/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // gl_warp.c -- sky and water polygons #include "quakedef.h" #ifndef SERVERONLY #include "glquake.h" #include "shader.h" #include static void R_CalcSkyChainBounds (batch_t *s); static void GL_DrawSkySphere (batch_t *fa, shader_t *shader); static void GL_SkyForceDepth(batch_t *fa); static void GL_DrawSkyBox (texid_t *texnums, batch_t *s); static void GL_DrawSkyGrid (texnums_t *tex); extern cvar_t gl_skyboxdist; extern cvar_t r_fastsky; extern cvar_t r_fastskycolour; extern cvar_t r_skycloudalpha; static shader_t *forcedsky; static shader_t *skyboxface; static shader_t *skygridface; //========================================================= //called on video shutdown to reset internal state void R_SkyShutdown(void) { skyboxface = NULL; skygridface = NULL; forcedsky = NULL; } //lets the backend know which fallback envmap it can use. texid_t R_GetDefaultEnvmap(void) { if (*r_refdef.nearenvmap.texname) return Image_GetTexture(r_refdef.nearenvmap.texname, NULL, IF_TEXTYPE_CUBE, NULL, NULL, 0, 0, TF_INVALID); if (forcedsky && TEXLOADED(forcedsky->defaulttextures->reflectcube)) return forcedsky->defaulttextures->reflectcube; return r_nulltex; } void R_SetSky(const char *sky) { int i; const char *shadername; extern cvar_t r_skyboxname; Q_strncpyz(cl.skyname, sky, sizeof(cl.skyname)); if (qrenderer <= QR_NONE) return; //not ready yet... if (*r_skyboxname.string) //override it with the user's preference sky = r_skyboxname.string; shadername = va("skybox_%s", sky); if (!forcedsky || strcmp(shadername, forcedsky->name)) { texnums_t tex; forcedsky = NULL; //fall back to regular skies if forcing fails. if (!*sky) return; //no need to do anything memset(&tex, 0, sizeof(tex)); tex.base = R_LoadHiResTexture(sky, "env:gfx/env", IF_LOADNOW|IF_NOMIPMAP); if (tex.reflectcube && tex.reflectcube->status == TEX_LOADING) COM_WorkerPartialSync(tex.reflectcube, &tex.reflectcube->status, TEX_LOADING); if (tex.base->width && TEXLOADED(tex.base)) { forcedsky = R_RegisterShader(shadername, 0, "{\n" "sort sky\n" "program defaultsky#EQUI\n" "{\n" "if !$unmaskedsky\n" /* Q2/HL require the skybox to not draw over geometry, shouldn't we force it? --eukara */ "depthwrite\n" "endif\n" "map \"$diffuse\"\n" "tcgen skybox\n" "}\n" "surfaceparm nodlight\n" "surfaceparm sky\n" "}"); R_BuildDefaultTexnums(&tex, forcedsky, IF_WORLDTEX); return; } //if we have cubemaps then we can just go and use a cubemap for our skybox if (sh_config.havecubemaps) { memset(&tex, 0, sizeof(tex)); tex.reflectcube = R_LoadHiResTexture(sky, "env:gfx/env", IF_LOADNOW|IF_TEXTYPE_CUBE|IF_NOMIPMAP|IF_CLAMP); if (tex.reflectcube && tex.reflectcube->status == TEX_LOADING) COM_WorkerPartialSync(tex.reflectcube, &tex.reflectcube->status, TEX_LOADING); if (tex.reflectcube->width && TEXLOADED(tex.reflectcube)) { forcedsky = R_RegisterShader(shadername, 0, "{\n" "sort sky\n" "program defaultskybox\n" "{\n" "if !