins(pq2inmodel, ((char *)pq2inmodel+LittleLong(pq2inmodel->ofs_skins))); //trianglelists; pintri = (dmd2triangle_t *)((char *)pq2inmodel + LittleLong(pq2inmodel->ofs_tris)); for (i=0 ; inum_tris) ; i++, pintri++) { for (j=0 ; j<3 ; j++) { ptempindex[i*3+j] = ( unsigned short )LittleShort ( pintri->xyz_index[j] ); ptempstindex[i*3+j] = ( unsigned short )LittleShort ( pintri->st_index[j] ); } } numindexes = galias->numindexes = LittleLong(pq2inmodel->num_tris)*3; indexes = Hunk_Alloc(galias->numindexes*sizeof(*indexes)); galias->ofs_indexes = (char *)indexes - (char *)galias; memset ( indremap, -1, sizeof(indremap) ); numverts=0; for ( i = 0; i < numindexes; i++ ) { if ( indremap[i] != -1 ) { continue; } for ( j = 0; j < numindexes; j++ ) { if ( j == i ) { continue; } if ( (ptempindex[i] == ptempindex[j]) && (ptempstindex[i] == ptempstindex[j]) ) { indremap[j] = i; } } } // count unique vertexes for ( i = 0; i < numindexes; i++ ) { if ( indremap[i] != -1 ) { continue; } indexes[i] = numverts++; indremap[i] = i; } Con_DPrintf ( "%s: remapped %i verts to %i\n", mod->name, LittleLong(pq2inmodel->num_xyz), numverts ); galias->numverts = numverts; // remap remaining indexes for ( i = 0; i < numindexes; i++ ) { if ( indremap[i] != i ) { indexes[i] = indexes[indremap[i]]; } } // s and t vertices #ifndef SERVERONLY pinstverts = ( dmd2stvert_t * ) ( ( qbyte * )pq2inmodel + LittleLong (pq2inmodel->ofs_st) ); st_array = Hunk_Alloc(sizeof(*st_array)*(numverts)); galias->ofs_st_array = (char *)st_array - (char *)galias; for (j=0 ; jskinwidth)); st_array[indexes[j]][1] = (float)(((double)LittleShort (pinstverts[ptempstindex[indremap[j]]].t) + 0.5f) /LittleLong(pq2inmodel->skinheight)); } #endif //frames ClearBounds ( mod->mins, mod->maxs ); poutframe = (galiasgroup_t*)((char *)galias + galias->groupofs); framesize = LittleLong (pq2inmodel->framesize); for (i=0 ; inum_frames) ; i++) { pose = (galiaspose_t *)Hunk_Alloc(sizeof(galiaspose_t) + sizeof(vecV_t)*numverts #ifndef SERVERONLY + 3*sizeof(vec3_t)*numverts #endif ); poutframe->poseofs = (char *)pose - (char *)poutframe; poutframe->numposes = 1; galias->groups++; verts = (vecV_t *)(pose+1); pose->ofsverts = (char *)verts - (char *)pose; #ifndef SERVERONLY normals = (vec3_t*)&verts[galias->numverts]; pose->ofsnormals = (char *)normals - (char *)pose; pose->ofssvector = (char *)&normals[galias->numverts] - (char *)pose; pose->ofstvector = (char *)&normals[galias->numverts*2] - (char *)pose; #endif pinframe = ( dmd2aliasframe_t * )( ( qbyte * )pq2inmodel + LittleLong (pq2inmodel->ofs_frames) + i * framesize ); Q_strncpyz(poutframe->name, pinframe->name, sizeof(poutframe->name)); for (j=0 ; j<3 ; j++) { pose->scale[j] = LittleFloat (pinframe->scale[j]); pose->scale_origin[j] = LittleFloat (pinframe->translate[j]); } for (j=0 ; jscale_origin[0]+pose->scale[0]*pinframe->verts[ptempindex[indremap[j]]].v[0]; verts[indexes[j]][1] = pose->scale_origin[1]+pose->scale[1]*pinframe->verts[ptempindex[indremap[j]]].v[1]; verts[indexes[j]][2] = pose->scale_origin[2]+pose->scale[2]*pinframe->verts[ptempindex[indremap[j]]].v[2]; #ifndef SERVERONLY VectorCopy(bytedirs[pinframe->verts[ptempindex[indremap[j]]].lightnormalindex], normals[indexes[j]]); #endif } // Mod_AliasCalculateVertexNormals ( numindexes, poutindex, numverts, poutvertex, qfalse ); VectorCopy ( pose->scale_origin, min ); VectorMA ( pose->scale_origin, 255, pose->scale, max ); // poutframe->radius = RadiusFromBounds ( min, max ); // mod->radius = max ( mod->radius, poutframe->radius ); AddPointToBounds ( min, mod->mins, mod->maxs ); AddPointToBounds ( max, mod->mins, mod->maxs ); // GL_GenerateNormals((float*)verts, (float*)normals, indexes, numindexes/3, numverts); poutframe++; } Mod_CompileTriangleNeighbours(galias); Mod_BuildTextureVectors(galias); /* VectorCopy (pq2inmodel->scale_origin, mod->mins); VectorMA (mod->mins, 255, pq2inmodel->scale, mod->maxs); */ Mod_ClampModelSize(mod); // // move the complete, relocatable alias model to the cache // hunkend = Hunk_LowMark (); Hunk_Alloc(0); hunktotal = hunkend - hunkstart; Cache_Alloc (&mod->cache, hunktotal, loadname); mod->type = mod_alias; if (!mod->cache.data) { Hunk_FreeToLowMark (hunkstart); return false; } memcpy (mod->cache.data, galias, hunktotal); Hunk_FreeToLowMark (hunkstart); mod->funcs.NativeTrace = Mod_Trace; return true; } #endif int Mod_GetNumBones(model_t *model, qboolean allowtags) { galiasinfo_t *inf; if (!model || model->type != mod_alias) return 0; inf = Mod_Extradata(model); #ifdef SKELETALMODELS if (inf->numbones) return inf->numbones; else #endif if (allowtags) return inf->numtags; else return 0; } int Mod_GetBoneRelations(model_t *model, int firstbone, int lastbone, framestate_t *fstate, float *result) { #ifdef SKELETALMODELS galiasinfo_t *inf; if (!model || model->type != mod_alias) return false; inf = Mod_Extradata(model); return Alias_GetBoneRelations(inf, fstate, result, firstbone, lastbone); #endif return 0; } galiasbone_t *Mod_GetBoneInfo(model_t *model, int *numbones) { #ifdef SKELETALMODELS galiasbone_t *bone; galiasinfo_t *inf; if (!model || model->type != mod_alias) return NULL; inf = Mod_Extradata(model); bone = (galiasbone_t*)((char*)inf + inf->ofsbones); *numbones = inf->numbones; return bone; #else *numbones = 0; return NULL; #endif } int Mod_GetBoneParent(model_t *model, int bonenum) { #ifdef SKELETALMODELS galiasbone_t *bone; galiasinfo_t *inf; if (!model || model->type != mod_alias) return 0; inf = Mod_Extradata(model); bonenum--; if ((unsigned int)bonenum >= inf->numbones) return 0; //no parent bone = (galiasbone_t*)((char*)inf + inf->ofsbones); return bone[bonenum].parent+1; #endif return 0; } char *Mod_GetBoneName(model_t *model, int bonenum) { #ifdef SKELETALMODELS galiasbone_t *bone; galiasinfo_t *inf; if (!model || model->type != mod_alias) return 0; inf = Mod_Extradata(model); bonenum--; if ((unsigned int)bonenum >= inf->numbones) return 0; //no parent bone = (galiasbone_t*)((char*)inf + inf->ofsbones); return bone[bonenum].name; #endif return 0; } typedef struct { char name[64]; vec3_t org; float ang[3][3]; } md3tag_t; qboolean Mod_GetTag(model_t *model, int tagnum, framestate_t *fstate, float *result) { galiasinfo_t *inf; if (!model || model->type != mod_alias) return false; inf = Mod_Extradata(model); #ifdef SKELETALMODELS if (inf->numbones) { galiasbone_t *bone; galiasgroup_t *g1, *g2; float tempmatrix[12]; //flipped between this and bonematrix float *matrix; //the matrix for a single bone in a single pose. float m[12]; //combined interpolated version of 'matrix'. int b, k; //counters float *pose[4]; //the per-bone matricies (one for each pose) float plerp[4]; //the ammount of that pose to use (must combine to 1) int numposes = 0; int frame1, frame2; float f1time, f2time; float f2ness; #ifdef warningmsg #pragma warningmsg("fixme: no baseframe info") #endif if (tagnum <= 0 || tagnum > inf->numbones) return false; tagnum--; //tagnum 0 is 'use my angles/org' bone = (galiasbone_t*)((char*)inf + inf->ofsbones); if (fstate->bonestate) { if (tagnum >= fstate->bonecount) return false; if (fstate->boneabs) { memcpy(result, fstate->bonestate + 12 * tagnum, 12*sizeof(*result)); return true; } pose[0] = fstate->bonestate; plerp[0] = 1; numposes = 1; } else { frame1 = fstate->g[FS_REG].frame[0]; frame2 = fstate->g[FS_REG].frame[1]; f1time = fstate->g[FS_REG].frametime[0]; f2time = fstate->g[FS_REG].frametime[1]; f2ness = fstate->g[FS_REG].lerpfrac; if (frame1 < 0 || frame1 >= inf->groups) return false; if (frame2 < 0 || frame2 >= inf->groups) { f2ness = 0; frame2 = frame1; } //the higher level merges old/new anims, but we still need to blend between automated frame-groups. g1 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*frame1); g2 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*frame2); if (f2ness != 1) { f1time *= g1->rate; frame1 = (int)f1time%g1->numposes; frame2 = ((int)f1time+1)%g1->numposes; f1time = f1time - (int)f1time; pose[numposes] = (float *)((char *)g1 + g1->poseofs + sizeof(float)*inf->numbones*12*frame1); plerp[numposes] = (1-f1time) * (1-f2ness); numposes++; if (frame1 != frame2) { pose[numposes] = (float *)((char *)g1 + g1->poseofs + sizeof(float)*inf->numbones*12*frame2); plerp[numposes] = f1time * (1-f2ness); numposes++; } } if (f2ness) { f2time *= g2->rate; frame1 = (int)f2time%g2->numposes; frame2 = ((int)f2time+1)%g2->numposes; f2time = f2time - (int)f2time; pose[numposes] = (float *)((char *)g2 + g2->poseofs + sizeof(float)*inf->numbones*12*frame1); plerp[numposes] = (1-f2time) * f2ness; numposes++; if (frame1 != frame2) { pose[numposes] = (float *)((char *)g2 + g2->poseofs + sizeof(float)*inf->numbones*12*frame2); plerp[numposes] = f2time * f2ness; numposes++; } } } //set up the identity matrix for (k = 0;k < 12;k++) result[k] = 0; result[0] = 1; result[5] = 1; result[10] = 1; while(tagnum >= 0) { //set up the per-bone transform matrix for (k = 0;k < 12;k++) m[k] = 0; for (b = 0;b < numposes;b++) { matrix = pose[b] + tagnum*12; for (k = 0;k < 12;k++) m[k] += matrix[k] * plerp[b]; } memcpy(tempmatrix, result, sizeof(tempmatrix)); R_ConcatTransforms((void*)m, (void*)tempmatrix, (void*)result); tagnum = bone[tagnum].parent; } return true; } #endif if (inf->numtags) { md3tag_t *t1, *t2; int frame1, frame2; //float f1time, f2time; //tags/md3s don't support framegroups. float f2ness; frame1 = fstate->g[FS_REG].frame[0]; frame2 = fstate->g[FS_REG].frame[1]; //f1time = fstate->g[FS_REG].frametime[0]; //f2time = fstate->g[FS_REG].frametime[1]; f2ness = fstate->g[FS_REG].lerpfrac; if (tagnum <= 0 || tagnum > inf->numtags) return false; if (frame1 < 0) return false; if (frame1 >= inf->numtagframes) frame1 = inf->numtagframes - 1; if (frame2 < 0 || frame2 >= inf->numtagframes) frame2 = frame1; tagnum--; //tagnum 0 is 'use my angles/org' t1 = (md3tag_t*)((char*)inf + inf->ofstags); t1 += tagnum; t1 += inf->numtags*frame1; t2 = (md3tag_t*)((char*)inf + inf->ofstags); t2 += tagnum; t2 += inf->numtags*frame2; if (t1 == t2) { result[0] = t1->ang[0][0]; result[1] = t1->ang[0][1]; result[2] = t1->ang[0][2]; result[3] = t1->org[0]; result[4] = t1->ang[1][0]; result[5] = t1->ang[1][1]; result[6] = t1->ang[1][2]; result[7] = t1->org[1]; result[8] = t1->ang[2][0]; result[9] = t1->ang[2][1]; result[10] = t1->ang[2][2]; result[11] = t1->org[2]; } else { float f1ness = 1-f2ness; result[0] = t1->ang[0][0]*f1ness + t2->ang[0][0]*f2ness; result[1] = t1->ang[0][1]*f1ness + t2->ang[0][1]*f2ness; result[2] = t1->ang[0][2]*f1ness + t2->ang[0][2]*f2ness; result[3] = t1->org[0]*f1ness + t2->org[0]*f2ness; result[4] = t1->ang[1][0]*f1ness + t2->ang[1][0]*f2ness; result[5] = t1->ang[1][1]*f1ness + t2->ang[1][1]*f2ness; result[6] = t1->ang[1][2]*f1ness + t2->ang[1][2]*f2ness; result[7] = t1->org[1]*f1ness + t2->org[1]*f2ness; result[8] = t1->ang[2][0]*f1ness + t2->ang[2][0]*f2ness; result[9] = t1->ang[2][1]*f1ness + t2->ang[2][1]*f2ness; result[10] = t1->ang[2][2]*f1ness + t2->ang[2][2]*f2ness; result[11] = t1->org[2]*f1ness + t2->org[2]*f2ness; } VectorNormalize(result); VectorNormalize(result+4); VectorNormalize(result+8); return true; } return false; } int Mod_TagNumForName(model_t *model, char *name) { int i; galiasinfo_t *inf; md3tag_t *t; if (!model) return 0; #ifdef HALFLIFEMODELS if (model->type == mod_halflife) return HLMod_BoneForName(model, name); #endif if (model->type != mod_alias) return 0; inf = Mod_Extradata(model); #ifdef SKELETALMODELS if (inf->numbones) { galiasbone_t *b; b = (galiasbone_t*)((char*)inf + inf->ofsbones); for (i = 0; i < inf->numbones; i++) { if (!strcmp(b[i].name, name)) return i+1; } } #endif t = (md3tag_t*)((char*)inf + inf->ofstags); for (i = 0; i < inf->numtags; i++) { if (!strcmp(t[i].name, name)) return i+1; } return 0; } int Mod_FrameNumForName(model_t *model, char *name) { galiasgroup_t *group; galiasinfo_t *inf; int i; if (!model) return -1; #ifdef HALFLIFEMODELS if (model->type == mod_halflife) return