/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // Z_zone.c #include "quakedef.h" #ifdef SLIM #define DYNAMIC_SIZE 0x100000//0xc000 Crow_Bar. UP for PSP #else #define DYNAMIC_SIZE 0x40000 #endif #define ZONEID 0x1d4a11 #define MINFRAGMENT 64 typedef struct memblock_s { int size; // including the header and possibly tiny fragments int tag; // a tag of 0 is a free block int id; // should be ZONEID struct memblock_s *next, *prev; int pad; // pad to 64 bit boundary } memblock_t; typedef struct { int size; // total bytes malloced, including header memblock_t blocklist; // start / end cap for linked list memblock_t *rover; } memzone_t; void Cache_FreeLow (int new_low_hunk); void Cache_FreeHigh (int new_high_hunk); void* memcpy_vfpu( void* dst, void* src, unsigned int size ) { u8* src8 = (u8*)src; u8* dst8 = (u8*)dst; // < 8 isn't worth trying any optimisations... if (size<8) goto bytecopy; // < 64 means we don't gain anything from using vfpu... if (size<64) { // Align dst on 4 bytes or just resume if already done while (((((u32)dst8) & 0x3)!=0) && size) { *dst8++ = *src8++; size--; } if (size<4) goto bytecopy; // We are dst aligned now and >= 4 bytes to copy u32* src32 = (u32*)src8; u32* dst32 = (u32*)dst8; switch(((u32)src8)&0x3) { case 0: while (size&0xC) { *dst32++ = *src32++; size -= 4; } if (size==0) return (dst); // fast out while (size>=16) { *dst32++ = *src32++; *dst32++ = *src32++; *dst32++ = *src32++; *dst32++ = *src32++; size -= 16; } if (size==0) return (dst); // fast out src8 = (u8*)src32; dst8 = (u8*)dst32; break; default: { register u32 a, b, c, d; while (size>=4) { a = *src8++; b = *src8++; c = *src8++; d = *src8++; *dst32++ = (d << 24) | (c << 16) | (b << 8) | a; size -= 4; } if (size==0) return (dst); // fast out dst8 = (u8*)dst32; } break; } goto bytecopy; } // Align dst on 16 bytes to gain from vfpu aligned stores while ((((u32)dst8) & 0xF)!=0 && size) { *dst8++ = *src8++; size--; } // We use uncached dst to use VFPU writeback and free cpu cache for src only u8* udst8 = (u8*)((u32)dst8 | 0x40000000); // We need the 64 byte aligned address to make sure the dcache is invalidated correctly u8* dst64a = ((u32)dst8&~0x3F); // Invalidate the first line that matches up to the dst start if (size>=64) asm(".set push\n" // save assembler option ".set noreorder\n" // suppress reordering "cache 0x1B, 0(%0)\n" "addiu %0, %0, 64\n" "sync\n" ".set pop\n" :"+r"(dst64a)); switch(((u32)src8&0xF)) { // src aligned on 16 bytes too? nice! case 0: while (size>=64) { asm(".set push\n" // save assembler option ".set noreorder\n" // suppress reordering "cache 0x1B, 0(%2)\n" // Dcache writeback invalidate "lv.q c000, 0(%1)\n" "lv.q c010, 16(%1)\n" "lv.q c020, 32(%1)\n" "lv.q c030, 48(%1)\n" "sync\n" // Wait for allegrex writeback "sv.q c000, 0(%0), wb\n" "sv.q c010, 16(%0), wb\n" "sv.q c020, 32(%0), wb\n" "sv.q c030, 48(%0), wb\n" // Lots of variable updates... but get hidden in sv.q latency anyway "addiu %3, %3, -64\n" "addiu %2, %2, 64\n" "addiu %1, %1, 64\n" "addiu %0, %0, 64\n" ".set pop\n" // restore assembler option :"+r"(udst8),"+r"(src8),"+r"(dst64a),"+r"(size) : :"memory" ); } if (size>16) { // Invalidate the last cache line where the max remaining 63 bytes are asm(".set push\n" // save assembler option ".set noreorder\n" // suppress reordering "cache 0x1B, 0(%0)\n" "sync\n" ".set pop\n" // restore assembler option ::"r"(dst64a)); while (size>=16) { asm(".set push\n" // save assembler option ".set noreorder\n" // suppress reordering "lv.q c000, 0(%1)\n" "sv.q c000, 0(%0), wb\n" // Lots of variable