$unmaskedsky\n" /* Q2/HL require the skybox to not draw over geometry, shouldn't we force it? --eukara */ "depthwrite\n" "endif\n" "map \"$cube:$reflectcube\"\n" "tcgen skybox\n" "}\n" "surfaceparm nodlight\n" "surfaceparm sky\n" "}"); R_BuildDefaultTexnums(&tex, forcedsky, IF_WORLDTEX); return; } } //crappy old path that I still need to fix up a bit //unlike cubemaps, this works on gl1.1/gles1, and also works with the different faces as different sizes. forcedsky = R_RegisterShader(shadername, 0, va("{\nsort sky\nskyparms \"%s\" 512 -\nsurfaceparm nodlight\n}", sky)); //check that we actually got some textures. //we accept the skybox if even 1 face is valid. //we ignore the replacement only request if all are invalid. for (i = 0; i < 6; i++) { extern texid_t missing_texture; if (forcedsky->skydome && forcedsky->skydome->farbox_textures[i] != missing_texture) break; } if (i == 6) //couldn't find ANY sky textures. forcedsky = NULL; } } void R_DrawFastSky(batch_t *batch) { batch_t b = *batch; b.shader = R_RegisterShader("fastsky", 0, "{\n" "sort sky\n" "{\n" "map $whiteimage\n" "rgbgen const $r_fastskycolour\n" "}\n" "surfaceparm nodlight\n" "}\n"); b.skin = NULL; b.texture = NULL; BE_SubmitBatch(&b); } //annoyingly sky does not always write depth values. //this can allow entities to appear beyond it. //this can include (massive) entities outside of the skyroom. //so, we can only draw entities in skyrooms if: //1) either the ents have robust pvs info and we can draw ONLY the ones actually inside the skyroom //2) or if r_ignoreentpvs==1 we must mask depth and waste a whole load of batches drawing invisible ents in the sky extern cvar_t r_ignoreentpvs; qboolean R_DrawSkyroom(shader_t *skyshader) { float vmat[16]; refdef_t oldrefdef; // extern cvar_t r_ignoreentpvs; //legacy value is 1... if (r_viewcluster == -1) return false; //don't draw the skyroom if the camera is outside. if (r_fastsky.value) return false; //skyrooms can be expensive. if (!r_refdef.skyroom_enabled || r_refdef.recurse >= R_MAX_RECURSE-1) return false; oldrefdef = r_refdef; r_refdef.recurse+=1; // if (r_ignoreentpvs.ival) //if we're ignoring ent pvs then we're probably drawing lots of ents in the skybox that shouldn't be there // r_refdef.firstvisedict = cl_numvisedicts; r_refdef.externalview = true; //an out-of-body experience... r_refdef.skyroom_enabled = false; r_refdef.forcevis = false; r_refdef.flags |= RDF_DISABLEPARTICLES; r_refdef.flags &= ~RDF_SKIPSKY; r_refdef.forcedvis = NULL; r_refdef.areabitsknown = false; //recalculate areas clientside. if (cl.fog[FOGTYPE_SKYROOM].density) { CL_BlendFog(&r_refdef.globalfog, &cl.oldfog[FOGTYPE_SKYROOM], realtime, &cl.fog[FOGTYPE_SKYROOM]); r_refdef.globalfog.density/=64; } /*work out where the camera should be (use the same angles)*/ VectorCopy(r_refdef.skyroom_pos, r_refdef.vieworg); VectorCopy(r_refdef.skyroom_pos, r_refdef.pvsorigin); if (developer.ival) if (r_worldentity.model->funcs.PointContents(r_worldentity.model, NULL, r_refdef.skyroom_pos) & FTECONTENTS_SOLID) Con_DPrintf("Skyroom position %.1f %.1f %.1f in solid\n", r_refdef.skyroom_pos[0], r_refdef.skyroom_pos[1], r_refdef.skyroom_pos[2]); if (r_refdef.skyroom_spin[3]) { vec3_t axis[3]; float ang = r_refdef.skyroom_spin[3]; if (!r_refdef.skyroom_spin[0]&&!r_refdef.skyroom_spin[1]&&!r_refdef.skyroom_spin[2]) VectorSet(r_refdef.skyroom_spin, 0,0,1); VectorNormalize(r_refdef.skyroom_spin); RotatePointAroundVector(axis[0], r_refdef.skyroom_spin, vpn, ang); RotatePointAroundVector(axis[1], r_refdef.skyroom_spin, vright, ang); RotatePointAroundVector(axis[2], r_refdef.skyroom_spin, vup, ang); Matrix4x4_CM_ModelViewMatrixFromAxis(vmat, axis[0], axis[1], axis[2], r_refdef.vieworg); } else Matrix4x4_CM_ModelViewMatrixFromAxis(vmat, vpn, vright, vup, r_refdef.vieworg); R_SetFrustum (r_refdef.m_projection_std, vmat); //now determine the stuff the backend will