HLMod_FrameForName(model, name); #endif if (model->type != mod_alias) return 0; inf = Mod_Extradata(model); group = (galiasgroup_t*)((char*)inf + inf->groupofs); for (i = 0; i < inf->groups; i++, group++) { if (!strcmp(group->name, name)) return i; } return -1; } #ifndef SERVERONLY int Mod_SkinNumForName(model_t *model, char *name) { int i; galiasinfo_t *inf; galiasskin_t *skin; if (!model || model->type != mod_alias) return -1; inf = Mod_Extradata(model); skin = (galiasskin_t*)((char*)inf+inf->ofsskins); for (i = 0; i < inf->numskins; i++, skin++) { if (!strcmp(skin->name, name)) return i; } return -1; } #endif const char *Mod_FrameNameForNum(model_t *model, int num) { galiasgroup_t *group; galiasinfo_t *inf; if (!model) return NULL; if (model->type != mod_alias) return NULL; inf = Mod_Extradata(model); if (num >= inf->groups) return NULL; group = (galiasgroup_t*)((char*)inf + inf->groupofs); return group[num].name; } qboolean Mod_FrameInfoForNum(model_t *model, int num, char **name, int *numframes, float *duration, qboolean *loop) { galiasgroup_t *group; galiasinfo_t *inf; if (!model) return false; if (model->type != mod_alias) return false; inf = Mod_Extradata(model); if (num >= inf->groups) return false; group = (galiasgroup_t*)((char*)inf + inf->groupofs); *name = group[num].name; *numframes = group[num].numposes; *loop = group[num].loop; *duration = group->numposes/group->rate; return true; } const char *Mod_SkinNameForNum(model_t *model, int num) { #ifdef SERVERONLY return NULL; #else galiasinfo_t *inf; galiasskin_t *skin; if (!model || model->type != mod_alias) return NULL; inf = Mod_Extradata(model); if (num >= inf->numskins) return NULL; skin = (galiasskin_t*)((char*)inf+inf->ofsskins); return skin[num].name; #endif } float Mod_FrameDuration(model_t *model, int frameno) { galiasinfo_t *inf; galiasgroup_t *group; if (!model || model->type != mod_alias) return 0; inf = Mod_Extradata(model); group = (galiasgroup_t*)((char*)inf + inf->groupofs); if (frameno < 0 || frameno >= inf->groups) return 0; group += frameno; return group->numposes/group->rate; } #ifdef MD3MODELS //structures from Tenebrae typedef struct { int ident; int version; char name[64]; int flags; //Does anyone know what these are? int numFrames; int numTags; int numSurfaces; int numSkins; int ofsFrames; int ofsTags; int ofsSurfaces; int ofsEnd; } md3Header_t; //then has header->numFrames of these at header->ofs_Frames typedef struct md3Frame_s { vec3_t bounds[2]; vec3_t localOrigin; float radius; char name[16]; } md3Frame_t; //there are header->numSurfaces of these at header->ofsSurfaces, following from ofsEnd typedef struct { int ident; // char name[64]; // polyset name int flags; int numFrames; // all surfaces in a model should have the same int numShaders; // all surfaces in a model should have the same int numVerts; int numTriangles; int ofsTriangles; int ofsShaders; // offset from start of md3Surface_t int ofsSt; // texture coords are common for all frames int ofsXyzNormals; // numVerts * numFrames int ofsEnd; // next surface follows } md3Surface_t; //at surf+surf->ofsXyzNormals typedef struct { short xyz[3]; qbyte latlong[2]; } md3XyzNormal_t; //surf->numTriangles at surf+surf->ofsTriangles typedef struct { int indexes[3]; } md3Triangle_t; //surf->numVerts at surf+surf->ofsSt typedef struct { float s; float t; } md3St_t; typedef struct { char name[64]; int shaderIndex; } md3Shader_t; //End of Tenebrae 'assistance' qboolean Mod_LoadQ3Model(model_t *mod, void *buffer) { #ifndef SERVERONLY galiasskin_t *skin; shader_t **shaders; float lat, lng; md3St_t *inst; vec3_t *normals; vec3_t *svector; vec3_t *tvector; vec2_t *st_array; md3Shader_t *inshader; #endif int hunkstart, hunkend, hunktotal; // int version; int s, i, j, d; index_t *indexes; vec3_t min; vec3_t max; galiaspose_t *pose; galiasinfo_t *parent, *root; galiasgroup_t *group; vecV_t *verts; md3Triangle_t *intris; md3XyzNormal_t *invert; int size; int externalskins; md3Header_t *header; md3Surface_t *surf; loadmodel=mod; hunkstart = Hunk_LowMark (); header = buffer; // if (header->version != sdfs) // Sys_Error("GL_LoadQ3Model: Bad version\n"); parent = NULL; root = NULL; #ifndef SERVERONLY externalskins = Mod_BuildSkinFileList(mod->name); #else externalskins = 0; #endif min[0] = min[1] = min[2] = 0; max[0] = max[1] = max[2] = 0; surf = (md3Surface_t *)((qbyte *)header + LittleLong(header->ofsSurfaces)); for (s = 0; s < LittleLong(header->numSurfaces); s++) { if (LittleLong(surf->ident) != MD3_IDENT) Con_Printf(CON_WARNING "Warning: md3 sub-surface doesn't match ident\n"); size = sizeof(galiasinfo_t) + sizeof(galiasgroup_t)*LittleLong(header->numFrames); galias = Hunk_Alloc(size); galias->groupofs = sizeof(*galias); //frame groups galias->groups = LittleLong(header->numFrames); galias->numverts = LittleLong(surf->numVerts); galias->numindexes = LittleLong(surf->numTriangles)*3; galias->shares_verts = s; if (parent) parent->nextsurf = (qbyte *)galias - (qbyte *)parent; else root = galias; parent = galias; #ifndef SERVERONLY st_array = Hunk_Alloc(sizeof(vec2_t)*galias->numindexes); galias->ofs_st_array = (qbyte*)st_array - (qbyte*)galias; inst = (md3St_t*)((qbyte*)surf + LittleLong(surf->ofsSt)); for (i = 0; i < galias->numverts; i++) { st_array[i][0] = LittleFloat(inst[i].s); st_array[i][1] = LittleFloat(inst[i].t); } #endif indexes = Hunk_Alloc(sizeof(*indexes)*galias->numindexes); galias->ofs_indexes = (qbyte*)indexes - (qbyte*)galias; intris = (md3Triangle_t *)((qbyte*)surf + LittleLong(surf->ofsTriangles)); for (i = 0; i < LittleLong(surf->numTriangles); i++) { indexes[i*3+0] = LittleLong(intris[i].indexes[0]); indexes[i*3+1] = LittleLong(intris[i].indexes[1]); indexes[i*3+2] = LittleLong(intris[i].indexes[2]); } group = (galiasgroup_t *)(galias+1); invert = (md3XyzNormal_t *)((qbyte*)surf + LittleLong(surf->ofsXyzNormals)); for (i = 0; i < LittleLong(surf->numFrames); i++) { pose = (galiaspose_t *)Hunk_Alloc(sizeof(galiaspose_t) + sizeof(vecV_t)*LittleLong(surf->numVerts) #ifndef SERVERONLY + 3*sizeof(vec3_t)*LittleLong(surf->numVerts) #endif ); verts = (vecV_t*)(pose+1); pose->ofsverts = (qbyte*)verts - (qbyte*)pose; #ifndef SERVERONLY normals = (vec3_t*)(verts + LittleLong(surf->numVerts)); pose->ofsnormals = (qbyte*)normals - (qbyte*)pose; svector = normals + LittleLong(surf->numVerts); pose->ofssvector = (qbyte*)svector - (qbyte*)pose; tvector = svector + LittleLong(surf->numVerts); pose->ofstvector = (qbyte*)tvector - (qbyte*)pose; #endif for (j = 0; j < LittleLong(surf->numVerts); j++) { #ifndef SERVERONLY lat = (float)invert[j].latlong[0] * (2 * M_PI)*(1.0 / 255.0); lng = (float)invert[j].latlong[1] * (2 * M_PI)*(1.0 / 255.0); normals[j][0] = cos ( lng ) * sin ( lat ); normals[j][1] = sin ( lng ) * sin ( lat ); normals[j][2] = cos ( lat ); #endif for (d = 0; d < 3; d++) { verts[j][d] = LittleShort(invert[j].xyz[d])/64.0f; if (verts[j][d]max[d]) max[d] = verts[j][d]; } } pose->scale[0] = 1; pose->scale[1] = 1; pose->scale[2] = 1; pose->scale_origin[0] = 0; pose->scale_origin[1] = 0; pose->scale_origin[2] = 0; snprintf(group->name, sizeof(group->name)-1, "frame%i", i); group->numposes = 1; group->rate = 1; group->poseofs = (qbyte*)pose - (qbyte*)group; group++; invert += LittleLong(surf->numVerts); } #ifndef SERVERONLY if (externalskinsnumShaders)) externalskins = LittleLong(surf->numShaders); if (externalskins) { char shadname[1024]; skin = Hunk_Alloc((LittleLong(surf->numShaders)+externalskins)*((sizeof(galiasskin_t)+sizeof(shader_t*)))); galias->ofsskins = (qbyte *)skin - (qbyte *)galias; shaders = (shader_t **)(skin + LittleLong(surf->numShaders)+externalskins); inshader = (md3Shader_t *)((qbyte *)surf + LittleLong(surf->ofsShaders)); for (i = 0; i < externalskins; i++) { skin->numshaders = 1; skin->ofsshaders = (qbyte *)&shaders[i] - (qbyte *)skin; skin->ofstexels = 0; skin->skinwidth = 0; skin->skinheight = 0; skin->skinspeed = 0; shadname[0] = '\0'; Mod_ParseQ3SkinFile(shadname, surf->name, loadmodel->name, i, skin->name); if (!*shadname) { if (i >= LittleLong(surf->numShaders) || !*inshader->name) strcpy(shadname, "missingskin"); //this shouldn't be possible else strcpy(shadname, inshader->name); Q_strncpyz(skin->name, shadname, sizeof(skin->name)); } if (qrenderer != QR_NONE) { shaders[i] = R_RegisterSkin(shadname, mod->name); R_BuildDefaultTexnums(NULL, shaders[i]); if (shaders[i]->flags & SHADER_NOIMAGE) Con_Printf("Unable to load texture for shader \"%s\" for model \"%s\"\n", shaders[i]->name, loadmodel->name); } inshader++; skin++; } galias->numskins = i; } #endif VectorCopy(min, loadmodel->mins); VectorCopy(max, loadmodel->maxs); Mod_CompileTriangleNeighbours (galias); Mod_BuildTextureVectors(galias); surf = (md3Surface_t *)((qbyte *)surf + LittleLong(surf->ofsEnd)); } if (!root) root = Hunk_Alloc(sizeof(galiasinfo_t)); root->numtagframes = LittleLong(header->numFrames); root->numtags = LittleLong(header->numTags); root->ofstags = (char*)Hunk_Alloc(LittleLong(header->numTags)*sizeof(md3tag_t)*LittleLong(header->numFrames)) - (char*)root; { md3tag_t *src; md3tag_t *dst; src = (md3tag_t *)((char*)header+LittleLong(header->ofsTags)); dst = (md3tag_t *)((char*)root+root->ofstags); for(i=0;inumTags)*LittleLong(header->numFrames);i++) { memcpy(dst->name, src->name, sizeof(dst->name)); for(j=0;j<3;j++) { dst->org[j] = LittleFloat(src->org[j]); } for(j=0;j<3;j++) { for(s=0;s<3;s++) { dst->ang[j][s] = LittleFloat(src->ang[j][s]); } } src++; dst++; } } // // move the complete, relocatable alias model to the cache // hunkend = Hunk_LowMark (); #ifndef SERVERONLY if (mod_md3flags.value) mod->flags = LittleLong(header->flags); else #endif mod->flags = 0; if (!mod->flags) mod->flags = Mod_ReadFlagsFromMD1(mod->name, 0); Mod_ClampModelSize(mod); Hunk_Alloc(0); hunktotal = hunkend - hunkstart; Cache_Alloc (&mod->cache, hunktotal, loadname); mod->type = mod_alias; if (!mod->cache.data) { Hunk_FreeToLowMark (hunkstart); return false; } memcpy (mod->cache.data, root, hunktotal); Hunk_FreeToLowMark (hunkstart); mod->funcs.NativeTrace = Mod_Trace; return true; } #endif #ifdef ZYMOTICMODELS typedef struct zymlump_s { int start; int length; } zymlump_t; typedef struct zymtype1header_s { char id[12]; // "ZYMOTICMODEL", length 12, no termination int type; // 0 (vertex morph) 1 (skeletal pose) or 2 (skeletal scripted) int filesize; // size of entire model file float mins[3], maxs[3], radius; // for clipping uses int numverts; int numtris; int numsurfaces; int numbones; // this may be zero in the vertex morph format (undecided) int numscenes; // 0 in skeletal scripted models // skeletal pose header // lump offsets are relative to the file zymlump_t lump_scenes; // zymscene_t scene[numscenes]; // name and other information for each scene (see zymscene struct) zymlump_t lump_poses; // float pose[numposes][numbones][6]; // animation data zymlump_t lump_bones; // zymbone_t bone[numbones]; zymlump_t lump_vertbonecounts; // int vertbonecounts[numvertices]; // how many bones influence each vertex (separate mainly to make this compress better) zymlump_t lump_verts; // zymvertex_t vert[numvertices]; // see vertex struct zymlump_t lump_texcoords; // float texcoords[numvertices][2]; zymlump_t lump_render; // int renderlist[rendersize]; // sorted by shader with run lengths (int count), shaders are sequentially used, each run can be used with glDrawElements (each triangle is 3 int indices) zymlump_t lump_surfnames; // char shadername[numsurfaces][32]; // shaders used on this model zymlump_t lump_trizone; // byte trizone[numtris]; // see trizone explanation } zymtype1header_t; typedef struct zymbone_s { char name[32]; int flags; int parent; // parent bone number } zymbone_t; typedef struct zymscene_s { char name[32]; float mins[3], maxs[3], radius; // for clipping float framerate; // the scene will animate at this framerate (in frames per second) int flags; int start, length; // range of poses } zymscene_t; #define ZYMSCENEFLAG_NOLOOP 1 typedef struct zymvertex_s { int bonenum; float origin[3]; } zymvertex_t; //this can generate multiple meshes (one for each shader). //but only one set of transforms are ever generated. qboolean Mod_LoadZymoticModel(model_t *mod, void *buffer) { #ifndef SERVERONLY galiasskin_t *skin; shader_t **shaders; int skinfiles; int j; #endif int i; int hunkstart, hunkend, hunktotal; zymtype1header_t *header; galiasinfo_t *root; galisskeletaltransforms_t *transforms; zymvertex_t *intrans; galiasbone_t *bone; zymbone_t *inbone; int v; float multiplier; float *matrix, *inmatrix; vec2_t *stcoords; vec2_t *inst; int *vertbonecounts; galiasgroup_t *grp; zymscene_t *inscene; int *renderlist, count; index_t *indexes; char *surfname; loadmodel=mod; hunkstart = Hunk_LowMark (); header = buffer; if (memcmp(header->id, "ZYMOTICMODEL", 12)) { Con_Printf("Mod_LoadZymoticModel: %s, doesn't appear to BE a zymotic!