updates... but get hidden in sv.q latency anyway "addiu %2, %2, -16\n" "addiu %1, %1, 16\n" "addiu %0, %0, 16\n" ".set pop\n" // restore assembler option :"+r"(udst8),"+r"(src8),"+r"(size) : :"memory" ); } } asm(".set push\n" // save assembler option ".set noreorder\n" // suppress reordering "vflush\n" // Flush VFPU writeback cache ".set pop\n" // restore assembler option ); dst8 = (u8*)((u32)udst8 & ~0x40000000); break; // src is only qword unaligned but word aligned? We can at least use ulv.q case 4: case 8: case 12: while (size>=64) { asm(".set push\n" // save assembler option ".set noreorder\n" // suppress reordering "cache 0x1B, 0(%2)\n" // Dcache writeback invalidate "ulv.q c000, 0(%1)\n" "ulv.q c010, 16(%1)\n" "ulv.q c020, 32(%1)\n" "ulv.q c030, 48(%1)\n" "sync\n" // Wait for allegrex writeback "sv.q c000, 0(%0), wb\n" "sv.q c010, 16(%0), wb\n" "sv.q c020, 32(%0), wb\n" "sv.q c030, 48(%0), wb\n" // Lots of variable updates... but get hidden in sv.q latency anyway "addiu %3, %3, -64\n" "addiu %2, %2, 64\n" "addiu %1, %1, 64\n" "addiu %0, %0, 64\n" ".set pop\n" // restore assembler option :"+r"(udst8),"+r"(src8),"+r"(dst64a),"+r"(size) : :"memory" ); } if (size>16) // Invalidate the last cache line where the max remaining 63 bytes are asm(".set push\n" // save assembler option ".set noreorder\n" // suppress reordering "cache 0x1B, 0(%0)\n" "sync\n" ".set pop\n" // restore assembler option ::"r"(dst64a)); while (size>=16) { asm(".set push\n" // save assembler option ".set noreorder\n" // suppress reordering "ulv.q c000, 0(%1)\n" "sv.q c000, 0(%0), wb\n" // Lots of variable updates... but get hidden in sv.q latency anyway "addiu %2, %2, -16\n" "addiu %1, %1, 16\n" "addiu %0, %0, 16\n" ".set pop\n" // restore assembler option :"+r"(udst8),"+r"(src8),"+r"(size) : :"memory" ); } asm(".set push\n" // save assembler option ".set noreorder\n" // suppress reordering "vflush\n" // Flush VFPU writeback cache ".set pop\n" // restore assembler option ); dst8 = (u8*)((u32)udst8 & ~0x40000000); break; // src not aligned? too bad... have to use unaligned reads default: while (size>=64) { asm(".set push\n" // save assembler option ".set noreorder\n" // suppress reordering "cache 0x1B, 0(%2)\n" "lwr $8, 0(%1)\n" // "lwl $8, 3(%1)\n" // $8 = *(s + 0) "lwr $9, 4(%1)\n" // "lwl $9, 7(%1)\n" // $9 = *(s + 4) "lwr $10, 8(%1)\n" // "lwl $10, 11(%1)\n" // $10 = *(s + 8) "lwr $11, 12(%1)\n" // "lwl $11, 15(%1)\n" // $11 = *(s + 12) "mtv $8, s000\n" "mtv $9, s001\n" "mtv $10, s002\n" "mtv $11, s003\n" "lwr $8, 16(%1)\n" "lwl $8, 19(%1)\n" "lwr $9, 20(%1)\n" "lwl $9, 23(%1)\n" "lwr $10, 24(%1)\n" "lwl $10, 27(%1)\n" "lwr $11, 28(%1)\n" "lwl $11, 31(%1)\n" "mtv $8, s010\n" "mtv $9, s011\n" "mtv $10, s012\n" "mtv $11, s013\n" "lwr $8, 32(%1)\n" "lwl $8, 35(%1)\n" "lwr $9, 36(%1)\n" "lwl $9, 39(%1)\n" "lwr $10, 40(%1)\n" "lwl $10, 43(%1)\n" "lwr $11, 44(%1)\n" "lwl $11, 47(%1)\n" "mtv $8, s020\n" "mtv $9, s021\n" "mtv $10, s022\n" "mtv $11, s023\n" "lwr $8, 48(%1)\n" "lwl $8, 51(%1)\n" "lwr $9, 52(%1)\n" "lwl $9, 55(%1)\n" "lwr $10, 56(%1)\n" "lwl $10, 59(%1)\n" "lwr $11, 60(%1)\n" "lwl $11, 63(%1)\n" "mtv $8, s030\n" "mtv $9, s031\n" "mtv $10, s032\n" "mtv $11, s033\n" "sync\n" "sv.q c000, 0(%0), wb\n" "sv.q c010, 16(%0), wb\n" "sv.q c020, 32(%0), wb\n" "sv.q c030, 48(%0), wb\n" // Lots of variable updates... but get hidden in sv.q latency anyway "addiu %3, %3, -64\n" "addiu %2, %2, 64\n" "addiu %1, %1, 64\n" "addiu %0, %0, 64\n" ".set pop\n" // restore assembler option :"+r"(udst8),"+r"(src8),"+r"(dst64a),"+r"(size) : :"$8","$9","$10","$11","memory" ); } if (size>16) // Invalidate the last cache line where the max remaining 63 bytes are asm(".set push\n" // save assembler option ".set noreorder\n" // suppress reordering "cache 0x1B, 0(%0)\n" "sync\n" ".set pop\n" // restore assembler option ::"r"(dst64a)); while (size>=16) { asm(".set push\n" // save assembler option ".set noreorder\n" // suppress reordering "lwr $8, 0(%1)\n" // "lwl $8, 3(%1)\n" // $8 = *(s + 0) "lwr $9, 4(%1)\n" // "lwl $9, 7(%1)\n" // $9 = *(s + 4) "lwr $10, 8(%1)\n" // "lwl $10, 11(%1)\n" // $10 = *(s + 8) "lwr $11, 12(%1)\n" // "lwl $11, 15(%1)\n" // $11 = *(s + 12) "mtv $8, s000\n" "mtv $9, s001\n" "mtv $10, s002\n" "mtv $11, s003\n" "sv.q c000, 0(%0), wb\n" // Lots of variable updates... but get hidden in sv.q latency anyway "addiu %2, %2, -16\n" "addiu %1, %1, 16\n" "addiu %0, %0, 16\n" ".set pop\n" // restore assembler option :"+r"(udst8),"+r"(src8),"+r"(size) : :"$8","$9","$10","$11","memory" ); } asm(".set push\n" // save assembler option ".set noreorder\n" // suppress reordering "vflush\n" // Flush VFPU writeback cache ".set pop\n" // restore assembler option ); dst8 = (u8*)((u32)udst8 & ~0x40000000); break; } bytecopy: // Copy the remains byte per byte... while (size--) { *dst8++ = *src8++; } return (dst); } /* ============================================================================== ZONE MEMORY ALLOCATION There is never any space between memblocks, and there will never be two contiguous free memblocks. The rover can be left pointing at a non-empty block The zone calls are pretty much only used for small strings and structures, all big things are allocated on the hunk. ============================================================================== */ memzone_t *mainzone; void Z_ClearZone (memzone_t *zone, int size); /* ======================== Z_ClearZone ======================== */ void Z_ClearZone (memzone_t *zone, int size) { memblock_t *block; // set the entire zone to one free block zone->blocklist.next = zone->blocklist.prev = block = (memblock_t *)( (byte *)zone + sizeof(memzone_t) ); zone->blocklist.tag = 1; // in use block zone->blocklist.id = 0; zone->blocklist.size = 0; zone->rover = block; block->prev = block->next = &zone->blocklist; block->tag = 0; // free block block->id = ZONEID; block->size = size - sizeof(memzone_t); } /* ======================== Z_Free ======================== */ void Z_Free (void *ptr) { memblock_t *block, *other; if (!ptr) Sys_Error ("Z_Free: NULL pointer"); block = (memblock_t *) ( (byte *)ptr - sizeof(memblock_t)); if (block->id != ZONEID) { Con_DPrintf("Z_Free: freed a pointer without ZONEID\n"); return; } if (block->tag == 0) Sys_Error ("Z_Free: freed a freed pointer"); block->tag = 0; // mark as free other = block->prev; if (!other->tag) { // merge with previous free block other->size += block->size; other->next = block->next; other->next->prev = other; if (block == mainzone->rover) mainzone->rover = other; block = other; } other = block->next; if (!other->tag) { // merge the next free block onto the end block->size += other->size; block->next = other->next; block->next->prev = block; if (other == mainzone->rover) mainzone->rover = block; } } /* ======================== Z_Malloc ======================== */ void *Z_Malloc (int size) { void *buf; Z_CheckHeap (); // DEBUG buf = Z_TagMalloc (size, 1); if (!buf) Sys_Error ("Z_Malloc: failed on allocation of %i bytes",size); Q_memset (buf, 0, size); return buf; } void *Z_TagMalloc (int size, int tag) { int extra; memblock_t *start, *rover, *new, *base; if (!tag) Sys_Error ("Z_TagMalloc: tried to use a 0 tag"); // // scan through the block list looking for the first free block // of sufficient size // size += sizeof(memblock_t); // account for size of block header size += 4; // space for memory trash tester size = (size + 7) & ~7; // align to 8-byte boundary base = rover = mainzone->rover; start = base->prev; do { if (rover == start) // scaned all the way around the list return NULL; if (rover->tag) base = rover = rover->next; else rover = rover->next; } while (base->tag || base->size < size); // // found a block big enough // extra = base->size - size; if (extra > MINFRAGMENT) { // there will be a free fragment after the allocated block new = (memblock_t *) ((byte *)base + size ); new->size = extra; new->tag = 0; // free block new->prev = base; new->id = ZONEID; new->next = base->next; new->next->prev = new; base->next = new; base->size = size; } base->tag = tag; // no longer a free block mainzone->rover = base->next; // next allocation will start looking here base->id = ZONEID; // marker for memory trash testing *(int *)((byte *)base + base->size - 4) = ZONEID; return (void *) ((byte *)base + sizeof(memblock_t)); } /* ======================== Z_Print ======================== */ void Z_Print (memzone_t *zone) { memblock_t *block; Con_Printf ("zone size: %i location: %p\n",mainzone->size,mainzone); for (block = zone->blocklist.next ; ; block = block->next) { Con_Printf ("block:%p size:%7i tag:%3i\n", block, block->size, block->tag); if (block->next == &zone->blocklist) break; // all blocks have been hit if ( (byte *)block + block->size != (byte *)block->next) Con_Printf ("ERROR: block size does not touch the next block\n"); if ( block->next->prev != block) Con_Printf ("ERROR: next block doesn't have proper back link\n"); if (!block->tag && !block->next->tag) Con_Printf ("ERROR: two consecutive free blocks\n"); } } /* ======================== Z_CheckHeap ======================== */ void Z_CheckHeap (void) { memblock_t *block; for (block = mainzone->blocklist.next ; ; block = block->next) { if (block->next == &mainzone->blocklist) break; // all blocks have been hit if ( (byte *)block + block->size != (byte *)block->next) Sys_Error ("Z_CheckHeap: block size does not touch the next block\n"); if ( block->next->prev != block) Sys_Error ("Z_CheckHeap: next block doesn't have proper back link\n"); if (!block->tag && !block->next->tag) Sys_Error ("Z_CheckHeap: two consecutive free blocks\n"); } } //============================================================================ #define HUNK_SENTINAL 0x1df001ed typedef struct { int sentinal; int size; // including sizeof(hunk_t), -1 = not allocated char name[8]; } hunk_t; byte *hunk_base; int hunk_size; int hunk_low_used; int hunk_high_used; qboolean hunk_tempactive; int hunk_tempmark; void R_FreeTextures (void); /* ============== Hunk_Check Run consistancy and sentinal trahing checks ============== */ void Hunk_Check (void) { hunk_t *h; for (h = (hunk_t *)hunk_base ; (byte *)h != hunk_base + hunk_low_used ; ) { if (h->sentinal != HUNK_SENTINAL) Sys_Error ("Hunk_Check: trahsed sentinal"); if (h->size < 16 || h->size + (byte *)h - hunk_base > hunk_size) Sys_Error ("Hunk_Check: bad size"); h = (hunk_t *)((byte *)h+h->size); } } /* ============== Hunk_Print If "all" is specified, every single allocation is printed. Otherwise, allocations with the same name will be totaled up before printing. ============== */ void Hunk_Print (qboolean all) { hunk_t *h, *next, *endlow, *starthigh, *endhigh; int