use. memcpy(r_refdef.m_view, vmat, sizeof(float)*16); VectorAngles(vpn, vup, r_refdef.viewangles, false); VectorCopy(r_refdef.vieworg, r_origin); Surf_SetupFrame(); Surf_DrawWorld (); r_refdef = oldrefdef; /*broken stuff*/ AngleVectors (r_refdef.viewangles, vpn, vright, vup); VectorCopy (r_refdef.vieworg, r_origin); return true; } //q3 mustn't mask sky (breaks q3map2's invisible skyportals), whereas q1 must (or its a cheat). halflife doesn't normally expect masking. //we also MUST mask any sky inside skyrooms, or you'll see all the entities outside of the skyroom through the room's own sky (q3map2 skyportals are hopefully irrelevant in this case). #define SKYMUSTBEMASKED (r_worldentity.model->fromgame != fg_quake3 || ((r_refdef.flags & RDF_DISABLEPARTICLES) && r_ignoreentpvs.ival) || !cls.allow_unmaskedskyboxes) /* ================= GL_DrawSkyChain ================= */ qboolean R_DrawSkyChain (batch_t *batch) { shader_t *skyshader; texid_t *skyboxtex; if (r_fastsky.value) { R_DrawFastSky(batch); return true; //depth will always be drawn with this pathway. } if (forcedsky) { skyshader = forcedsky; if (r_refdef.flags & RDF_SKIPSKY) { if (r_worldentity.model->fromgame != fg_quake3) GL_SkyForceDepth(batch); return true; } if (forcedsky->numpasses && !forcedsky->skydome) { //cubemap skies! //this is just a simple pass. we use glsl/texgen for any actual work batch_t b = *batch; b.shader = forcedsky; b.skin = NULL; b.texture = NULL; BE_SubmitBatch(&b); return true; } } else { skyshader = batch->shader; if (skyshader->prog) //glsl is expected to do the whole skybox/warpsky thing itself, with no assistance from this legacy code. { if (r_refdef.flags & RDF_SKIPSKY) { if (SKYMUSTBEMASKED) GL_SkyForceDepth(batch); return true; } //if the first pass is transparent in some form, then be prepared to give it a skyroom behind. return false; //draw as normal... } } if (skyshader->skydome) skyboxtex = skyshader->skydome->farbox_textures; else skyboxtex = NULL; if (r_refdef.flags & RDF_SKIPSKY) { //don't obscure the skyroom if the sky shader is opaque. qboolean opaque = false; if (skyshader->numpasses) { shaderpass_t *pass = skyshader->passes; if (pass->shaderbits & SBITS_ATEST_BITS) //alphatests ; else if (pass->shaderbits & SBITS_MASK_BITS) //colormasks ; else if ((pass->shaderbits & SBITS_BLEND_BITS) != 0 && (pass->shaderbits & SBITS_BLEND_BITS) != (SBITS_SRCBLEND_ONE|SBITS_DSTBLEND_ZERO)) //blendfunc ; else opaque = true; //that shader looks like its opaque. } if (!opaque) GL_DrawSkySphere(batch, skyshader); } else if (skyboxtex && TEXVALID(*skyboxtex)) { //draw a skybox if we were given the textures R_CalcSkyChainBounds(batch); GL_DrawSkyBox (skyboxtex, batch); if (skyshader->numpasses) GL_DrawSkySphere(batch, skyshader); } else if (skyshader->numpasses) { //if we have passes, then they're normally projected. if (*r_fastsky.string && skyshader->numpasses == 2 && TEXVALID(batch->shader->defaulttextures->base) && TEXVALID(batch->shader->defaulttextures->fullbright)) { //we have a small perf trick to accelerate q1 skies, also helps avoids distortions, but doesn't work too well for any other type of sky. R_CalcSkyChainBounds(batch); GL_DrawSkyGrid(skyshader->defaulttextures); } else GL_DrawSkySphere(batch, skyshader); } else if (batch->meshes) { //skys are weird. //they're the one type of surface with implicit nodraw when there's no passes. if (batch->shader->skydome || batch->shader->numpasses) R_DrawFastSky(batch); return true; //depth will always be drawn with this pathway... or