\n", mod->name); return false; } if (BigLong(header->type) != 1) { Con_Printf("Mod_LoadZymoticModel: %s, only type 1 is supported\n", mod->name); return false; } for (i = 0; i < sizeof(zymtype1header_t)/4; i++) ((int*)header)[i] = BigLong(((int*)header)[i]); if (!header->numverts) { Con_Printf("Mod_LoadZymoticModel: %s, no vertexes\n", mod->name); return false; } if (!header->numsurfaces) { Con_Printf("Mod_LoadZymoticModel: %s, no surfaces\n", mod->name); return false; } VectorCopy(header->mins, mod->mins); VectorCopy(header->maxs, mod->maxs); root = Hunk_AllocName(sizeof(galiasinfo_t)*header->numsurfaces, loadname); root->numswtransforms = header->lump_verts.length/sizeof(zymvertex_t); transforms = Hunk_Alloc(root->numswtransforms*sizeof(*transforms)); root->ofsswtransforms = (char*)transforms - (char*)root; vertbonecounts = (int *)((char*)header + header->lump_vertbonecounts.start); intrans = (zymvertex_t *)((char*)header + header->lump_verts.start); vertbonecounts[0] = BigLong(vertbonecounts[0]); multiplier = 1.0f / vertbonecounts[0]; for (i = 0, v=0; i < root->numswtransforms; i++) { while(!vertbonecounts[v]) { v++; if (v == header->numverts) { Con_Printf("Mod_LoadZymoticModel: %s, too many transformations\n", mod->name); Hunk_FreeToLowMark(hunkstart); return false; } vertbonecounts[v] = BigLong(vertbonecounts[v]); multiplier = 1.0f / vertbonecounts[v]; } transforms[i].vertexindex = v; transforms[i].boneindex = BigLong(intrans[i].bonenum); transforms[i].org[0] = multiplier*BigFloat(intrans[i].origin[0]); transforms[i].org[1] = multiplier*BigFloat(intrans[i].origin[1]); transforms[i].org[2] = multiplier*BigFloat(intrans[i].origin[2]); transforms[i].org[3] = multiplier*1; vertbonecounts[v]--; } if (intrans != (zymvertex_t *)((char*)header + header->lump_verts.start)) { Con_Printf(CON_ERROR "%s, Vertex transforms list appears corrupt.\n", mod->name); Hunk_FreeToLowMark(hunkstart); return false; } if (vertbonecounts != (int *)((char*)header + header->lump_vertbonecounts.start)) { Con_Printf(CON_ERROR "%s, Vertex bone counts list appears corrupt.\n", mod->name); Hunk_FreeToLowMark(hunkstart); return false; } root->numverts = v+1; root->numbones = header->numbones; bone = Hunk_Alloc(root->numswtransforms*sizeof(*transforms)); inbone = (zymbone_t*)((char*)header + header->lump_bones.start); for (i = 0; i < root->numbones; i++) { Q_strncpyz(bone[i].name, inbone[i].name, sizeof(bone[i].name)); bone[i].parent = BigLong(inbone[i].parent); } root->ofsbones = (char *)bone - (char *)root; renderlist = (int*)((char*)header + header->lump_render.start); for (i = 0;i < header->numsurfaces; i++) { count = BigLong(*renderlist++); count *= 3; indexes = Hunk_Alloc(count*sizeof(*indexes)); root[i].ofs_indexes = (char *)indexes - (char*)&root[i]; root[i].numindexes = count; while(count) { //invert indexes[count-1] = BigLong(renderlist[count-3]); indexes[count-2] = BigLong(renderlist[count-2]); indexes[count-3] = BigLong(renderlist[count-1]); count-=3; } renderlist += root[i].numindexes; } if (renderlist != (int*)((char*)header + header->lump_render.start + header->lump_render.length)) { Con_Printf(CON_ERROR "%s, render list appears corrupt.\n", mod->name); Hunk_FreeToLowMark(hunkstart); return false; } grp = Hunk_Alloc(sizeof(*grp)*header->numscenes*header->numsurfaces); matrix = Hunk_Alloc(header->lump_poses.length); inmatrix = (float*)((char*)header + header->lump_poses.start); for (i = 0; i < header->lump_poses.length/4; i++) matrix[i] = BigFloat(inmatrix[i]); inscene = (zymscene_t*)((char*)header + header->lump_scenes.start); surfname = ((char*)header + header->lump_surfnames.start); stcoords = Hunk_Alloc(root[0].numverts*sizeof(vec2_t)); inst = (vec2_t *)((char *)header + header->lump_texcoords.start); for (i = 0; i < header->lump_texcoords.length/8; i++) { stcoords[i][0] = BigFloat(inst[i][0]); stcoords[i][1] = 1-BigFloat(inst[i][1]); //hmm. upside down skin coords? } #ifndef SERVERONLY skinfiles = Mod_BuildSkinFileList(loadmodel->name); if (skinfiles < 1) skinfiles = 1; #endif for (i = 0; i < header->numsurfaces; i++, surfname+=32) { root[i].groups = header->numscenes; root[i].groupofs = (char*)grp - (char*)&root[i]; #ifdef SERVERONLY root[i].numskins = 1; #else root[i].ofs_st_array = (char*)stcoords - (char*)&root[i]; root[i].numskins = skinfiles; skin = Hunk_Alloc((sizeof(galiasskin_t)+sizeof(shader_t*))*skinfiles); shaders = (shader_t**)(skin+skinfiles); for (j = 0; j < skinfiles; j++, shaders++) { skin[j].numshaders = 1; //non-sequenced skins. skin[j].ofsshaders = (char *)shaders - (char *)&skin[j]; Mod_LoadSkinFile(shaders, surfname, j, NULL, 0, 0, NULL); } root[i].ofsskins = (char *)skin - (char *)&root[i]; #endif } for (i = 0; i < header->numscenes; i++, grp++, inscene++) { Q_strncpyz(grp->name, inscene->name, sizeof(grp->name)); grp->isheirachical = 1; grp->rate = BigFloat(inscene->framerate); grp->loop = !(BigLong(inscene->flags) & ZYMSCENEFLAG_NOLOOP); grp->numposes = BigLong(inscene->length); grp->poseofs = (char*)matrix - (char*)grp; grp->poseofs += BigLong(inscene->start)*12*sizeof(float)*root->numbones; } if (inscene != (zymscene_t*)((char*)header + header->lump_scenes.start+header->lump_scenes.length)) { Con_Printf(CON_ERROR "%s, scene list appears corrupt.\n", mod->name); Hunk_FreeToLowMark(hunkstart); return false; } for (i = 0; i < header->numsurfaces-1; i++) root[i].nextsurf = sizeof(galiasinfo_t); for (i = 1; i < header->numsurfaces; i++) { root[i].shares_verts = 0; root[i].numbones = root[0].numbones; root[i].numverts = root[0].numverts; root[i].ofsbones = root[0].ofsbones; root[i-1].nextsurf = sizeof(*root); } Alias_CalculateSkeletalNormals(root); // // move the complete, relocatable alias model to the cache // hunkend = Hunk_LowMark (); mod->flags = Mod_ReadFlagsFromMD1(mod->name, 0); //file replacement - inherit flags from any defunc mdl files. Mod_ClampModelSize(mod); Hunk_Alloc(0); hunktotal = hunkend - hunkstart; Cache_Alloc (&mod->cache, hunktotal, loadname); mod->type = mod_alias; if (!mod->cache.data) { Hunk_FreeToLowMark (hunkstart); return false; } memcpy (mod->cache.data, root, hunktotal); Hunk_FreeToLowMark (hunkstart); mod->funcs.NativeTrace = Mod_Trace; return true; } #endif //ZYMOTICMODELS /////////////////////////////////////////////////////////////// //psk #ifdef PSKMODELS /*Typedefs copied from DarkPlaces*/ typedef struct pskchunk_s { // id is one of the following: // .psk: // ACTRHEAD (recordsize = 0, numrecords = 0) // PNTS0000 (recordsize = 12, pskpnts_t) // VTXW0000 (recordsize = 16, pskvtxw_t) // FACE0000 (recordsize = 12, pskface_t) // MATT0000 (recordsize = 88, pskmatt_t) // REFSKELT (recordsize = 120, pskboneinfo_t) // RAWWEIGHTS (recordsize = 12, pskrawweights_t) // .psa: // ANIMHEAD (recordsize = 0, numrecords = 0) // BONENAMES (recordsize = 120, pskboneinfo_t) // ANIMINFO (recordsize = 168, pskaniminfo_t) // ANIMKEYS (recordsize = 32, pskanimkeys_t) char id[20]; // in .psk always 0x1e83b9 // in .psa always 0x2e int version; int recordsize; int numrecords; } pskchunk_t; typedef struct pskpnts_s { float origin[3]; } pskpnts_t; typedef struct pskvtxw_s { unsigned short pntsindex; // index into PNTS0000 chunk unsigned char unknown1[2]; // seems to be garbage float texcoord[2]; unsigned char mattindex; // index into MATT0000 chunk unsigned char unknown2; // always 0? unsigned char unknown3[2]; // seems to be garbage } pskvtxw_t; typedef struct pskface_s { unsigned short vtxwindex[3]; // triangle unsigned char mattindex; // index into MATT0000 chunk unsigned char unknown; // seems to be garbage unsigned int group; // faces seem to be grouped, possibly for smoothing? } pskface_t; typedef struct pskmatt_s { char name[64]; int unknown[6]; // observed 0 0 0 0 5 0 } pskmatt_t; typedef struct pskpose_s { float quat[4]; float origin[3]; float unknown; // probably a float, always seems to be 0 float size[3]; } pskpose_t; typedef struct pskboneinfo_s { char name[64]; int unknown1; int numchildren; int parent; // root bones have 0 here pskpose_t basepose; } pskboneinfo_t; typedef struct pskrawweights_s { float weight; int pntsindex; int boneindex; } pskrawweights_t; typedef struct pskaniminfo_s { char name[64]; char group[64]; int numbones; int unknown1; int unknown2; int unknown3; float unknown4; float playtime; // not really needed float fps; // frames per second int unknown5; int firstframe; int numframes; // firstanimkeys = (firstframe + frameindex) * numbones } pskaniminfo_t; typedef struct pskanimkeys_s { float origin[3]; float quat[4]; float frametime; } pskanimkeys_t; qboolean Mod_LoadPSKModel(model_t *mod, void *buffer) { pskchunk_t *chunk; unsigned int pos = 0; unsigned int i, j; qboolean fail = false; char basename[MAX_QPATH]; galiasinfo_t *gmdl; #ifndef SERVERONLY float *stcoord; galiasskin_t *skin; shader_t **gshaders; #endif galiasbone_t *bones; galiasgroup_t *group; float *animmatrix, *basematrix; index_t *indexes; float vrad; int bonemap[MAX_BONES]; char *e; pskpnts_t *pnts = NULL; pskvtxw_t *vtxw = NULL; pskface_t *face = NULL; pskmatt_t *matt = NULL; pskboneinfo_t *boneinfo = NULL; pskrawweights_t *rawweights = NULL; unsigned int num_pnts, num_vtxw=0, num_face=0, num_matt = 0, num_boneinfo=0, num_rawweights=0; pskaniminfo_t *animinfo = NULL; pskanimkeys_t *animkeys = NULL; unsigned int num_animinfo=0, num_animkeys=0; int hunkstart, hunkend, hunktotal; //#define PSK_GPU #ifndef PSK_GPU unsigned int num_trans; galisskeletaltransforms_t *trans; #else vecV_t *skel_xyz; vec3_t *skel_norm; byte_vec4_t *skel_idx; vec4_t *skel_weights; #endif /*load the psk*/ while (pos < com_filesize && !fail) { chunk = (pskchunk_t*)((char*)buffer + pos); chunk->version = LittleLong(chunk->version); chunk->recordsize = LittleLong(chunk->recordsize); chunk->numrecords = LittleLong(chunk->numrecords); pos += sizeof(*chunk); if (!strcmp("ACTRHEAD", chunk->id) && chunk->recordsize == 0 && chunk->numrecords == 0) { } else if (!strcmp("PNTS0000", chunk->id) && chunk->recordsize == sizeof(pskpnts_t)) { num_pnts = chunk->numrecords; pnts = (pskpnts_t*)((char*)buffer + pos); pos += chunk->recordsize * chunk->numrecords; for (i = 0; i < num_pnts; i++) { pnts[i].origin[0] = LittleFloat(pnts[i].origin[0]); pnts[i].origin[1] = LittleFloat(pnts[i].origin[1]); pnts[i].origin[2] = LittleFloat(pnts[i].origin[2]); } } else if (!strcmp("VTXW0000", chunk->id) && chunk->recordsize == sizeof(pskvtxw_t)) { num_vtxw = chunk->numrecords; vtxw = (pskvtxw_t*)((char*)buffer + pos); pos += chunk->recordsize * chunk->numrecords; for (i = 0; i < num_vtxw; i++) { vtxw[i].pntsindex = LittleShort(vtxw[i].pntsindex); vtxw[i].texcoord[0] = LittleFloat(vtxw[i].texcoord[0]); vtxw[i].texcoord[1] = LittleFloat(vtxw[i].texcoord[1]); } } else if (!strcmp("FACE0000", chunk->id) && chunk->recordsize == sizeof(pskface_t)) { num_face = chunk->numrecords; face = (pskface_t*)((char*)buffer + pos); pos += chunk->recordsize * chunk->numrecords; for (i = 0; i < num_face; i++) { face[i].vtxwindex[0] = LittleShort(face[i].vtxwindex[0]); face[i].vtxwindex[1] = LittleShort(face[i].vtxwindex[1]); face[i].vtxwindex[2] = LittleShort(face[i].vtxwindex[2]); } } else