count, sum; int totalblocks; char name[9]; name[8] = 0; count = 0; sum = 0; totalblocks = 0; h = (hunk_t *)hunk_base; endlow = (hunk_t *)(hunk_base + hunk_low_used); starthigh = (hunk_t *)(hunk_base + hunk_size - hunk_high_used); endhigh = (hunk_t *)(hunk_base + hunk_size); Con_Printf (" :%8i total hunk size\n", hunk_size); Con_Printf ("-------------------------\n"); while (1) { // // skip to the high hunk if done with low hunk // if ( h == endlow ) { Con_Printf ("-------------------------\n"); Con_Printf (" :%8i REMAINING\n", hunk_size - hunk_low_used - hunk_high_used); Con_Printf ("-------------------------\n"); h = starthigh; } // // if totally done, break // if ( h == endhigh ) break; // // run consistancy checks // if (h->sentinal != HUNK_SENTINAL) Sys_Error ("Hunk_Check: trahsed sentinal"); if (h->size < 16 || h->size + (byte *)h - hunk_base > hunk_size) Sys_Error ("Hunk_Check: bad size"); next = (hunk_t *)((byte *)h+h->size); count++; totalblocks++; sum += h->size; // // print the single block // memcpy_vfpu(name, h->name, 8); if (all) Con_Printf ("%8p :%8i %8s\n",h, h->size, name); // // print the total // if (next == endlow || next == endhigh || strncmp (h->name, next->name, 8) ) { if (!all) Con_Printf (" :%8i %8s (TOTAL)\n",sum, name); count = 0; sum = 0; } h = next; } Con_Printf ("-------------------------\n"); Con_Printf ("%8i total blocks\n", totalblocks); } /* =================== Hunk_AllocName =================== */ void *Hunk_AllocName (int size, char *name) { hunk_t *h; if (size < 0) { Sys_Error ("Hunk_Alloc: bad size: %i", size); //Con_Printf ("Hunk_Alloc: bad size: %i", size); return NULL; } size = sizeof(hunk_t) + ((size+15)&~15); if (hunk_size - hunk_low_used - hunk_high_used < size) { Sys_Error ("Hunk_Alloc: failed on %i bytes, %s", size, name); //Con_Printf ("Hunk_Alloc: failed on %i bytes",size); return NULL; } h = (hunk_t *)(hunk_base + hunk_low_used); hunk_low_used += size; Cache_FreeLow (hunk_low_used); memset (h, 0, size); h->size = size; h->sentinal = HUNK_SENTINAL; Q_strncpy (h->name, name, 8); return (void *)(h+1); } /* =================== Hunk_Alloc =================== */ void *Hunk_Alloc (int size) { return Hunk_AllocName (size, "unknown"); } int Hunk_LowMark (void) { return hunk_low_used; } void Hunk_FreeToLowMark (int mark) { if (mark < 0 || mark > hunk_low_used) Sys_Error ("Hunk_FreeToLowMark: bad mark %i", mark); memset (hunk_base + mark, 0, hunk_low_used - mark); hunk_low_used = mark; } int Hunk_HighMark (void) { if (hunk_tempactive) { hunk_tempactive = false; Hunk_FreeToHighMark (hunk_tempmark); } return hunk_high_used; } void Hunk_FreeToHighMark (int mark) { if (hunk_tempactive) { hunk_tempactive = false; Hunk_FreeToHighMark (hunk_tempmark); } if (mark < 0 || mark > hunk_high_used) Sys_Error ("Hunk_FreeToHighMark: bad mark %i", mark); memset (hunk_base + hunk_size - hunk_high_used, 0, hunk_high_used - mark); hunk_high_used = mark; } /* =================== Hunk_HighAllocName =================== */ void *Hunk_HighAllocName (int size, char *name) { hunk_t *h; if (size < 0) Sys_Error ("Hunk_HighAllocName: bad size: %i", size); if (hunk_tempactive) { Hunk_FreeToHighMark (hunk_tempmark); hunk_tempactive = false; } size = sizeof(hunk_t) + ((size+15)&~15); if (hunk_size - hunk_low_used - hunk_high_used < size) { Con_Printf ("Hunk_HighAlloc: failed on %i bytes, %s\n", size, name); return NULL; } hunk_high_used += size; Cache_FreeHigh (hunk_high_used); h = (hunk_t *)(hunk_base + hunk_size - hunk_high_used); memset (h, 0, size); h->size = size; h->sentinal = HUNK_SENTINAL; Q_strncpy (h->name, name, 8); return (void *)(h+1); } /* ================= Hunk_TempAlloc Return space from the top of the hunk ================= */ void *Hunk_TempAlloc (int size) { void *buf; size = (size+15)&~15; if (hunk_tempactive) { Hunk_FreeToHighMark (hunk_tempmark); hunk_tempactive = false; } hunk_tempmark = Hunk_HighMark (); buf = Hunk_HighAllocName (size, "temp"); hunk_tempactive = true; return buf; } /* =============================================================================== CACHE MEMORY =============================================================================== */ typedef struct cache_system_s { int size; // including this header cache_user_t *user; char name[16]; struct cache_system_s *prev, *next; struct cache_system_s *lru_prev, *lru_next; // for LRU flushing } cache_system_t; cache_system_t *Cache_TryAlloc (int size, qboolean nobottom); cache_system_t cache_head; /* =========== Cache_Move =========== */ void Cache_Move ( cache_system_t *c) { cache_system_t *new; // we are clearing up space at the bottom, so only allocate it late new = Cache_TryAlloc (c->size, true); if (new) { // Con_Printf ("cache_move ok\n"); Q_memcpy ( new+1, c+1, c->size - sizeof(cache_system_t) ); new->user = c->user; Q_memcpy (new->name, c->name, sizeof(new->name)); Cache_Free (c->user); new->user->data = (void *)(new+1); } else { // Con_Printf ("cache_move failed\n"); Cache_Free (c->user); // tough luck... } } /* ============ Cache_FreeLow Throw things out until the hunk can be expanded to the given point ============ */ void Cache_FreeLow (int new_low_hunk) { cache_system_t *c; while (1) { c = cache_head.next; if (c == &cache_head) return; // nothing in cache at all if ((byte *)c >= hunk_base + new_low_hunk) return; // there is space to grow the hunk Cache_Move ( c ); // reclaim the space } } /* ============ Cache_FreeHigh Throw things out until the hunk can be expanded to the given point ============ */ void Cache_FreeHigh (int new_high_hunk) { cache_system_t *c, *prev; prev = NULL; while (1) { c = cache_head.prev; if (c == &cache_head) return; // nothing in cache at all if ( (byte *)c + c->size <= hunk_base + hunk_size - new_high_hunk) return; // there is space to grow the hunk if (c == prev) Cache_Free (c->user); // didn't move out of the way else { Cache_Move (c); // try to move it prev = c; } } } void Cache_UnlinkLRU (cache_system_t *cs) { if (!cs->lru_next || !cs->lru_prev) Sys_Error ("Cache_UnlinkLRU: NULL link"); cs->lru_next->lru_prev = cs->lru_prev; cs->lru_prev->lru_next = cs->lru_next; cs->lru_prev = cs->lru_next = NULL; } void Cache_MakeLRU (cache_system_t *cs) { if (cs->lru_next || cs->lru_prev) Sys_Error ("Cache_MakeLRU: active link"); cache_head.lru_next->lru_prev = cs; cs->lru_next = cache_head.lru_next; cs->lru_prev = &cache_head; cache_head.lru_next = cs; } /* ============ Cache_TryAlloc Looks for a free block of memory between the high and low hunk marks Size should already include the header and padding ============ */ cache_system_t *Cache_TryAlloc (int size, qboolean nobottom) { cache_system_t *cs, *new; // is the cache completely empty? if (!nobottom && cache_head.prev == &cache_head) { if (hunk_size - hunk_high_used - hunk_low_used < size) Sys_Error ("Cache_TryAlloc: %i is greater then free hunk", size); new = (cache_system_t *) (hunk_base + hunk_low_used); memset (new, 0, sizeof(*new)); new->size = size; cache_head.prev = cache_head.next = new; new->prev = new->next = &cache_head; Cache_MakeLRU (new); return new; } // search from the bottom up for space new = (cache_system_t *) (hunk_base + hunk_low_used); cs = cache_head.next; do { if (!nobottom || cs != cache_head.next) { if ( (byte *)cs - (byte *)new >= size) { // found space memset (new, 0, sizeof(*new)); new->size = size; new->next = cs; new->prev = cs->prev; cs->prev->next = new; cs->prev = new; Cache_MakeLRU (new); return new; } } // continue looking new = (cache_system_t *)((byte *)cs + cs->size); cs = cs->next; } while (cs != &cache_head); // try to allocate one at the very end if ( hunk_base + hunk_size - hunk_high_used - (byte *)new >= size) { memset (new, 0, sizeof(*new)); new->size = size; new->next = &cache_head; new->prev = cache_head.prev; cache_head.prev->next = new; cache_head.prev = new; Cache_MakeLRU (new); return new; } return NULL; // couldn't allocate } /* ============ Cache_Flush Throw everything out, so new data will be demand cached ============ */ void Cache_Flush (void) { while (cache_head.next != &cache_head) Cache_Free ( cache_head.next->user ); // reclaim the space } /* ============ Cache_Print ============ */ void Cache_Print (void) { cache_system_t *cd; for (cd = cache_head.next ; cd != &cache_head ; cd = cd->next) { Con_Printf ("%8i : %s\n", cd->size, cd->name); } } /* ============ Cache_Report ============ */ void Cache_Report (void) { Con_DPrintf ("%4.1f megabyte data cache\n", (hunk_size - hunk_high_used - hunk_low_used) / (float)(1024*1024) ); } /* ============ Cache_Compact ============ */ void Cache_Compact (void) { } /* ============ Cache_Init ============ */ void Cache_Init (void) { cache_head.next = cache_head.prev = &cache_head; cache_head.lru_next = cache_head.lru_prev = &cache_head; Cmd_AddCommand ("flush", Cache_Flush); } /* ============== Cache_Free Frees the memory and removes it from the LRU list ============== */ void Cache_Free (cache_user_t *c) { cache_system_t *cs; if (!c->data) Sys_Error ("Cache_Free: not allocated"); cs = ((cache_system_t *)c->data) - 1; cs->prev->next = cs->next; cs->next->prev = cs->prev; cs->next = cs->prev = NULL; c->data = NULL; Cache_UnlinkLRU (cs); } /* ============== Cache_Check ============== */ void *Cache_Check (cache_user_t *c) { cache_system_t *cs; if (!c->data) return NULL; cs = ((cache_system_t *)c->data) - 1; // move to head of LRU Cache_UnlinkLRU (cs); Cache_MakeLRU (cs); return c->data; } /* ============== Cache_Alloc ============== */ void *Cache_Alloc (cache_user_t *c, int size, char *name) { cache_system_t *cs; if (c->data) Sys_Error ("Cache_Alloc: allready allocated"); if (size <= 0) Sys_Error ("Cache_Alloc: size %i", size); size = (size + sizeof(cache_system_t) + 15) & ~15; // find memory for it while (1) { cs = Cache_TryAlloc (size, false); if (cs) { strncpy (cs->name, name, sizeof(cs->name)-1); c->data = (void *)(cs+1); cs->user = c; break; } // free the least recently used cahedat if (cache_head.lru_prev == &cache_head) Sys_Error ("Cache_Alloc: out of memory"); // not enough memory at all Cache_Free ( cache_head.lru_prev->user ); } return Cache_Check (c); } //============================================================================ /* ======================== Memory_Init ======================== */ void Memory_Init (void *buf, int size) { int p; int zonesize = DYNAMIC_SIZE; hunk_base = buf; hunk_size = size; hunk_low_used = 0; hunk_high_used = 0; Cache_Init (); p = COM_CheckParm ("-zone"); if (p) { if (p < com_argc-1) zonesize = Q_atoi (com_argv[p+1]) * 1024; else Sys_Error ("Memory_Init: you must specify a size in KB after -zone"); } mainzone = Hunk_AllocName (zonesize, "zone" ); Z_ClearZone (mainzone, zonesize); }