we were not drawing anything anyway... } //neither skydomes nor skyboxes nor skygrids will have been drawn with the correct depth values for the sky. //this can result in rooms behind the sky surfaces being visible. //so make sure they're correct where they're expected to be. //don't do it on q3 bsp, because q3map2 can't do skyrooms without being weird about it. or something. anyway, we get different (buggy) behaviour from q3 if we don't skip this. //See: The Edge Of Forever (motef, by sock) for an example of where this needs to be skipped. //See dm3 for an example of where the depth needs to be correct (OMG THERE'S PLAYERS IN MY SKYBOX! WALLHAXX!). //you can't please them all. if (SKYMUSTBEMASKED) GL_SkyForceDepth(batch); return true; } /* ================================================================= Quake 2 environment sky ================================================================= */ static vec3_t skyclip[6] = { {1,1,0}, {1,-1,0}, {0,-1,1}, {0,1,1}, {1,0,1}, {-1,0,1} }; // 1 = s, 2 = t, 3 = 2048 static int st_to_vec[6][3] = { {3,-1,2}, {-3,1,2}, {1,3,2}, {-1,-3,2}, {-2,-1,3}, // 0 degrees yaw, look straight up {2,-1,-3} // look straight down // {-1,2,3}, // {1,2,-3} }; // s = [0]/[2], t = [1]/[2] static int vec_to_st[6][3] = { {-2,3,1}, {2,3,-1}, {1,3,2}, {-1,3,-2}, {-2,-1,3}, {-2,1,-3} // {-1,2,3}, // {1,2,-3} }; static float skymins[2][6], skymaxs[2][6]; static void DrawSkyPolygon (int nump, vec3_t vecs) { int i,j; vec3_t v, av; float s, t, dv; int axis; float *vp; // decide which face it maps to VectorClear (v); for (i=0, vp=vecs ; i av[1] && av[0] > av[2]) { if (v[0] < 0) axis = 1; else axis = 0; } else if (av[1] > av[2] && av[1] > av[0]) { if (v[1] < 0) axis = 3; else axis = 2; } else { if (v[2] < 0) axis = 5; else axis = 4; } // project new texture coords for (i=0 ; i 0) dv = vecs[j - 1]; else dv = -vecs[-j - 1]; if (dv < 0.001) continue; // don't divide by zero j = vec_to_st[axis][0]; if (j < 0) s = -vecs[-j -1] / dv; else s = vecs[j-1] / dv; j = vec_to_st[axis][1]; if (j < 0) t = -vecs[-j -1] / dv; else t = vecs[j-1] / dv; if (skymins[0][axis] > s) skymins[0][axis] = s; if (skymins[1][axis] > t) skymins[1][axis] = t; if (skymaxs[0][axis] < s) skymaxs[0][axis] = s; if (skymaxs[1][axis] < t) skymaxs[1][axis] = t; } } #define MAX_CLIP_VERTS 64 static void ClipSkyPolygon (int nump, vec3_t vecs, int stage) { float *norm; float *v; qboolean front, back; float d, e; float dists[MAX_CLIP_VERTS]; int sides[MAX_CLIP_VERTS]; vec3_t newv[2][MAX_CLIP_VERTS]; int newc[2]; int i, j; if (nump > MAX_CLIP_VERTS-2) Sys_Error ("ClipSkyPolygon: MAX_CLIP_VERTS"); if (stage == 6) { // fully clipped, so draw it DrawSkyPolygon (nump, vecs); return; } front = back = false; norm = skyclip[stage]; for (i=0, v = vecs ; i ON_EPSILON) { front = true; sides[i] = SIDE_FRONT; } else if (d < -ON_EPSILON) { back = true; sides[i] = SIDE_BACK; } else sides[i] = SIDE_ON; dists[i] = d; } if (!front || !back) { // not clipped ClipSkyPolygon (nump, vecs, stage+1); return; } // clip it sides[i] = sides[0]; dists[i] = dists[0]; VectorCopy (vecs, (vecs+(i*3)) ); newc[0] = newc[1] = 0; for (i=0, v = vecs ; imeshes == 1 && !batch->mesh[batch->firstmesh]->numindexes) { //deal with geometryless skies, like terrain/raw maps for (i=0 ; i<6 ; i++) { skymins[0][i] = skymins[1][i] = -1; skymaxs[0][i] = skymaxs[1][i] = 1; } return; } for (i=0 ; i<6 ; i++) { skymins[0][i] = skymins[1][i] = 