if (!strcmp("MATT0000", chunk->id) && chunk->recordsize == sizeof(pskmatt_t)) { num_matt = chunk->numrecords; matt = (pskmatt_t*)((char*)buffer + pos); pos += chunk->recordsize * chunk->numrecords; } else if (!strcmp("REFSKELT", chunk->id) && chunk->recordsize == sizeof(pskboneinfo_t)) { num_boneinfo = chunk->numrecords; boneinfo = (pskboneinfo_t*)((char*)buffer + pos); pos += chunk->recordsize * chunk->numrecords; for (i = 0; i < num_boneinfo; i++) { boneinfo[i].parent = LittleLong(boneinfo[i].parent); boneinfo[i].basepose.origin[0] = LittleFloat(boneinfo[i].basepose.origin[0]); boneinfo[i].basepose.origin[1] = LittleFloat(boneinfo[i].basepose.origin[1]); boneinfo[i].basepose.origin[2] = LittleFloat(boneinfo[i].basepose.origin[2]); boneinfo[i].basepose.quat[0] = LittleFloat(boneinfo[i].basepose.quat[0]); boneinfo[i].basepose.quat[1] = LittleFloat(boneinfo[i].basepose.quat[1]); boneinfo[i].basepose.quat[2] = LittleFloat(boneinfo[i].basepose.quat[2]); boneinfo[i].basepose.quat[3] = LittleFloat(boneinfo[i].basepose.quat[3]); boneinfo[i].basepose.size[0] = LittleFloat(boneinfo[i].basepose.size[0]); boneinfo[i].basepose.size[1] = LittleFloat(boneinfo[i].basepose.size[1]); boneinfo[i].basepose.size[2] = LittleFloat(boneinfo[i].basepose.size[2]); /*not sure if this is needed, but mimic DP*/ if (i) { boneinfo[i].basepose.quat[0] *= -1; boneinfo[i].basepose.quat[2] *= -1; } boneinfo[i].basepose.quat[1] *= -1; } } else if (!strcmp("RAWWEIGHTS", chunk->id) && chunk->recordsize == sizeof(pskrawweights_t)) { num_rawweights = chunk->numrecords; rawweights = (pskrawweights_t*)((char*)buffer + pos); pos += chunk->recordsize * chunk->numrecords; for (i = 0; i < num_rawweights; i++) { rawweights[i].boneindex = LittleLong(rawweights[i].boneindex); rawweights[i].pntsindex = LittleLong(rawweights[i].pntsindex); rawweights[i].weight = LittleFloat(rawweights[i].weight); } } else { Con_Printf(CON_ERROR "%s has unsupported chunk %s of %i size with version %i.\n", mod->name, chunk->id, chunk->recordsize, chunk->version); fail = true; } } if (!num_matt) fail = true; if (!pnts || !vtxw || !face || !matt || !boneinfo || !rawweights) fail = true; /*attempt to load a psa file. don't die if we can't find one*/ COM_StripExtension(mod->name, basename, sizeof(basename)); buffer = COM_LoadTempMoreFile(va("%s.psa", basename)); if (buffer) { pos = 0; while (pos < com_filesize && !fail) { chunk = (pskchunk_t*)((char*)buffer + pos); chunk->version = LittleLong(chunk->version); chunk->recordsize = LittleLong(chunk->recordsize); chunk->numrecords = LittleLong(chunk->numrecords); pos += sizeof(*chunk); if (!strcmp("ANIMHEAD", chunk->id) && chunk->recordsize == 0 && chunk->numrecords == 0) { } else if (!strcmp("BONENAMES", chunk->id) && chunk->recordsize == sizeof(pskboneinfo_t)) { /*parsed purely to ensure that the bones match the main model*/ pskboneinfo_t *animbones = (pskboneinfo_t*)((char*)buffer + pos); pos += chunk->recordsize * chunk->numrecords; if (num_boneinfo != chunk->numrecords) { fail = true; Con_Printf("PSK/PSA bone counts do not match\n"); } else { for (i = 0; i < num_boneinfo; i++) { /*assumption: 1:1 mapping will be common*/ if (!strcmp(boneinfo[i].name, animbones[i].name)) bonemap[i] = i; else { /*non 1:1 mapping*/ for (j = 0; j < chunk->numrecords; j++) { if (!strcmp(boneinfo[i].name, animbones[j].name)) { bonemap[i] = j; break; } } if (j == chunk->numrecords) { fail = true; Con_Printf("PSK bone %s does not exist in PSA %s\n", boneinfo[i].name, basename); break; } } } } } else if (!strcmp("ANIMINFO", chunk->id) && chunk->recordsize == sizeof(pskaniminfo_t)) { num_animinfo = chunk->numrecords; animinfo = (pskaniminfo_t*)((char*)buffer + pos); pos += chunk->recordsize * chunk->numrecords; for (i = 0; i < num_animinfo; i++) { animinfo[i].firstframe = LittleLong(animinfo[i].firstframe); animinfo[i].numframes = LittleLong(animinfo[i].numframes); animinfo[i].numbones = LittleLong(animinfo[i].numbones); animinfo[i].fps = LittleFloat(animinfo[i].fps); animinfo[i].playtime = LittleFloat(animinfo[i].playtime); } } else if (!strcmp("ANIMKEYS", chunk->id) && chunk->recordsize == sizeof(pskanimkeys_t)) { num_animkeys = chunk->numrecords; animkeys = (pskanimkeys_t*)((char*)buffer + pos); pos += chunk->recordsize * chunk->numrecords; for (i = 0; i < num_animkeys; i++) { animkeys[i].origin[0] = LittleFloat(animkeys[i].origin[0]); animkeys[i].origin[1] = LittleFloat(animkeys[i].origin[1]); animkeys[i].origin[2] = LittleFloat(animkeys[i].origin[2]); animkeys[i].quat[0] = LittleFloat(animkeys[i].quat[0]); animkeys[i].quat[1] = LittleFloat(animkeys[i].quat[1]); animkeys[i].quat[2] = LittleFloat(animkeys[i].quat[2]); animkeys[i].quat[3] = LittleFloat(animkeys[i].quat[3]); /*not sure if this is needed, but mimic DP*/ if (i%num_boneinfo) { animkeys[i].quat[0] *= -1; animkeys[i].quat[2] *= -1; } animkeys[i].quat[1] *= -1; } } else if (!strcmp("SCALEKEYS", chunk->id) && chunk->recordsize == 16) { pos += chunk->recordsize * chunk->numrecords; } else { Con_Printf(CON_ERROR "%s has unsupported chunk %s of %i size with version %i.\n", va("%s.psa", basename), chunk->id, chunk->recordsize, chunk->version); fail = true; } } if (fail) { animinfo = NULL; num_animinfo = 0; animkeys = NULL; num_animkeys = 0; fail = false; } } if (fail) { return false; } hunkstart = Hunk_LowMark (); gmdl = Hunk_Alloc(sizeof(*gmdl)*num_matt); /*bones!*/ bones = Hunk_Alloc(sizeof(galiasbone_t) * num_boneinfo); for (i = 0; i < num_boneinfo; i++) { Q_strncpyz(bones[i].name, boneinfo[i].name, sizeof(bones[i].name)); e = bones[i].name + strlen(bones[i].name); while(e > bones[i].name && e[-1] == ' ') *--e = 0; bones[i].parent = boneinfo[i].parent; if (i == 0 && bones[i].parent == 0) bones[i].parent = -1; else if (bones[i].parent >= i || bones[i].parent < -1) { Con_Printf("Invalid bones\n"); break; } } basematrix = Hunk_Alloc(num_boneinfo*sizeof(float)*12); for (i = 0; i < num_boneinfo; i++) { float tmp[12]; PSKGenMatrix( boneinfo[i].basepose.origin[0], boneinfo[i].basepose.origin[1], boneinfo[i].basepose.origin[2], boneinfo[i].basepose.quat[0], boneinfo[i].basepose.quat[1], boneinfo[i].basepose.quat[2], boneinfo[i].basepose.quat[3], tmp); if (bones[i].parent < 0) memcpy(basematrix + i*12, tmp, sizeof(float)*12); else R_ConcatTransforms((void*)(basematrix + bones[i].parent*12), (void*)tmp, (void*)(basematrix+i*12)); } for (i = 0; i < num_boneinfo; i++) { Matrix3x4_Invert_Simple(basematrix+i*12, bones[i].inverse); } #ifndef PSK_GPU /*expand the translations*/ num_trans = 0; for (i = 0; i < num_vtxw; i++) { for (j = 0; j < num_rawweights; j++) { if (rawweights[j].pntsindex == vtxw[i].pntsindex) { num_trans++; } } } trans = Hunk_Alloc(sizeof(*trans)*num_trans); num_trans = 0; for (i = 0; i < num_vtxw; i++) { // first_trans = num_trans; for (j = 0; j < num_rawweights; j++) { if (rawweights[j].pntsindex == vtxw[i].pntsindex) { vec3_t tmp; trans[num_trans].vertexindex = i; trans[num_trans].boneindex = rawweights[j].boneindex; VectorTransform(pnts[rawweights[j].pntsindex].origin, (void*)bones[rawweights[j].boneindex].inverse, tmp); VectorScale(tmp, rawweights[j].weight, trans[num_trans].org); trans[num_trans].org[3] = rawweights[j].weight; num_trans++; } } } #else skel_xyz = Hunk_Alloc(sizeof(*skel_xyz) * num_vtxw); skel_norm = Hunk_Alloc(sizeof(*skel_norm) * num_vtxw); skel_idx = Hunk_Alloc(sizeof(*skel_idx) * num_vtxw); skel_weights = Hunk_Alloc(sizeof(*skel_weights) * num_vtxw); for (i = 0; i < num_vtxw; i++) { float t; *(unsigned int*)skel_idx[i] = ~0; for (j = 0; j < num_rawweights; j++) { if (rawweights[j].pntsindex == vtxw[i].pntsindex) { int in, lin = -1; float liv = rawweights[j].weight; for (in = 0; in < 4; in++) { if (liv > skel_weights[i][in]) { liv = skel_weights[i][in]; lin = in; if (!liv) break; } } if (lin >= 0) { skel_idx[i][lin] = rawweights[j].boneindex; skel_weights[i][lin] = rawweights[j].weight; } } } t = 0; for (j = 0; j < 4; j++) t += skel_weights[i][j]; if (t != 1) for (j = 0; j < 4; j++) skel_weights[i][j] *= 1/t; skel_xyz[i][0] = pnts[vtxw[i].pntsindex].origin[0]; skel_xyz[i][1] = pnts[vtxw[i].pntsindex].origin[1]; skel_xyz[i][2] = pnts[vtxw[i].pntsindex].origin[2]; } #endif #ifndef SERVERONLY /*st coords, all share the same list*/ stcoord = Hunk_Alloc(sizeof(vec2_t)*num_vtxw); for (i = 0; i < num_vtxw; i++) { stcoord[i*2+0] = vtxw[i].texcoord[0]; stcoord[i*2+1] = vtxw[i].texcoord[1]; } #endif /*allocate faces in a single block, as we at least know an upper bound*/ indexes = Hunk_Alloc(sizeof(index_t)*num_face*3); if (animinfo && animkeys) { int numgroups = 0; frameinfo_t *frameinfo = ParseFrameInfo(mod->name, &numgroups); if (numgroups) { /*externally supplied listing of frames. ignore all framegroups in the model and use only the pose info*/ group = Hunk_Alloc(sizeof(galiasgroup_t)*numgroups + num_animkeys*sizeof(float)*12); animmatrix = (float*)(group+numgroups); for (j = 0; j < numgroups; j++) { //FIXME: bound check group[j].poseofs = ((char*)animmatrix - (char*)&group[j]) + sizeof(float)*12*num_boneinfo*frameinfo[j].firstpose; group[j].numposes = frameinfo[j].posecount; if (*frameinfo[j].name) snprintf(group[j].name, sizeof(group[j].name), "%s", frameinfo[j].name); else snprintf(group[j].name, sizeof(group[j].name), "frame_%i", j); group[j].loop = frameinfo[j].loop; group[j].rate = frameinfo[j].fps; group[j].isheirachical = true; } num_animinfo = numgroups; } else if (dpcompat_psa_ungroup.ival) { /*unpack each frame of each animation to be a separate framegroup*/ unsigned int iframe; /*individual frame count*/ iframe = 0; for (i = 0; i < num_animinfo; i++) iframe += animinfo[i].numframes; group = Hunk_Alloc(sizeof(galiasgroup_t)*iframe + num_animkeys*sizeof(float)*12); animmatrix = (float*)(group+iframe); iframe = 0; for (j = 0; j < num_animinfo; j++) { for (i = 0; i < animinfo[j].numframes; i++) { group[iframe].poseofs = ((char*)animmatrix - (char*)&group[iframe]) + sizeof(float)*12*num_boneinfo*(animinfo[j].firstframe+i); group[iframe].numposes = 1; snprintf(group[iframe].name, sizeof(group[iframe].name), "%s_%i", animinfo[j].name, i); group[iframe].loop = true; group[iframe].rate = animinfo[j].fps; group[iframe].isheirachical = true; iframe++; } } num_animinfo = iframe; } else { /*keep each framegroup as a group*/ group = Hunk_Alloc(sizeof(galiasgroup_t)*num_animinfo + num_animkeys*sizeof(float)*12); animmatrix = (float*)(group+num_animinfo); for (i = 0; i < num_animinfo; i++) { group[i].poseofs = (char*)animmatrix - (char*)&group[i] + sizeof(float)*12*num_boneinfo*animinfo[i].firstframe; group[i].numposes = animinfo[i].numframes; Q_strncpyz(group[i].name, animinfo[i].name, sizeof(group[i].name)); group[i].loop = true; group[i].rate = animinfo[i].fps; group[i].isheirachical = true; } } for (j = 0; j < num_animkeys; j += num_boneinfo) { pskanimkeys_t *sb; for (i = 0; i < num_boneinfo; i++) { sb = &animkeys[j + bonemap[i]]; PSKGenMatrix( sb->origin[0], sb->origin[1], sb->origin[2], sb->quat[0], sb->quat[1], sb->quat[2], sb->quat[3], animmatrix + (j+i)*12); } } } else { num_animinfo = 1; /*build a base pose*/ group = Hunk_Alloc(sizeof(galiasgroup_t) + num_boneinfo*sizeof(float)*12); animmatrix = basematrix; group->poseofs = (char*)animmatrix - (char*)group; group->numposes = 1; strcpy(group->name, "base"); group->loop = true; group->rate = 10; group->isheirachical = false; } #ifndef SERVERONLY skin = Hunk_Alloc(num_matt * (sizeof(galiasskin_t) + sizeof(shader_t*))); gshaders = (shader_t**)(skin + num_matt); for (i = 0; i < num_matt; i++, skin++) { skin->ofsshaders = (char*)&gshaders[i] - (char*)skin; skin->numshaders = 1; skin->skinspeed = 10; Q_strncpyz(skin->name, matt[i].name, sizeof(skin->name)); gshaders[i] = R_RegisterSkin(matt[i].name, mod->name); R_BuildDefaultTexnums(NULL, gshaders[i]); if (gshaders[i]->flags & SHADER_NOIMAGE) Con_Printf("Unable to load texture for shader \"%s\" for model \"%s\"\n", gshaders[i]->name, loadmodel->name); gmdl[i].ofsskins = (char*)skin - (char*)&gmdl[i]; gmdl[i].numskins = 1; gmdl[i].ofs_st_array = (char*)stcoord - (char*)&gmdl[i]; gmdl[i].numverts = num_vtxw; #else for (i = 0; i < num_matt; i++) { #endif gmdl[i].groupofs = (char*)group - (char*)&gmdl[i]; gmdl[i].groups = num_animinfo; gmdl[i].baseframeofs = (char*)basematrix - (char*)&gmdl[i]; gmdl[i].numindexes = 0; for (j = 0; j < num_face; j++) { if (face[j].mattindex%num_matt == i) { indexes[gmdl[i].numindexes+0] = face[j].vtxwindex[0]; indexes[gmdl[i].numindexes+1] = face[j].vtxwindex[1]; indexes[gmdl[i].numindexes+2] = face[j].vtxwindex[2]; gmdl[i].numindexes += 3; } } gmdl[i].ofs_indexes = (char*)indexes - (char*)&gmdl[i]; indexes += gmdl[i].numindexes; gmdl[i].ofsbones = (char*)bones - (char*)&gmdl[i]; gmdl[i].numbones = num_boneinfo; #ifndef PSK_GPU gmdl[i].ofsswtransforms = (char*)trans - (char*)&gmdl[i]; gmdl[i].numswtransforms = num_trans; #else gmdl[i].ofs_skel_idx = (char*)skel_idx - (char*)&gmdl[i]; gmdl[i].ofs_skel_weight = (char*)skel_weights - (char*)&gmdl[i]; gmdl[i].ofs_skel_xyz = (char*)skel_xyz - (char*)&gmdl[i]; gmdl[i].ofs_skel_norm = (char*)skel_norm - (char*)&gmdl[i]; #endif gmdl[i].shares_verts = 0; gmdl[i].shares_bones = 0; gmdl[i].nextsurf = (i != num_matt-1)?sizeof(*gmdl):0; } if (fail) { return false; } vrad = Alias_CalculateSkeletalNormals(gmdl); mod->mins[0] = mod->mins[1] = mod->mins[2] = -vrad; mod->maxs[0] = mod->maxs[1] = mod->maxs[2] = vrad; mod->radius = vrad; // // move the complete, relocatable alias model to the cache // hunkend = Hunk_LowMark (); mod->flags = Mod_ReadFlagsFromMD1(mod->name, 0); //file replacement - inherit flags from any defunc mdl files. Mod_ClampModelSize(mod); Hunk_Alloc(0); hunktotal = hunkend - hunkstart; Cache_Alloc (&mod->cache, hunktotal, loadname); mod->type = mod_alias; if (!mod->cache.data) { Hunk_FreeToLowMark (hunkstart); return false; } memcpy (mod->cache.data, gmdl, hunktotal); Hunk_FreeToLowMark (hunkstart); mod->funcs.NativeTrace = Mod_Trace; return true; } #endif ////////////////////////////////////////////////////////////// //dpm #ifdef DPMMODELS // header for the entire file typedef struct dpmheader_s { char id[16]; // "DARKPLACESMODEL\0", length 16 unsigned int type; // 2 (hierarchical skeletal pose) unsigned int filesize; // size of entire model file float mins[3], maxs[3], yawradius, allradius; // for clipping uses // these offsets are relative to the file unsigned int num_bones; unsigned int num_meshs; unsigned int num_frames; unsigned int ofs_bones; // dpmbone_t bone[num_bones]; unsigned int ofs_meshs; // dpmmesh_t mesh[num_meshs]; unsigned int ofs_frames; // dpmframe_t frame[num_frames]; } dpmheader_t; // there may be more than one of these typedef struct dpmmesh_s { // these offsets are relative to the file char shadername[32]; // name of the shader to use unsigned int num_verts; unsigned int num_tris; unsigned int ofs_verts; // dpmvertex_t vert[numvertices]; // see vertex struct unsigned int ofs_texcoords; // float texcoords[numvertices][2]; unsigned int ofs_indices; // unsigned int indices[numtris*3]; // designed for glDrawElements (each triangle is 3 unsigned int indices) unsigned int ofs_groupids; // unsigned int groupids[numtris]; // the meaning of these values is entirely up to the gamecode and modeler } dpmmesh_t; // if set on a bone, it must be protected from removal #define DPMBONEFLAG_ATTACHMENT 1 // one per bone typedef struct dpmbone_s { // name examples: upperleftarm leftfinger1 leftfinger2 hand, etc char name[32]; // parent bone number signed int parent; // flags for the bone unsigned int flags; } dpmbone_t; // a bonepose matrix is intended to be used like this: // (n = output vertex, v = input vertex, m = matrix, f = influence) // n[0] = v[0] * m[0][0] + v[1] * m[0][1] + v[2] * m[0][2] + f * m[0][3]; // n[1] = v[0] * m[1][0] + v[1] * m[1][1] + v[2] * m[1][2] + f * m[1][3]; // n[2] = v[0] * m[2][0] + v[1] * m[2][1] + v[2] * m[2][2] + f * m[2][3]; typedef struct dpmbonepose_s { float matrix[3][4]; } dpmbonepose_t; // immediately followed by bone positions for the frame typedef struct dpmframe_s { // name examples: idle_1 idle_2 idle_3 shoot_1 shoot_2 shoot_3, etc char name[32]; float mins[3], maxs[3], yawradius, allradius; int ofs_bonepositions; // dpmbonepose_t bonepositions[bones]; } dpmframe_t; // one or more of these per vertex typedef struct dpmbonevert_s { float origin[3]; // vertex location (these blend) float influence; // influence fraction (these must add up to 1) float normal[3]; // surface normal (these blend) unsigned int bonenum; // number of the bone } dpmbonevert_t; // variable size, parsed sequentially typedef struct dpmvertex_s { unsigned int numbones; // immediately followed by 1 or more dpmbonevert_t structures } dpmvertex_t; qboolean Mod_LoadDarkPlacesModel(model_t *mod, void *buffer) { #ifndef SERVERONLY galiasskin_t *skin; shader_t **shaders; int skinfiles; float *inst; float *outst; #endif int i, j, k; int hunkstart, hunkend, hunktotal; dpmheader_t *header; galiasinfo_t *root, *m; dpmmesh_t *mesh; dpmvertex_t *vert; dpmbonevert_t *bonevert; galisskeletaltransforms_t *transforms; galiasbone_t *outbone; dpmbone_t *inbone; float *outposedata; galiasgroup_t *outgroups; float *inposedata; dpmframe_t *inframes; unsigned int *index; index_t *outdex; // groan... int numtransforms; int numverts; loadmodel=mod; hunkstart = Hunk_LowMark (); header = buffer; if (memcmp(header->id, "DARKPLACESMODEL\0", 16)) { Con_Printf(CON_ERROR "Mod_LoadDarkPlacesModel: %s, doesn't appear to be a darkplaces model!\n", mod->name); return false; } if (BigLong(header->type) != 2) { Con_Printf(CON_ERROR "Mod_LoadDarkPlacesModel: %s, only type 2 is supported\n", mod->name); return false; } for (i = 0; i < sizeof(dpmheader_t)/4; i++) ((int*)header)[i] = BigLong(((int*)header)[i]); if (!header->num_bones) { Con_Printf(CON_ERROR "Mod_LoadDarkPlacesModel: %s, no bones\n", mod->name); return false; } if (!header->num_frames) { Con_Printf(CON_ERROR "Mod_LoadDarkPlacesModel: %s, no frames\n", mod->name); return false; } if (!header->num_meshs) { Con_Printf(CON_ERROR "Mod_LoadDarkPlacesModel: %s, no surfaces\n", mod->name); return false; } VectorCopy(header->mins, mod->mins); VectorCopy(header->maxs, mod->maxs); root = Hunk_AllocName(sizeof(galiasinfo_t)*header->num_meshs, loadname); mesh = (dpmmesh_t*)((char*)buffer + header->ofs_meshs); for (i = 0; i < header->num_meshs; i++, mesh++) { //work out how much memory we need to allocate mesh->num_verts = BigLong(mesh->num_verts); mesh->num_tris = BigLong(mesh->num_tris); mesh->ofs_verts = BigLong(mesh->ofs_verts); mesh->ofs_texcoords = BigLong(mesh->ofs_texcoords); mesh->ofs_indices = BigLong(mesh->ofs_indices); mesh->ofs_groupids = BigLong(mesh->ofs_groupids); numverts = mesh->num_verts; numtransforms = 0; //count and byteswap the transformations vert = (dpmvertex_t*)((char *)buffer+mesh->ofs_verts); for (j = 0; j < mesh->num_verts; j++) { vert->numbones = BigLong(vert->numbones); numtransforms += vert->numbones; bonevert = (dpmbonevert_t*)(vert+1); vert = (dpmvertex_t*)(bonevert+vert->numbones); } m = &root[i]; #ifdef SERVERONLY transforms = Hunk_AllocName(numtransforms*sizeof(galisskeletaltransforms_t) + mesh->num_tris*3*sizeof(index_t), loadname); #else outst = Hunk_AllocName(numverts*sizeof(vec2_t) + numtransforms*sizeof(galisskeletaltransforms_t) + mesh->num_tris*3*sizeof(index_t), loadname); m->ofs_st_array = (char*)outst - (char*)m; m->numverts = mesh->num_verts; inst = (float*)((char*)buffer + mesh->ofs_texcoords); for (j = 0; j < numverts; j++, outst+=2, inst+=2) { outst[0] = BigFloat(inst[0]); outst[1] = BigFloat(inst[1]); } transforms = (galisskeletaltransforms_t*)outst; #endif //build the transform list. m->ofsswtransforms = (char*)transforms - (char*)m; m->numswtransforms = numtransforms; vert = (dpmvertex_t*)((char *)buffer+mesh->ofs_verts); for (j = 0; j < mesh->num_verts; j++) { bonevert = (dpmbonevert_t*)(vert+1); for (k = 0; k < vert->numbones; k++, bonevert++, transforms++) { transforms->boneindex = BigLong(bonevert->bonenum); transforms->vertexindex = j; transforms->org[0] = BigFloat(bonevert->origin[0]); transforms->org[1] = BigFloat(bonevert->origin[1]); transforms->org[2] = BigFloat(bonevert->origin[2]); transforms->org[3] = BigFloat(bonevert->influence); //do nothing with the normals. :( } vert = (dpmvertex_t*)bonevert; } index = (unsigned int*)((char*)buffer + mesh->ofs_indices); outdex = (index_t *)transforms; m->ofs_indexes = (char*)outdex - (char*)m; m->numindexes = mesh->num_tris*3; for (j = 0; j < m->numindexes; j++) { *outdex++ = BigLong(*index++); } } outbone = Hunk_Alloc(sizeof(galiasbone_t)*header->num_bones); inbone = (dpmbone_t*)((char*)buffer + header->ofs_bones); for (i = 0; i < header->num_bones; i++) { outbone[i].parent = BigLong(inbone[i].parent); if (outbone[i].parent >= i || outbone[i].parent < -1) { Con_Printf(CON_ERROR "Mod_LoadDarkPlacesModel: bad bone index in %s\n", mod->name); Hunk_FreeToLowMark(hunkstart); return false; } Q_strncpyz(outbone[i].name, inbone[i].name, sizeof(outbone[i].name)); //throw away the flags. } outgroups = Hunk_Alloc(sizeof(galiasgroup_t)*header->num_frames + sizeof(float)*header->num_frames*header->num_bones*12); outposedata = (float*)(outgroups+header->num_frames); inframes = (dpmframe_t*)((char*)buffer + header->ofs_frames); for (i = 0; i < header->num_frames; i++) { inframes[i].ofs_bonepositions = BigLong(inframes[i].ofs_bonepositions); inframes[i].allradius = BigLong(inframes[i].allradius); inframes[i].yawradius = BigLong(inframes[i].yawradius); inframes[i].mins[0] = BigLong(inframes[i].mins[0]); inframes[i].mins[1] = BigLong(inframes[i].mins[1]); inframes[i].mins[2] = BigLong(inframes[i].mins[2]); inframes[i].maxs[0] = BigLong(inframes[i].maxs[0]); inframes[i].maxs[1] = BigLong(inframes[i].maxs[1]); inframes[i].maxs[2] = BigLong(inframes[i].maxs[2]); Q_strncpyz(outgroups[i].name, inframes[i].name, sizeof(outgroups[i].name)); outgroups[i].rate = 10; outgroups[i].numposes = 1; outgroups[i].isheirachical = true; outgroups[i].poseofs = (char*)outposedata - (char*)&outgroups[i]; inposedata = (float*)((char*)buffer + inframes[i].ofs_bonepositions); for (j = 0; j < header->num_bones*12; j++) *outposedata++ = BigFloat(*inposedata++); } #ifndef SERVERONLY skinfiles = Mod_BuildSkinFileList(loadmodel->name); if (skinfiles < 1) skinfiles = 1; #endif mesh = (dpmmesh_t*)((char*)buffer + header->ofs_meshs); for (i = 0; i < header->num_meshs; i++, mesh++) { m = &root[i]; if (i < header->num_meshs-1) m->nextsurf = sizeof(galiasinfo_t); m->shares_bones = 0; m->ofsbones = (char*)outbone-(char*)m; m->numbones = header->num_bones; m->groups = header->num_frames; m->groupofs = (char*)outgroups - (char*)m; #ifdef SERVERONLY m->numskins = 1; #else m->numskins = skinfiles; skin = Hunk_Alloc((sizeof(galiasskin_t)+sizeof(shader_t*))*skinfiles); shaders = (shader_t**)(skin+skinfiles); for (j = 0; j < skinfiles; j++, shaders++) { skin[j].numshaders = 1; //non-sequenced skins. skin[j].ofsshaders = (char *)shaders - (char *)&skin[j]; Mod_LoadSkinFile(shaders, mesh->shadername, j, NULL, 0, 0, NULL); } m->ofsskins = (char *)skin - (char *)m; #endif } Alias_CalculateSkeletalNormals(root); // // move the complete, relocatable alias model to the cache // hunkend = Hunk_LowMark (); mod->flags = Mod_ReadFlagsFromMD1(mod->name, 0); //file replacement - inherit flags from any defunc mdl files. Mod_ClampModelSize(mod); Hunk_Alloc(0); hunktotal = hunkend - hunkstart; Cache_Alloc (&mod->cache, hunktotal, loadname); mod->type = mod_alias; if (!mod->cache.data) { Hunk_FreeToLowMark (hunkstart); return false; } memcpy (mod->cache.data, root, hunktotal); Hunk_FreeToLowMark (hunkstart); mod->funcs.NativeTrace = Mod_Trace; return true; } #endif //DPMMODELS #ifdef INTERQUAKEMODELS #define IQM_MAGIC "INTERQUAKEMODEL" #define IQM_VERSION1 1 #define IQM_VERSION2 2 struct iqmheader { char