1;//9999; skymaxs[0][i] = skymaxs[1][i] = -1;//-9999; } // calculate vertex values for sky box for (m = batch->firstmesh; m < batch->meshes; m++) { mesh = batch->mesh[m]; if (!mesh->xyz_array || !mesh->indexes) continue; //triangulate for (i = 0; i < mesh->numindexes; i+=3) { VectorSubtract (mesh->xyz_array[mesh->indexes[i+0]], r_origin, verts[0]); VectorSubtract (mesh->xyz_array[mesh->indexes[i+1]], r_origin, verts[1]); VectorSubtract (mesh->xyz_array[mesh->indexes[i+2]], r_origin, verts[2]); ClipSkyPolygon (3, verts[0], 0); } } } #define skygridx 16 #define skygridx1 (skygridx + 1) #define skygridxrecip (1.0f / (skygridx)) #define skygridy 16 #define skygridy1 (skygridy + 1) #define skygridyrecip (1.0f / (skygridy)) #define skysphere_numverts (skygridx1 * skygridy1) #define skysphere_numtriangles (skygridx * skygridy * 2) static int skymade; static index_t skysphere_element3i[skysphere_numtriangles * 3]; static float skysphere_texcoord2f[skysphere_numverts * 2]; static vecV_t skysphere_vertex3f[skysphere_numverts]; static mesh_t skymesh; static void gl_skyspherecalc(int skytype) { //yes, this is basically stolen from DarkPlaces int i, j; index_t *e; float a, b, x, ax, ay, v[3], length, *texcoord2f; vecV_t* vertex; float dx, dy, dz; float texscale; if (skymade == skytype) return; skymade = skytype; if (skymade == 2) texscale = 1/16.0f; else texscale = 1/1.5f; texscale*=3; skymesh.indexes = skysphere_element3i; skymesh.st_array = (void*)skysphere_texcoord2f; skymesh.lmst_array[0] = (void*)skysphere_texcoord2f; skymesh.xyz_array = (void*)skysphere_vertex3f; skymesh.numindexes = skysphere_numtriangles * 3; skymesh.numvertexes = skysphere_numverts; dx = 1; dy = 1; dz = 1 / 3.0; vertex = skysphere_vertex3f; texcoord2f = skysphere_texcoord2f; for (j = 0;j <= skygridy;j++) { a = j * skygridyrecip; ax = cos(a * M_PI * 2); ay = -sin(a * M_PI * 2); for (i = 0;i <= skygridx;i++) { b = i * skygridxrecip; x = cos((b + 0.5) * M_PI); v[0] = ax*x * dx; v[1] = ay*x * dy; v[2] = -sin((b + 0.5) * M_PI) * dz; length = texscale / sqrt(v[0]*v[0]+v[1]*v[1]+(v[2]*v[2]*9)); *texcoord2f++ = v[0] * length; *texcoord2f++ = v[1] * length; (*vertex)[0] = v[0]; (*vertex)[1] = v[1]; (*vertex)[2] = v[2]; vertex++; } } e = skysphere_element3i; for (j = 0;j < skygridy;j++) { for (i = 0;i < skygridx;i++) { *e++ = j * skygridx1 + i; *e++ = j * skygridx1 + i + 1; *e++ = (j + 1) * skygridx1 + i; *e++ = j * skygridx1 + i + 1; *e++ = (j + 1) * skygridx1 + i + 1; *e++ = (j + 1) * skygridx1 + i; } } } static void GL_SkyForceDepth(batch_t *batch) { if (!cls.allow_unmaskedskyboxes && batch->texture) //allow a little extra fps. { BE_SelectMode(BEM_DEPTHONLY); BE_DrawMesh_List(batch->shader, batch->meshes-batch->firstmesh, batch->mesh+batch->firstmesh, batch->vbo, NULL, batch->flags); BE_SelectMode(BEM_STANDARD); /*skys only render in standard mode anyway, so this is safe*/ } } static void R_DrawSkyMesh(batch_t *batch, mesh_t *m, shader_t *shader) { static entity_t skyent; batch_t b; float skydist = gl_skyboxdist.value; if (skydist<1) skydist=r_refdef.maxdist * 0.577; if (skydist<1) skydist = 10000000; VectorCopy(r_refdef.vieworg, skyent.origin); skyent.axis[0][0] = skydist; skyent.axis[0][1] = 0; skyent.axis[0][2] = 0; skyent.axis[1][0] = 0; skyent.axis[1][1] = skydist; skyent.axis[1][2] = 0; skyent.axis[2][0] = 0; skyent.axis[2][1] = 0; skyent.axis[2][2] = skydist; skyent.scale = 1; //FIXME: We should use the skybox clipping code and split the sphere into 6 sides. b = *batch; b.meshes = 1; b.firstmesh = 0; b.mesh = &m; b.ent = &skyent; b.shader = shader; b.skin = NULL; b.texture = NULL; b.vbo = NULL; Vector4Set(skyent.shaderRGBAf, 1, 1, 1, 1); BE_SubmitBatch(&b); } static void GL_DrawSkySphere (batch_t *batch, shader_t *shader) { //FIXME: We should use the skybox clipping code and split the sphere into 6 sides. gl_skyspherecalc(2); R_DrawSkyMesh(batch, &skymesh, shader); } static void GL_MakeSkyVec (float s, float t, int axis, float *vc, float *tc) { vec3_t b; int j, k; b[0] = s; b[1] = t; b[2] = 1; for (j=0 ; j<3 ; j++) { k = st_to_vec[axis][j]; if (k < 0) vc[j] = -b[-k - 1]; else vc[j] = b[k - 1]; } // avoid bilerp seam s = (s+1)*0.5; t = (t+1)*0.5; if (s < 1.0/512) s = 1.0/512; else if (s > 511.0/512) s = 511.0/512; if (t < 1.0/512) t = 1.0/512; else if (t > 511.0/512) t = 511.0/512; tc[0] = s; tc[1] = 1.0 - t; } static float speedscale1; // for top sky static float speedscale2; // for bottom sky static void EmitSkyGridVert (vec3_t v, vec2_t tc1, vec2_t tc2) { vec3_t dir; float length; VectorSubtract (v, r_origin, dir); dir[2] *= 3; // flatten the sphere length = VectorLength (dir); length = 6*63/length; dir[0] *= length; dir[1] *= length; tc1[0] = (speedscale1 + dir[0]) * (1.0/128); tc1[1] = (speedscale1 + dir[1]) * (1.0/128); tc2[0] = (speedscale2 + dir[0]) * (1.0/128); tc2[1] = (speedscale2 + dir[1]) * (1.0/128); } // s and t range from -1 to 1 static void MakeSkyGridVec2 (float s, float t, int axis, vec3_t v, vec2_t tc1, vec2_t tc2) { vec3_t b; int j, k; float skydist = gl_skyboxdist.value; if (skydist<1) skydist=r_refdef.maxdist * 0.577; if (skydist<1) skydist = 10000000; b[0] = s*skydist; b[1] = t*skydist; b[2] = skydist; for (j=0 ; j<3 ; j++) { k = st_to_vec[axis][j]; if (k < 0) v[j] = -b[-k - 1]; else v[j] = b[k - 1]; v[j] += r_origin[j]; } EmitSkyGridVert(v, tc1, tc2); } #define SUBDIVISIONS 10 static void GL_DrawSkyGridFace (int axis, mesh_t *fte_restrict mesh) { int i, j; float s, t; float fstep = 2.0 / SUBDIVISIONS; for (i = 0; i < SUBDIVISIONS; i++) { s = (float)(i*2 - SUBDIVISIONS) / SUBDIVISIONS; if (s + fstep < skymins[0][axis] || s > skymaxs[0][axis]) continue; for (j = 0; j < SUBDIVISIONS; j++) { t = (float)(j*2 - SUBDIVISIONS) / SUBDIVISIONS; if (t + fstep < skymins[1][axis] || t > skymaxs[1][axis]) continue; mesh->indexes[mesh->numindexes++] = mesh->numvertexes+0; mesh->indexes[mesh->numindexes++] = mesh->numvertexes+1; mesh->indexes[mesh->numindexes++] = mesh->numvertexes+2; mesh->indexes[mesh->numindexes++] = mesh->numvertexes+0; mesh->indexes[mesh->numindexes++] = mesh->numvertexes+2; mesh->indexes[mesh->numindexes++] = mesh->numvertexes+3; MakeSkyGridVec2 (s, t, axis, mesh->xyz_array[mesh->numvertexes], mesh->st_array[mesh->numvertexes], mesh->lmst_array[0][mesh->numvertexes]); mesh->numvertexes++; MakeSkyGridVec2 (s, t + fstep, axis, mesh->xyz_array[mesh->numvertexes], mesh->st_array[mesh->numvertexes], mesh->lmst_array[0][mesh->numvertexes]); mesh->numvertexes++; MakeSkyGridVec2 (s + fstep, t + fstep, axis, mesh->xyz_array[mesh->numvertexes], mesh->st_array[mesh->numvertexes], mesh->lmst_array[0][mesh->numvertexes]); mesh->numvertexes++; MakeSkyGridVec2 (s + fstep, t, axis, mesh->xyz_array[mesh->numvertexes], mesh->st_array[mesh->numvertexes], mesh->lmst_array[0][mesh->numvertexes]); mesh->numvertexes++; } } } static void GL_DrawSkyGrid (texnums_t *tex) { static entity_t skyent; static batch_t b; static mesh_t skymesh, *meshptr=&skymesh; vecV_t coords[SUBDIVISIONS*SUBDIVISIONS*4*6]; vec2_t texcoords1[SUBDIVISIONS*SUBDIVISIONS*4*6]; vec2_t texcoords2[SUBDIVISIONS*SUBDIVISIONS*4*6]; index_t indexes[SUBDIVISIONS*SUBDIVISIONS*6*6]; int i; float time = cl.gametime+realtime-cl.gametimemark; speedscale1 = time*8; speedscale1 -= (int)speedscale1 & ~127; speedscale2 = time*16; speedscale2 -= (int)speedscale2 & ~127; skymesh.indexes = indexes; skymesh.st_array = texcoords1; skymesh.lmst_array[0] = texcoords2; skymesh.xyz_array = coords; skymesh.numindexes = 0; skymesh.numvertexes = 0; for (i = 0; i < 6; i++) { if ((skymins[0][i] >= skymaxs[0][i] || skymins[1][i] >= skymaxs[1][i])) continue; GL_DrawSkyGridFace (i, &skymesh); } VectorCopy(r_refdef.vieworg, skyent.origin); skyent.axis[0][0] = 1; skyent.axis[0][1] = 0; skyent.axis[0][2] = 0; skyent.axis[1][0] = 0; skyent.axis[1][1] = 1; skyent.axis[1][2] = 0; skyent.axis[2][0] = 0; skyent.axis[2][1] = 0; skyent.axis[2][2] = 1; skyent.scale = 1; if (!skygridface) skygridface = R_RegisterShader("skygridface", SUF_NONE, "{\n" "program default2d\n" "{\n" "map $diffuse\n" "nodepth\n" //don't write depth. this stuff is meant to be an infiniteish distance away. "}\n" "{\n" "map $fullbright\n" "blendfunc blend\n" "nodepth\n" //don't write depth. this stuff is meant to be an infiniteish distance away. "}\n" "}\n" ); //FIXME: We should use the skybox clipping code and split the sphere into 6 sides. b.meshes = 1; b.firstmesh = 0; b.mesh = &meshptr; b.ent = &skyent; b.shader = skygridface; b.skin = tex; b.texture = NULL; b.vbo = NULL; BE_SubmitBatch(&b); } /* ============== R_DrawSkyBox ============== */ static int skytexorder[6] = {0,2,1,3,4,5}; static void GL_DrawSkyBox (texid_t *texnums, batch_t *s) { int i; vecV_t skyface_vertex[4]; vec2_t skyface_texcoord[4]; index_t skyface_index[6] = {0, 1, 2, 0, 2, 3}; vec4_t skyface_colours[4] = {{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}}; mesh_t skyfacemesh = {0}; if (cl.skyrotate) { for (i=0 ; i<6 ; i++) { if (skymins[0][i] < skymaxs[0][i] && skymins[1][i] < skymaxs[1][i]) break; skymins[0][i] = -1; //fully visible skymins[1][i] = -1; skymaxs[0][i] = 1; skymaxs[1][i] = 1; } if (i == 6) return; //can't see anything for ( ; i<6 ; i++) { skymins[0][i] = -1; skymins[1][i] = -1; skymaxs[0][i] = 1; skymaxs[1][i] = 1; } } skyfacemesh.indexes = skyface_index; skyfacemesh.st_array = skyface_texcoord; skyfacemesh.xyz_array = skyface_vertex; skyfacemesh.colors4f_array[0] = skyface_colours; skyfacemesh.numindexes = 6; skyfacemesh.numvertexes = 4; if (!skyboxface) skyboxface = R_RegisterShader("skyboxface", SUF_NONE, "{\n" "program default2d\n" "{\n" "map $diffuse\n" "nodepth\n" //don't write depth. this stuff is meant to be an infiniteish distance away. "}\n" "}\n" ); for (i=0 ; i<6 ; i++) { if (skymins[0][i] >= skymaxs[0][i] || skymins[1][i] >= skymaxs[1][i]) continue; GL_MakeSkyVec (skymins[0][i], skymins[1][i], i, skyface_vertex[0], skyface_texcoord[0]); GL_MakeSkyVec (skymins[0][i], skymaxs[1][i], i, skyface_vertex[1], skyface_texcoord[1]); GL_MakeSkyVec (skymaxs[0][i], skymaxs[1][i], i, skyface_vertex[2], skyface_texcoord[2]); GL_MakeSkyVec (skymaxs[0][i], skymins[1][i], i, skyface_vertex[3], skyface_texcoord[3]); skyboxface->defaulttextures->base = texnums[skytexorder[i]]; R_DrawSkyMesh(s, &skyfacemesh, skyboxface); } } //=============================================================== /* ============= R_InitSky A sky image is 