magic[16]; unsigned int version; unsigned int filesize; unsigned int flags; unsigned int num_text, ofs_text; unsigned int num_meshes, ofs_meshes; unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays; unsigned int num_triangles, ofs_triangles, ofs_adjacency; unsigned int num_joints, ofs_joints; unsigned int num_poses, ofs_poses; unsigned int num_anims, ofs_anims; unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds; unsigned int num_comment, ofs_comment; unsigned int num_extensions, ofs_extensions; }; struct iqmmesh { unsigned int name; unsigned int material; unsigned int first_vertex, num_vertexes; unsigned int first_triangle, num_triangles; }; enum { IQM_POSITION = 0, IQM_TEXCOORD = 1, IQM_NORMAL = 2, IQM_TANGENT = 3, IQM_BLENDINDEXES = 4, IQM_BLENDWEIGHTS = 5, IQM_COLOR = 6, IQM_CUSTOM = 0x10 }; enum { IQM_BYTE = 0, IQM_UBYTE = 1, IQM_SHORT = 2, IQM_USHORT = 3, IQM_INT = 4, IQM_UINT = 5, IQM_HALF = 6, IQM_FLOAT = 7, IQM_DOUBLE = 8, }; struct iqmtriangle { unsigned int vertex[3]; }; struct iqmjoint1 { unsigned int name; int parent; float translate[3], rotate[3], scale[3]; }; struct iqmjoint2 { unsigned int name; int parent; float translate[3], rotate[4], scale[3]; }; struct iqmpose1 { int parent; unsigned int mask; float channeloffset[9]; float channelscale[9]; }; struct iqmpose2 { int parent; unsigned int mask; float channeloffset[10]; float channelscale[10]; }; struct iqmanim { unsigned int name; unsigned int first_frame, num_frames; float framerate; unsigned int flags; }; enum { IQM_LOOP = 1<<0 }; struct iqmvertexarray { unsigned int type; unsigned int flags; unsigned int format; unsigned int size; unsigned int offset; }; struct iqmbounds { float bbmin[3], bbmax[3]; float xyradius, radius; }; /* galisskeletaltransforms_t *IQM_ImportTransforms(int *resultcount, int inverts, float *vpos, float *tcoord, float *vnorm, float *vtang, unsigned char *vbone, unsigned char *vweight) { galisskeletaltransforms_t *t, *r; unsigned int num_t = 0; unsigned int v, j; for (v = 0; v < inverts*4; v++) { if (vweight[v]) num_t++; } t = r = Hunk_Alloc(sizeof(*r)*num_t); for (v = 0; v < inverts; v++) { for (j = 0; j < 4; j++) { if (vweight[(v<<2)+j]) { t->boneindex = vbone[(v<<2)+j]; t->vertexindex = v; VectorScale(vpos, vweight[(v<<2)+j]/255.0, t->org); VectorScale(vnorm, vweight[(v<<2)+j]/255.0, t->normal); t++; } } } return r; } */ galiasinfo_t *Mod_ParseIQMMeshModel(model_t *mod, char *buffer) { struct iqmheader *h = (struct iqmheader *)buffer; struct iqmmesh *mesh; struct iqmvertexarray *varray; struct iqmtriangle *tris; struct iqmanim *anim; unsigned int i, j, t, nt; char *strings; float *vpos = NULL, *tcoord = NULL, *vnorm = NULL, *vtang = NULL; unsigned char *vbone = NULL, *vweight = NULL; unsigned int type, fmt, size, offset; unsigned short *framedata; vecV_t *opos; vec3_t *onorm1, *onorm2, *onorm3; vec4_t *oweight; byte_vec4_t *oindex; float *opose,*oposebase; vec2_t *otcoords; galiasinfo_t *gai; #ifndef SERVERONLY galiasskin_t *skin; shader_t **shaders; #endif galiasgroup_t *fgroup; galiasbone_t *bones; index_t *idx; float basepose[12 * MAX_BONES]; qboolean noweights; frameinfo_t *framegroups; int numgroups; if (memcmp(h->magic, IQM_MAGIC, sizeof(h->magic))) { Con_Printf("%s: format not recognised\n", mod->name); return NULL; } if (h->version != IQM_VERSION1 && h->version != IQM_VERSION2) { Con_Printf("%s: unsupported IQM version\n", mod->name); return NULL; } if (h->filesize != com_filesize) { Con_Printf("%s: size (%u != %u)\n", mod->name, h->filesize, com_filesize); return NULL; } varray = (struct iqmvertexarray*)(buffer + h->ofs_vertexarrays); for (i = 0; i < h->num_vertexarrays; i++) { type = LittleLong(varray[i].type); fmt = LittleLong(varray[i].format); size = LittleLong(varray[i].size); offset = LittleLong(varray[i].offset); if (type == IQM_POSITION && fmt == IQM_FLOAT && size == 3) vpos = (float*)(buffer + offset); else if (type == IQM_TEXCOORD && fmt == IQM_FLOAT && size == 2) tcoord = (float*)(buffer + offset); else if (type == IQM_NORMAL && fmt == IQM_FLOAT && size == 3) vnorm = (float*)(buffer + offset); else if (type == IQM_TANGENT && fmt == IQM_FLOAT && size == 4) /*yup, 4*/ vtang = (float*)(buffer + offset); else if (type == IQM_BLENDINDEXES && fmt == IQM_UBYTE && size == 4) vbone = (unsigned char *)(buffer + offset); else if (type == IQM_BLENDWEIGHTS && fmt == IQM_UBYTE && size == 4) vweight = (unsigned char *)(buffer + offset); else Con_Printf("Unrecognised iqm info\n"); } if (!h->num_meshes) return NULL; //a mesh must contain vertex coords or its not much of a mesh. //we also require texcoords because we can. //we don't require normals //we don't require weights, but such models won't animate. if (h->num_vertexes > 0 && (!vpos || !tcoord)) { Con_Printf("%s is missing vertex array data\n", loadmodel->name); return NULL; } noweights = !vbone || !vweight; if (noweights) { if (h->num_frames || h->num_anims || h->num_joints) return NULL; } strings = buffer + h->ofs_text; /*try to completely disregard all the info the creator carefully added to their model...*/ numgroups = 0; framegroups = NULL; if (!numgroups) framegroups = ParseFrameInfo(loadmodel->name, &numgroups); if (!numgroups && h->num_anims) { /*use the model's framegroups*/ numgroups = h->num_anims; framegroups = malloc(sizeof(*framegroups)*numgroups); anim = (struct iqmanim*)(buffer + h->ofs_anims); for (i = 0; i < numgroups; i++) { framegroups[i].firstpose = LittleLong(anim[i].first_frame); framegroups[i].posecount = LittleLong(anim[i].num_frames); framegroups[i].fps = LittleFloat(anim[i].framerate); framegroups[i].loop = !!(LittleLong(anim[i].flags) & IQM_LOOP); Q_strncpyz(framegroups[i].name, strings+anim[i].name, sizeof(fgroup[i].name)); } } if (!numgroups) { /*base frame only*/ numgroups = 1; framegroups = malloc(sizeof(*framegroups)); framegroups->firstpose = -1; framegroups->posecount = 1; framegroups->fps = 10; framegroups->loop = 1; strcpy(framegroups->name, "base"); } mesh = (struct iqmmesh*)(buffer + h->ofs_meshes); /*allocate a nice big block of memory and figure out where stuff is*/ gai = Hunk_Alloc(sizeof(*gai)*h->num_meshes + #ifndef SERVERONLY sizeof(*skin)*h->num_meshes + sizeof(*shaders)*h->num_meshes + #endif sizeof(*fgroup)*numgroups + sizeof(float)*12*(h->num_joints + (h->num_poses*h->num_frames)) + sizeof(*bones)*h->num_joints + (sizeof(*opos) + sizeof(*onorm1) + sizeof(*onorm2) + sizeof(*onorm3) + sizeof(*otcoords) + (noweights?0:(sizeof(*oindex)+sizeof(*oweight)))) * h->num_vertexes); bones = (galiasbone_t*)(gai + h->num_meshes); opos = (vecV_t*)(bones + h->num_joints); onorm3 = (vec3_t*)(opos + h->num_vertexes); onorm2 = (vec3_t*)(onorm3 + h->num_vertexes); onorm1 = (vec3_t*)(onorm2 + h->num_vertexes); if (noweights) { oindex = NULL; oweight = NULL; otcoords = (vec2_t*)(onorm1 + h->num_vertexes); } else { oindex = (byte_vec4_t*)(onorm1 + h->num_vertexes); oweight = (vec4_t*)(oindex + h->num_vertexes); otcoords = (vec2_t*)(oweight + h->num_vertexes); } fgroup = (galiasgroup_t*)(otcoords + h->num_vertexes); oposebase = (float*)(fgroup + numgroups); opose = oposebase + 12*h->num_joints; #ifndef SERVERONLY skin = (galiasskin_t*)(opose + 12*(h->num_poses*h->num_frames)); shaders = (shader_t**)(skin + h->num_meshes); #endif //no code to load animations or bones framedata = (unsigned short*)(buffer + h->ofs_frames); /*Version 1 supports only normalized quaternions, version 2 uses complete quaternions. Some struct sizes change for this, otherwise functionally identical.*/ if (h->version == IQM_VERSION1) { struct iqmpose1 *p, *ipose = (struct iqmpose1*)(buffer + h->ofs_poses); struct iqmjoint1 *ijoint = (struct iqmjoint1*)(buffer + h->ofs_joints); vec3_t pos; vec4_t quat; vec3_t scale; float mat[12]; //joint info (mesh) for (i = 0; i < h->num_joints; i++) { Q_strncpyz(bones[i].name, strings+ijoint[i].name, sizeof(bones[i].name)); bones[i].parent = ijoint[i].parent; GenMatrixPosQuat3Scale(ijoint[i].translate, ijoint[i].rotate, ijoint[i].scale, mat); if (ijoint[i].parent >= 0) Matrix3x4_Multiply(mat, &basepose[ijoint[i].parent*12], &basepose[i*12]); else memcpy(&basepose[i*12], mat, sizeof(mat)); Matrix3x4_Invert_Simple(&basepose[i*12], bones[i].inverse); } //pose info (anim) for (i = 0; i < h->num_frames; i++) { for (j = 0, p = ipose; j < h->num_poses; j++, p++) { pos[0] = p->channeloffset[0]; if (p->mask & 1) pos[0] += *framedata++ * p->channelscale[0]; pos[1] = p->channeloffset[1]; if (p->mask & 2) pos[1] += *framedata++ * p->channelscale[1]; pos[2] = p->channeloffset[2]; if (p->mask & 4) pos[2] += *framedata++ * p->channelscale[2]; quat[0] = p->channeloffset[3]; if (p->mask & 8) quat[0] += *framedata++ * p->channelscale[3]; quat[1] = p->channeloffset[4]; if (p->mask & 16) quat[1] += *framedata++ * p->channelscale[4]; quat[2] = p->channeloffset[5]; if (p->mask & 32) quat[2] += *framedata++ * p->channelscale[5]; scale[0] = p->channeloffset[6]; if (p->mask & 64) scale[0] += *framedata++ * p->channelscale[6]; scale[1] = p->channeloffset[7]; if (p->mask & 128) scale[1] += *framedata++ * p->channelscale[7]; scale[2] = p->channeloffset[8]; if (p->mask & 256) scale[2] += *framedata++ * p->channelscale[8]; quat[3] = -sqrt(max(1.0 - pow(VectorLength(quat),2), 0.0)); GenMatrixPosQuat3Scale(pos, quat, scale, &opose[(i*h->num_poses+j)*12]); } } } else { struct iqmpose2 *p, *ipose = (struct iqmpose2*)(buffer + h->ofs_poses); struct iqmjoint2 *ijoint = (struct iqmjoint2*)(buffer + h->ofs_joints); vec3_t pos; vec4_t quat; vec3_t scale; float mat[12]; //joint info (mesh) for (i = 0; i < h->num_joints; i++) { Q_strncpyz(bones[i].name, strings+ijoint[i].name, sizeof(bones[i].name)); bones[i].parent = ijoint[i].parent; GenMatrixPosQuat4Scale(ijoint[i].translate, ijoint[i].rotate, ijoint[i].scale, mat); if (ijoint[i].parent >= 0) Matrix3x4_Multiply(mat, &basepose[ijoint[i].parent*12], &basepose[i*12]); else memcpy(&basepose[i*12], mat, sizeof(mat)); Matrix3x4_Invert_Simple(&basepose[i*12], bones[i].inverse); } //pose info (anim) for (i = 0; i < h->num_frames; i++) { for (j = 0, p = ipose; j < h->num_poses; j++, p++) { pos[0] = p->channeloffset[0]; if (p->mask & 1) pos[0] += *framedata++ * p->channelscale[0]; pos[1] = p->channeloffset[1]; if (p->mask & 2) pos[1] += *framedata++ * p->channelscale[1]; pos[2] = p->channeloffset[2]; if (p->mask & 4) pos[2] += *framedata++ * p->channelscale[2]; quat[0] = p->channeloffset[3]; if (p->mask & 8) quat[0] += *framedata++ * p->channelscale[3]; quat[1] = p->channeloffset[4]; if (p->mask & 16) quat[1] += *framedata++ * p->channelscale[4]; quat[2] = p->channeloffset[5]; if (p->mask & 32) quat[2] += *framedata++ * p->channelscale[5]; quat[3] = p->channeloffset[6]; if (p->mask & 64) quat[3] += *framedata++ * p->channelscale[6]; scale[0] = p->channeloffset[7]; if (p->mask & 128) scale[0] += *framedata++ * p->channelscale[7]; scale[1] = p->channeloffset[8]; if (p->mask & 256) scale[1] += *framedata++ * p->channelscale[8]; scale[2] = p->channeloffset[9]; if (p->mask & 512) scale[2] += *framedata++ * p->channelscale[9]; GenMatrixPosQuat4Scale(pos, quat, scale, &opose[(i*h->num_poses+j)*12]); } } } //basepose memcpy(oposebase, basepose, sizeof(float)*12 * h->num_joints); //now generate the animations. for (i = 0; i < numgroups; i++) { if ((unsigned)framegroups[i].firstpose >= h->num_frames) { //invalid/basepose fgroup[i].isheirachical = false; fgroup[i].poseofs = (char*)oposebase - (char*)&fgroup[i]; fgroup[i].numposes = 1; } else { fgroup[i].isheirachical = true; fgroup[i].poseofs = (char*)(opose + framegroups[i].firstpose*12*h->num_poses) - (char*)&fgroup[i]; fgroup[i].numposes = framegroups[i].posecount; } fgroup[i].loop = framegroups[i].loop; fgroup[i].rate = framegroups[i].fps; Q_strncpyz(fgroup[i].name, framegroups[i].name, sizeof(fgroup[i].name)); if (fgroup[i].rate <= 0) fgroup[i].rate = 10; } free(framegroups); for (i = 0; i < h->num_meshes; i++) { gai[i].nextsurf = (i == (h->num_meshes-1))?0:sizeof(*gai); /*animation info*/ gai[i].shares_bones = 0; gai[i].numbones = h->num_joints; gai[i].ofsbones = (char*)bones - (char*)&gai[i]; gai[i].groups = numgroups; gai[i].groupofs = (char*)fgroup - (char*)&gai[i]; offset = LittleLong(mesh[i].first_vertex); #ifndef SERVERONLY /*skins*/ gai[i].numskins = 1; gai[i].ofsskins = (char*)&skin[i] - (char*)&gai[i]; Q_strncpyz(skin[i].name, strings+mesh[i].material, sizeof(skin[i].name)); skin[i].skinwidth = 1; skin[i].skinheight = 1; skin[i].ofstexels = 0; /*doesn't support 8bit colourmapping*/ skin[i].skinspeed = 10; /*something to avoid div by 0*/ skin[i].numshaders = 1; skin[i].ofsshaders = (char*)&shaders[i] - (char*)&skin[i]; shaders[i] = R_RegisterSkin(skin[i].name, mod->name); R_BuildDefaultTexnums(NULL, shaders[i]); if (shaders[i]->flags & SHADER_NOIMAGE) Con_Printf("Unable to load texture for shader \"%s\" for model \"%s\"\n", shaders[i]->name, loadmodel->name); gai[i].ofs_st_array = (char*)(otcoords+offset) - (char*)&gai[i]; #endif nt = LittleLong(mesh[i].num_triangles); tris = (struct iqmtriangle*)(buffer + LittleLong(h->ofs_triangles)); tris += LittleLong(mesh[i].first_triangle); gai[i].numindexes = nt*3; idx = Hunk_Alloc(sizeof(*idx)*gai[i].numindexes); gai[i].ofs_indexes = (char*)idx - (char*)&gai[i]; for (t = 0; t < nt; t++) { *idx++ = LittleShort(tris[t].vertex[0]) - offset; *idx++ = LittleShort(tris[t].vertex[1]) - offset; *idx++ = LittleShort(tris[t].vertex[2]) - offset; } /*verts*/ gai[i].shares_verts = i; gai[i].numverts = LittleLong(mesh[i].num_vertexes); gai[i].ofs_skel_xyz = (char*)(opos+offset) - (char*)&gai[i]; gai[i].ofs_skel_norm = vnorm?