256*128 and comprises two logical textures. the left is the transparent/blended part. the right is the opaque/background part. ============== */ void R_InitSky (shader_t *shader, const char *skyname, uploadfmt_t fmt, qbyte *src, unsigned int width, unsigned int height) { int i, j, p; unsigned *temp; unsigned transpix, alphamask; int r, g, b; unsigned *rgba; char name[MAX_QPATH*2]; unsigned int stride = width; width /= 2; if (width < 1 || height < 1 || stride != width*2 || !src) return; //try to load dual-layer-single-image skies. //this is always going to be lame special case crap if (gl_load24bit.ival) { size_t filesize = 0; qbyte *filedata = NULL; if (!filedata) { Q_snprintfz(name, sizeof(name), "textures/%s.tga", skyname); filedata = FS_LoadMallocFile(name, &filesize); } if (!filedata) { Q_snprintfz(name, sizeof(name), "textures/%s.png", skyname); filedata = FS_LoadMallocFile(name, &filesize); } if (filedata) { int imagewidth, imageheight; uploadfmt_t format; //fixme, if this has no alpha, is it worth all this code? unsigned int *imagedata = (unsigned int*)ReadRawImageFile(filedata, filesize, &imagewidth, &imageheight, &format, true, name); Z_Free(filedata); if (imagedata && !(imagewidth&1)) { imagewidth>>=1; temp = BZF_Malloc(imagewidth*imageheight*sizeof(*temp)); if (temp) { for (i=0 ; idefaulttextures->base = R_LoadReplacementTexture(name, NULL, IF_NOALPHA, temp, imagewidth, imageheight, TF_RGBX32); for (i=0 ; idefaulttextures->fullbright = R_LoadReplacementTexture(name, NULL, 0, temp, imagewidth, imageheight, TF_RGBA32); BZ_Free(temp); return; } } BZ_Free(imagedata); } } if (fmt & PTI_FULLMIPCHAIN) { //input is expected to make sense... qbyte *front, *back; unsigned int bb, bw, bh, bd; unsigned int w, h, y; fmt = fmt&~PTI_FULLMIPCHAIN; Image_BlockSizeForEncoding(fmt, &bb, &bw, &bh, &bd); w = (width+bw-1)/bw; h = (height+bh-1)/bh; //d = (depth+bd-1)/bd; back = BZ_Malloc(bb*w*2*h); front = back + bb*w*h; for (y = 0; y < h; y++) { memcpy(back + bb*y*w, src + bb*(y*w*2+w), w*bb); memcpy(front + bb*y*w, src + bb*(y*w*2), w*bb); } if (!shader->defaulttextures->base) { Q_snprintfz(name, sizeof(name), "%s_solid", skyname); Q_strlwr(name); shader->defaulttextures->base = R_LoadReplacementTexture(name, NULL, IF_NOALPHA, back, width, height, fmt); } if (!shader->defaulttextures->fullbright) { //FIXME: support _trans Q_snprintfz(name, sizeof(name), "%s_alpha:%s_trans", skyname, skyname); Q_strlwr(name); shader->defaulttextures->fullbright = R_LoadReplacementTexture(name, NULL, 0, front, width, height, fmt); } BZ_Free(back); } else { temp = BZ_Malloc(width*height*sizeof(*temp)); // make an average value for the back to avoid // a fringe on the top level r = g = b = 0; for (i=0 ; idefaulttextures->base) { Q_snprintfz(name, sizeof(name), "%s_solid", skyname); Q_strlwr(name); shader->defaulttextures->base = R_LoadReplacementTexture(name, NULL, IF_NOALPHA, temp, width, height, TF_RGBX32); } if (!shader->defaulttextures->fullbright) { //fixme: use premultiplied alpha here. ((qbyte *)&transpix)[0] = r/(width*height); ((qbyte *)&transpix)[1] = g/(width*height); ((qbyte *)&transpix)[2] = b/(width*height); ((qbyte *)&transpix)[3] = 0; alphamask = r_skycloudalpha.value*255; alphamask = ((bound(0, alphamask, 0xff)<<24) | 0x00ffffff); alphamask = LittleLong(alphamask); for (i=0 ; idefaulttextures->fullbright = R_LoadReplacementTexture(name, NULL, 0, temp, width, height, TF_RGBA32); } BZ_Free(temp); } } #endif