(char*)(onorm1+offset) - (char*)&gai[i]:0; gai[i].ofs_skel_svect = (vnorm&&vtang)?(char*)(onorm2+offset) - (char*)&gai[i]:0; gai[i].ofs_skel_tvect = (vnorm&&vtang)?(char*)(onorm3+offset) - (char*)&gai[i]:0; gai[i].ofs_skel_idx = oindex?(char*)(oindex+offset) - (char*)&gai[i]:0; gai[i].ofs_skel_weight = oweight?(char*)(oweight+offset) - (char*)&gai[i]:0; } if (!noweights) { for (i = 0; i < h->num_vertexes; i++) { Vector4Copy(vbone+i*4, oindex[i]); Vector4Scale(vweight+i*4, 1/255.0, oweight[i]); //FIXME: should we be normalising? if (!oweight[i][0] && !oweight[i][1] && !oweight[i][2] && !oweight[i][3]) oweight[i][0] = 1; } } for (i = 0; i < h->num_vertexes; i++) { Vector2Copy(tcoord+i*2, otcoords[i]); VectorCopy(vpos+i*3, opos[i]); if (vnorm) { VectorCopy(vnorm+i*3, onorm1[i]); } if (vnorm && vtang) { VectorCopy(vtang+i*4, onorm2[i]); if(LittleFloat(vtang[i*4 + 3]) < 0) CrossProduct(onorm2[i], onorm1[i], onorm3[i]); else CrossProduct(onorm1[i], onorm2[i], onorm3[i]); } } return gai; } qboolean Mod_ParseIQMAnim(char *buffer, galiasinfo_t *prototype, void**poseofs, galiasgroup_t *gat) { return false; } qboolean Mod_LoadInterQuakeModel(model_t *mod, void *buffer) { int i; unsigned int hunkstart, hunkend, hunktotal; galiasinfo_t *root; struct iqmheader *h = (struct iqmheader *)buffer; hunkstart = Hunk_LowMark(); root = Mod_ParseIQMMeshModel(mod, buffer); if (!root) { Hunk_FreeToLowMark (hunkstart); return false; } hunkend = Hunk_LowMark(); mod->flags = h->flags; ClearBounds(mod->mins, mod->maxs); for (i = 0; i < root->numverts; i++) AddPointToBounds((float*)((char*)root + root->ofs_skel_xyz + i*sizeof(vecV_t)), mod->mins, mod->maxs); Mod_ClampModelSize(mod); Hunk_Alloc(0); hunktotal = hunkend - hunkstart; Cache_Alloc (&mod->cache, hunktotal, loadname); mod->type = mod_alias; if (!mod->cache.data) { Hunk_FreeToLowMark (hunkstart); return false; } memcpy (mod->cache.data, root, hunktotal); Hunk_FreeToLowMark (hunkstart); return true; } #endif #ifdef MD5MODELS qboolean Mod_ParseMD5Anim(char *buffer, galiasinfo_t *prototype, void**poseofs, galiasgroup_t *gat) { #define MD5ERROR0PARAM(x) { Con_Printf(CON_ERROR x "\n"); return false; } #define MD5ERROR1PARAM(x, y) { Con_Printf(CON_ERROR x "\n", y); return false; } #define EXPECT(x) buffer = COM_Parse(buffer); if (strcmp(com_token, x)) MD5ERROR1PARAM("MD5ANIM: expected %s", x); unsigned int i, j; galiasgroup_t grp; unsigned int parent; unsigned int numframes; unsigned int numjoints; float framespersecond; unsigned int numanimatedparts; galiasbone_t *bonelist; unsigned char *boneflags; unsigned int *firstanimatedcomponents; float *animatedcomponents; float *baseframe; //6 components. float *posedata; float tx, ty, tz, qx, qy, qz; int fac, flags; float f; char com_token[8192]; EXPECT("MD5Version"); EXPECT("10"); EXPECT("commandline"); buffer = COM_Parse(buffer); EXPECT("numFrames"); buffer = COM_Parse(buffer); numframes = atoi(com_token); EXPECT("numJoints"); buffer = COM_Parse(buffer); numjoints = atoi(com_token); EXPECT("frameRate"); buffer = COM_Parse(buffer); framespersecond = atof(com_token); EXPECT("numAnimatedComponents"); buffer = COM_Parse(buffer); numanimatedparts = atoi(com_token); firstanimatedcomponents = BZ_Malloc(sizeof(int)*numjoints); animatedcomponents = BZ_Malloc(sizeof(float)*numanimatedparts); boneflags = BZ_Malloc(sizeof(unsigned char)*numjoints); baseframe = BZ_Malloc(sizeof(float)*12*numjoints); *poseofs = posedata = Hunk_Alloc(sizeof(float)*12*numjoints*numframes); if (prototype->numbones) { if (prototype->numbones != numjoints) MD5ERROR0PARAM("MD5ANIM: number of bones doesn't match"); bonelist = (galiasbone_t *)((char*)prototype + prototype->ofsbones); } else { bonelist = Hunk_Alloc(sizeof(galiasbone_t)*numjoints); prototype->ofsbones = (char*)bonelist - (char*)prototype; } EXPECT("hierarchy"); EXPECT("{"); for (i = 0; i < numjoints; i++, bonelist++) { buffer = COM_Parse(buffer); if (prototype->numbones) { if (strcmp(bonelist->name, com_token)) MD5ERROR1PARAM("MD5ANIM: bone name doesn't match (%s)", com_token); } else Q_strncpyz(bonelist->name, com_token, sizeof(bonelist->name)); buffer = COM_Parse(buffer); parent = atoi(com_token); if (prototype->numbones) { if (bonelist->parent != parent) MD5ERROR1PARAM("MD5ANIM: bone name doesn't match (%s)", com_token); } else bonelist->parent = parent; buffer = COM_Parse(buffer); boneflags[i] = atoi(com_token); buffer = COM_Parse(buffer); firstanimatedcomponents[i] = atoi(com_token); } EXPECT("}"); if (!prototype->numbones) prototype->numbones = numjoints; EXPECT("bounds"); EXPECT("{"); for (i = 0; i < numframes; i++) { EXPECT("("); buffer = COM_Parse(buffer);f=atoi(com_token); if (f < loadmodel->mins[0]) loadmodel->mins[0] = f; buffer = COM_Parse(buffer);f=atoi(com_token); if (f < loadmodel->mins[1]) loadmodel->mins[1] = f; buffer = COM_Parse(buffer);f=atoi(com_token); if (f < loadmodel->mins[2]) loadmodel->mins[2] = f; EXPECT(")"); EXPECT("("); buffer = COM_Parse(buffer);f=atoi(com_token); if (f > loadmodel->maxs[0]) loadmodel->maxs[0] = f; buffer = COM_Parse(buffer);f=atoi(com_token); if (f > loadmodel->maxs[1]) loadmodel->maxs[1] = f; buffer = COM_Parse(buffer);f=atoi(com_token); if (f > loadmodel->maxs[2]) loadmodel->maxs[2] = f; EXPECT(")"); } EXPECT("}"); EXPECT("baseframe"); EXPECT("{"); for (i = 0; i < numjoints; i++) { EXPECT("("); buffer = COM_Parse(buffer); baseframe[i*6+0] = atof(com_token); buffer = COM_Parse(buffer); baseframe[i*6+1] = atof(com_token); buffer = COM_Parse(buffer); baseframe[i*6+2] = atof(com_token); EXPECT(")"); EXPECT("("); buffer = COM_Parse(buffer); baseframe[i*6+3] = atof(com_token); buffer = COM_Parse(buffer); baseframe[i*6+4] = atof(com_token); buffer = COM_Parse(buffer); baseframe[i*6+5] = atof(com_token); EXPECT(")"); } EXPECT("}"); for (i = 0; i < numframes; i++) { EXPECT("frame"); EXPECT(va("%i", i)); EXPECT("{"); for (j = 0; j < numanimatedparts; j++) { buffer = COM_Parse(buffer); animatedcomponents[j] = atof(com_token); } EXPECT("}"); for (j = 0; j < numjoints; j++) { fac = firstanimatedcomponents[j]; flags = boneflags[j]; if (flags&1) tx = animatedcomponents[fac++]; else tx = baseframe[j*6+0]; if (flags&2) ty = animatedcomponents[fac++]; else ty = baseframe[j*6+1]; if (flags&4) tz = animatedcomponents[fac++]; else tz = baseframe[j*6+2]; if (flags&8) qx = animatedcomponents[fac++]; else qx = baseframe[j*6+3]; if (flags&16) qy = animatedcomponents[fac++]; else qy = baseframe[j*6+4]; if (flags&32) qz = animatedcomponents[fac++]; else qz = baseframe[j*6+5]; GenMatrix(tx, ty, tz, qx, qy, qz, posedata+12*(j+numjoints*i)); } } BZ_Free(firstanimatedcomponents); BZ_Free(animatedcomponents); BZ_Free(boneflags); BZ_Free(baseframe); Q_strncpyz(grp.name, "", sizeof(grp.name)); grp.isheirachical = true; grp.numposes = numframes; grp.rate = framespersecond; grp.loop = true; *gat = grp; return true; #undef MD5ERROR0PARAM #undef MD5ERROR1PARAM #undef EXPECT } galiasinfo_t *Mod_ParseMD5MeshModel(char *buffer, char *modname) { #define MD5ERROR0PARAM(x) { Con_Printf(CON_ERROR x "\n"); return NULL; } #define MD5ERROR1PARAM(x, y) { Con_Printf(CON_ERROR x "\n", y); return NULL; } #define EXPECT(x) buffer = COM_Parse(buffer); if (strcmp(com_token, x)) Sys_Error("MD5MESH: expected %s", x); int numjoints = 0; int nummeshes = 0; qboolean foundjoints = false; int i; galiasbone_t *bones = NULL; galiasgroup_t *pose = NULL; galiasinfo_t *inf, *root, *lastsurf; float *posedata; #ifndef SERVERONLY galiasskin_t *skin; shader_t **shaders; #endif char *filestart = buffer; float x, y, z, qx, qy, qz; buffer = COM_Parse(buffer); if (strcmp(com_token, "MD5Version")) MD5ERROR0PARAM("MD5 model without MD5Version identifier first"); buffer = COM_Parse(buffer); if (atoi(com_token) != 10) MD5ERROR0PARAM("MD5 model with unsupported MD5Version"); root = Hunk_Alloc(sizeof(galiasinfo_t)); lastsurf = NULL; for(;;) { buffer = COM_Parse(buffer); if (!buffer) break; if (!strcmp(com_token, "numFrames")) { void *poseofs; galiasgroup_t *grp = Hunk_Alloc(sizeof(galiasgroup_t)); Mod_ParseMD5Anim(filestart, root, &poseofs, grp); root->groupofs = (char*)grp - (char*)root; root->groups = 1; grp->poseofs = (char*)poseofs - (char*)grp; return root; } else if (!strcmp(com_token, "commandline")) { //we don't need this buffer = strchr(buffer, '\"'); buffer = strchr((char*)buffer+1, '\"')+1; // buffer = COM_Parse(buffer); } else if (!strcmp(com_token, "numJoints")) { if (numjoints) MD5ERROR0PARAM("MD5MESH: numMeshes was already declared"); buffer = COM_Parse(buffer); numjoints = atoi(com_token); if (numjoints <= 0) MD5ERROR0PARAM("MD5MESH: Needs some joints"); } else if (!strcmp(com_token, "numMeshes")) { if (nummeshes) MD5ERROR0PARAM("MD5MESH: numMeshes was already declared"); buffer = COM_Parse(buffer); nummeshes = atoi(com_token); if (nummeshes <= 0) MD5ERROR0PARAM("MD5MESH: Needs some meshes"); } else if (!strcmp(com_token, "joints")) { if (foundjoints) MD5ERROR0PARAM("MD5MESH: Duplicate joints section"); foundjoints=true; if (!numjoints) MD5ERROR0PARAM("MD5MESH: joints section before (or without) numjoints"); bones = Hunk_Alloc(sizeof(*bones) * numjoints); pose = Hunk_Alloc(sizeof(galiasgroup_t)); posedata = Hunk_Alloc(sizeof(float)*12 * numjoints); pose->isheirachical = false; pose->rate = 1; pose->numposes = 1; pose->poseofs = (char*)posedata - (char*)pose; Q_strncpyz(pose->name, "base", sizeof(pose->name)); EXPECT("{"); //"name" parent (x y z) (s t u) //stu are a normalized quaternion, which we will convert to a 3*4 matrix for no apparent reason for (i = 0; i < numjoints; i++) { buffer = COM_Parse(buffer); Q_strncpyz(bones[i].name, com_token, sizeof(bones[i].name)); buffer = COM_Parse(buffer); bones[i].parent = atoi(com_token); if (bones[i].parent >= i) MD5ERROR0PARAM("MD5MESH: joints parent's must be lower"); if ((bones[i].parent < 0 && i) || (!i && bones[i].parent!=-1)) MD5ERROR0PARAM("MD5MESH: Only the root joint may have a negative parent"); EXPECT("("); buffer = COM_Parse(buffer); x = atof(com_token); buffer = COM_Parse(buffer); y = atof(com_token); buffer = COM_Parse(buffer); z = atof(com_token); EXPECT(")"); EXPECT("("); buffer = COM_Parse(buffer); qx = atof(com_token); buffer = COM_Parse(buffer); qy = atof(com_token); buffer = COM_Parse(buffer); qz = atof(com_token); EXPECT(")"); GenMatrix(x, y, z, qx, qy, qz, posedata+i*12); } EXPECT("}"); } else if (!strcmp(com_token, "mesh")) { int numverts = 0; int numweights = 0; int numtris = 0; int num; int vnum; int numusableweights = 0; int *firstweightlist = NULL; int *numweightslist = NULL; galisskeletaltransforms_t *trans; #ifndef SERVERONLY float *stcoord = NULL; #endif int *indexes = NULL; float w; vec4_t *rawweight = NULL; int *rawweightbone = NULL; if (!nummeshes) MD5ERROR0PARAM("MD5MESH: mesh section before (or without) nummeshes"); if (!foundjoints || !bones || !pose) MD5ERROR0PARAM("MD5MESH: mesh must come after joints"); if (!lastsurf) { lastsurf = root; inf = root; } else { inf = Hunk_Alloc(sizeof(*inf)); lastsurf->nextsurf = (char*)inf - (char*)lastsurf; lastsurf = inf; } inf->ofsbones = (char*)bones - (char*)inf; inf->numbones = numjoints; inf->groups = 1; inf->groupofs = (char*)pose - (char*)inf; inf->baseframeofs = inf->groupofs + pose->poseofs; #ifndef SERVERONLY skin = Hunk_Alloc(sizeof(*skin)); shaders = Hunk_Alloc(sizeof(*shaders)); inf->numskins = 1; inf->ofsskins = (char*)skin - (char*)inf; skin->numshaders = 1; skin->skinspeed = 1; skin->ofsshaders = (char*)shaders - (char*)skin; #endif EXPECT("{"); for(;;) { buffer = COM_Parse(buffer); if (!buffer) MD5ERROR0PARAM("MD5MESH: unexpected eof"); if (!strcmp(com_token, "shader")) { buffer = COM_Parse(buffer); #ifndef SERVERONLY //FIXME: we probably want to support multiple skins some time shaders[0] = R_RegisterSkin(com_token, modname); R_BuildDefaultTexnums(NULL, shaders[0]); if (shaders[0]->flags & SHADER_NOIMAGE) Con_Printf("Unable to load texture for shader \"%s\" for model \"%s\"\n", shaders[0]->name, loadmodel->name); #endif } else if (!strcmp(com_token, "numverts")) { if (numverts) MD5ERROR0PARAM("MD5MESH: numverts was already specified"); buffer = COM_Parse(buffer); numverts = atoi(com_token); if (numverts < 0) MD5ERROR0PARAM("MD5MESH: numverts cannot be negative"); firstweightlist = Z_Malloc(sizeof(*firstweightlist) * numverts); numweightslist = Z_Malloc(sizeof(*numweightslist) * numverts); #ifndef SERVERONLY stcoord = Hunk_Alloc(sizeof(float)*2*numverts); inf->ofs_st_array = (char*)stcoord - (char*)inf; inf->numverts = numverts; #endif } else if (!strcmp(com_token, "vert")) { //vert num ( s t ) firstweight numweights buffer = COM_Parse(buffer); num = atoi(com_token); if (num < 0 || num >= numverts) MD5ERROR0PARAM("MD5MESH: vertex out of range"); EXPECT("("); buffer = COM_Parse(buffer); #ifndef SERVERONLY if (!stcoord) MD5ERROR0PARAM("MD5MESH: vertex out of range"); stcoord[num*2+0] = atof(com_token); #endif buffer = COM_Parse(buffer); #ifndef SERVERONLY stcoord[num*2+1] = atof(com_token); #endif EXPECT(")"); buffer = COM_Parse(buffer); firstweightlist[num] = atoi(com_token); buffer = COM_Parse(buffer); numweightslist[num] = atoi(com_token); numusableweights += numweightslist[num]; } else if (!strcmp(com_token, "numtris")) { if (numtris) MD5ERROR0PARAM("MD5MESH: numtris was already specified"); buffer = COM_Parse(buffer); numtris = atoi(com_token); if (numtris < 0) MD5ERROR0PARAM("MD5MESH: numverts cannot be negative"); indexes = Hunk_Alloc(sizeof(int)*3*numtris); inf->ofs_indexes = (char*)indexes - (char*)inf; inf->numindexes = numtris*3; } else if (!strcmp(com_token, "tri")) { buffer = COM_Parse(buffer); num = atoi(com_token); if (num < 0 || num >= numtris) MD5ERROR0PARAM("MD5MESH: vertex out of range"); buffer = COM_Parse(buffer); indexes[num*3+0] = atoi(com_token); buffer = COM_Parse(buffer); indexes[num*3+1] = atoi(com_token); buffer = COM_Parse(buffer); indexes[num*3+2] = atoi(com_token); } else if (!strcmp(com_token, "numweights")) { if (numweights) MD5ERROR0PARAM("MD5MESH: numweights was already specified"); buffer = COM_Parse(buffer); numweights = atoi(com_token); rawweight = Z_Malloc(sizeof(*rawweight)*numweights); rawweightbone = Z_Malloc(sizeof(*rawweightbone)*numweights); } else if (!strcmp(com_token, "weight")) { //weight num bone scale ( x y z ) buffer = COM_Parse(buffer); num = atoi(com_token); if (num < 0 || num >= numweights) MD5ERROR0PARAM("MD5MESH: weight out of range"); buffer = COM_Parse(buffer); rawweightbone[num] = atoi(com_token); if (rawweightbone[num] < 0 || rawweightbone[num] >= numjoints) MD5ERROR0PARAM("MD5MESH: weight specifies bad bone"); buffer = COM_Parse(buffer); w = atof(com_token); EXPECT("("); buffer = COM_Parse(buffer); rawweight[num][0] = w*atof(com_token); buffer = COM_Parse(buffer); rawweight[num][1] = w*atof(com_token); buffer = COM_Parse(buffer); rawweight[num][2] = w*atof(com_token); EXPECT(")"); rawweight[num][3] = w; } else if (!strcmp(com_token, "}")) break; else MD5ERROR1PARAM("MD5MESH: Unrecognised token inside mesh (%s)", com_token); } trans = Hunk_Alloc(sizeof(*trans)*numusableweights); inf->ofsswtransforms = (char*)trans - (char*)inf; for (num = 0, vnum = 0; num < numverts; num++) { if (numweightslist[num] <= 0) MD5ERROR0PARAM("MD5MESH: weights not set on vertex"); while(numweightslist[num]) { trans[vnum].vertexindex = num; trans[vnum].boneindex = rawweightbone[firstweightlist[num]]; trans[vnum].org[0] = rawweight[firstweightlist[num]][0]; trans[vnum].org[1] = rawweight[firstweightlist[num]][1]; trans[vnum].org[2] = rawweight[firstweightlist[num]][2]; trans[vnum].org[3] = rawweight[firstweightlist[num]][3]; vnum++; firstweightlist[num]++; numweightslist[num]--; } } inf->numswtransforms = vnum; if (firstweightlist) Z_Free(firstweightlist); if (numweightslist) Z_Free(numweightslist); if (rawweight) Z_Free(rawweight); if (rawweightbone) Z_Free(rawweightbone); } else MD5ERROR1PARAM("Unrecognised token in MD5 model (%s)", com_token); } if (!lastsurf) MD5ERROR0PARAM("MD5MESH: No meshes"); Alias_CalculateSkeletalNormals(root); return root; #undef MD5ERROR0PARAM #undef MD5ERROR1PARAM #undef EXPECT } qboolean Mod_LoadMD5MeshModel(model_t *mod, void *buffer) { galiasinfo_t *root; int hunkstart, hunkend, hunktotal; loadmodel=mod; hunkstart = Hunk_LowMark (); root = Mod_ParseMD5MeshModel(buffer, mod->name); if (root == NULL) { Hunk_FreeToLowMark(hunkstart); return false; } hunkend = Hunk_LowMark (); mod->flags = Mod_ReadFlagsFromMD1(mod->name, 0); //file replacement - inherit flags from any defunc mdl files. Mod_ClampModelSize(mod); Hunk_Alloc(0); hunktotal = hunkend - hunkstart; Cache_Alloc (&mod->cache, hunktotal, loadname); mod->type = mod_alias; if (!mod->cache.data) { Hunk_FreeToLowMark (hunkstart); return false; } memcpy (mod->cache.data, root, hunktotal); Hunk_FreeToLowMark (hunkstart); mod->funcs.NativeTrace = Mod_Trace; return true; } /* EXTERNALANIM //File that specifies md5 model/anim stuff. model test/imp.md5mesh group test/idle1.md5anim clampgroup test/idle1.md5anim frames test/idle1.md5anim */ qboolean Mod_LoadCompositeAnim(model_t *mod, void *buffer) { int i; char *file; galiasinfo_t *root = NULL, *surf; int numgroups = 0; galiasgroup_t *grouplist = NULL; galiasgroup_t *newgroup = NULL; void **poseofs; int hunkstart, hunkend, hunktotal; char com_token[8192]; loadmodel=mod; hunkstart = Hunk_LowMark (); buffer = COM_Parse(buffer); if (strcmp(com_token, "EXTERNALANIM")) { Con_Printf (CON_ERROR "EXTERNALANIM: header is not compleate (%s)\n", mod->name); return false; } buffer = COM_Parse(buffer); if (!strcmp(com_token, "model")) { buffer = COM_Parse(buffer); file = COM_LoadTempMoreFile(com_token); if (!file) //FIXME: make non fatal somehow.. { Con_Printf(CON_ERROR "Couldn't open %s (from %s)\n", com_token, mod->name); Hunk_FreeToLowMark(hunkstart); return false; } root = Mod_ParseMD5MeshModel(file, mod->name); if (root == NULL) { Hunk_FreeToLowMark(hunkstart); return false; } newgroup = (galiasgroup_t*)((char*)root + root->groupofs); grouplist = BZ_Malloc(sizeof(galiasgroup_t)*(numgroups+root->groups)); memcpy(grouplist, newgroup, sizeof(galiasgroup_t)*(numgroups+root->groups)); poseofs = BZ_Malloc(sizeof(galiasgroup_t)*(numgroups+root->groups)); for (i = 0; i < root->groups; i++) { grouplist[numgroups] = newgroup[i]; poseofs[numgroups] = (char*)&newgroup[i] + newgroup[i].poseofs; numgroups++; } } else { Con_Printf (CON_ERROR "EXTERNALANIM: model must be defined immediatly after the header\n"); return false; } for (;;) { buffer = COM_Parse(buffer); if (!buffer) break; if (!strcmp(com_token, "group")) { grouplist = BZ_Realloc(grouplist, sizeof(galiasgroup_t)*(numgroups+1)); poseofs = BZ_Realloc(poseofs, sizeof(*poseofs)*(numgroups+1)); buffer = COM_Parse(buffer); file = COM_LoadTempMoreFile(com_token); if (file) //FIXME: make non fatal somehow.. { char namebkup[MAX_QPATH]; Q_strncpyz(namebkup, com_token, sizeof(namebkup)); if (!Mod_ParseMD5Anim(file, root, &poseofs[numgroups], &grouplist[numgroups])) { Hunk_FreeToLowMark(hunkstart); return false; } Q_strncpyz(grouplist[numgroups].name, namebkup, sizeof(grouplist[numgroups].name)); numgroups++; } } else if (!strcmp(com_token, "clampgroup")) { grouplist = BZ_Realloc(grouplist, sizeof(galiasgroup_t)*(numgroups+1)); poseofs = BZ_Realloc(poseofs, sizeof(*poseofs)*(numgroups+1)); buffer = COM_Parse(buffer); file = COM_LoadTempMoreFile(com_token); if (file) //FIXME: make non fatal somehow.. { char namebkup[MAX_QPATH]; Q_strncpyz(namebkup, com_token, sizeof(namebkup)); if (!Mod_ParseMD5Anim(file, root, &poseofs[numgroups], &grouplist[numgroups])) { Hunk_FreeToLowMark(hunkstart); return false; } Q_strncpyz(grouplist[numgroups].name, namebkup, sizeof(grouplist[numgroups].name)); grouplist[numgroups].loop = false; numgroups++; } } else if (!strcmp(com_token, "frames")) { galiasgroup_t ng; void *np; buffer = COM_Parse(buffer); file = COM_LoadTempMoreFile(com_token); if (file) //FIXME: make non fatal somehow.. { char namebkup[MAX_QPATH]; Q_strncpyz(namebkup, com_token, sizeof(namebkup)); if (!Mod_ParseMD5Anim(file, root, &np, &ng)) { Hunk_FreeToLowMark(hunkstart); return false; } grouplist = BZ_Realloc(grouplist, sizeof(galiasgroup_t)*(numgroups+ng.numposes)); poseofs = BZ_Realloc(poseofs, sizeof(*poseofs)*(numgroups+ng.numposes)); //pull out each frame individually for (i = 0; i < ng.numposes; i++) { grouplist[numgroups].isheirachical = ng.isheirachical; grouplist[numgroups].loop = false; grouplist[numgroups].numposes = 1; grouplist[numgroups].rate = 24; poseofs[numgroups] = (float*)np + i*12*root->numbones; Q_snprintfz(grouplist[numgroups].name, sizeof(grouplist[numgroups].name), "%s%i", namebkup, i); Q_strncpyz(grouplist[numgroups].name, namebkup, sizeof(grouplist[numgroups].name)); grouplist[numgroups].loop = false; numgroups++; } } } else { Con_Printf(CON_ERROR "EXTERNALANIM: unrecognised token (%s)\n", mod->name); Hunk_FreeToLowMark(hunkstart); return false; } } newgroup = grouplist; grouplist = Hunk_Alloc(sizeof(galiasgroup_t)*numgroups); for(surf = root;;) { surf->groupofs = (char*)grouplist - (char*)surf; surf->groups = numgroups; if (!surf->nextsurf) break; surf = (galiasinfo_t*)((char*)surf + surf->nextsurf); } for (i = 0; i < numgroups; i++) { grouplist[i] = newgroup[i]; grouplist[i].poseofs = (char*)poseofs[i] - (char*)&grouplist[i]; } hunkend = Hunk_LowMark (); mod->flags = Mod_ReadFlagsFromMD1(mod->name, 0); //file replacement - inherit flags from any defunc mdl files. Mod_ClampModelSize(mod); Hunk_Alloc(0); hunktotal = hunkend - hunkstart; Cache_Alloc (&mod->cache, hunktotal, loadname); mod->type = mod_alias; if (!mod->cache.data) { Hunk_FreeToLowMark (hunkstart); return false; } memcpy (mod->cache.data, root, hunktotal); Hunk_FreeToLowMark (hunkstart); mod->funcs.NativeTrace = Mod_Trace; return true; } #endif //MD5MODELS #else int Mod_TagNumForName(model_t *model, char *name) { return 0; } qboolean Mod_GetTag(model_t *model, int tagnum, framestate_t *framestate, float *result) { return false; } int Mod_GetNumBones(struct model_s *model, qboolean allowtags) { return 0; } int Mod_GetBoneRelations(model_t *model, int firstbone, int lastbone, framestate_t *fstate, float *result) { return 0; } int Mod_GetBoneParent(struct model_s *model, int bonenum) { return 0; } char *Mod_GetBoneName(struct model_s *model, int bonenum) { return ""; } #endif //#if defined(D3DQUAKE) || defined(GLQUAKE)