!!permu BUMP !!permu FRAMEBLEND !!permu SKELETAL !!permu UPPERLOWER !!permu FOG !!cvarf r_glsl_offsetmapping_scale !!cvardf r_glsl_pcf #ifndef USE_ARB_SHADOW //fall back on regular samplers if we must #define sampler2DShadow sampler2D #endif //this is the main shader responsible for realtime dlights. //texture units: //s0=diffuse, s1=normal, s2=specular, s3=shadowmap //custom modifiers: //PCF(shadowmap) //CUBEPROJ(projected cubemap) //SPOT(projected circle //CUBESHADOW #ifndef r_glsl_pcf #error r_glsl_pcf wasnt defined #endif #if r_glsl_pcf < 1 #undef r_glsl_pcf #define r_glsl_pcf 9 #endif #if 0 && defined(GL_ARB_texture_gather) && defined(PCF) #extension GL_ARB_texture_gather : enable #endif #ifdef UPPERLOWER #define UPPER #define LOWER #endif //if there's no vertex normals known, disable some stuff. //FIXME: this results in dupe permutations. #ifdef NOBUMP #undef SPECULAR #undef BUMP #undef OFFSETMAPPING #endif varying vec2 tcbase; varying vec3 lightvector; #if defined(PCF) || defined(CUBE) || defined(SPOT) varying vec4 vtexprojcoord; #endif #ifdef VERTEX_SHADER #if defined(PCF) || defined(CUBE) || defined(SPOT) uniform mat4 l_cubematrix; #endif #include "sys/skeletal.h" uniform vec3 l_lightposition; uniform float l_lightradius; attribute vec2 v_texcoord; void main () { vec3 n, s, t, w; gl_Position = skeletaltransform_wnst(w,n,s,t); tcbase = v_texcoord; //pass the texture coords straight through vec3 lightminusvertex = l_lightposition - w.xyz; float dist = length(lightminusvertex); dist *= 1.5; lightvector = dot(normalize(lightminusvertex), n) * vec3(1,1,1) * clamp((l_lightradius - dist) * (1/l_lightradius), 0, 1); #if defined(PCF) || defined(SPOT) || defined(CUBE) //for texture projections/shadowmapping on dlights vtexprojcoord = (l_cubematrix*vec4(w.xyz, 1.0)); #endif } #endif #ifdef FRAGMENT_SHADER #include "sys/fog.h" uniform sampler2D s_t0; //diffuse #ifdef CUBE uniform samplerCube s_t1; //projected cubemap #endif #ifdef PCF #ifdef CUBESHADOW uniform samplerCubeShadow s_t2; //shadowmap #else #if 0//def GL_ARB_texture_gather uniform sampler2D s_t2; #else uniform sampler2DShadow s_t2; #endif #endif #endif #ifdef LOWER uniform sampler2D s_t3; //pants colours uniform vec3 e_lowercolour; #endif #ifdef UPPER uniform sampler2D s_t4; //shirt colours uniform vec3 e_uppercolour; #endif uniform float l_lightradius; uniform vec3 l_lightcolour; uniform vec3 l_lightcolourscale; #ifdef PCF uniform vec4 l_shadowmapproj; //light projection matrix info uniform vec2 l_shadowmapscale; //xy are the texture scale, z is 1, w is the scale. vec3 ShadowmapCoord(void) { #ifdef SPOT //bias it. don't bother figuring out which side or anything, its not needed //l_projmatrix contains the light's projection matrix so no other magic needed return ((vtexprojcoord.xyz-vec3(0.0,0.0,0.015))/vtexprojcoord.w + vec3(1.0, 1.0, 1.0)) * vec3(0.5, 0.5, 0.5); //#elif defined(CUBESHADOW) // vec3 shadowcoord = vshadowcoord.xyz / vshadowcoord.w; // #define dosamp(x,y) shadowCube(s_t2, shadowcoord + vec2(x,y)*texscale.xy).r #else //figure out which axis to use //texture is arranged thusly: //forward left up //back right down vec3 dir = abs(vtexprojcoord.xyz); //assume z is the major axis (ie: forward from the light) vec3 t = vtexprojcoord.xyz; float ma = dir.z; vec3 axis = vec3(0.5/3.0, 0.5/2.0, 0.5); if (dir.x > ma) { ma = dir.x; t = vtexprojcoord.zyx; axis.x = 0.5; } if (dir.y > ma) { ma = dir.y; t = vtexprojcoord.xzy; axis.x = 2.5/3.0; } //if the axis is negative, flip it. if (t.z > 0.0) { axis.y = 1.5/2.0; t.z = -t.z; } //we also need to pass the result through the light's projection matrix too //the 'matrix' we need only contains 5 actual values. and one of them is a -1. So we might as well just use a vec4. //note: the projection matrix also includes scalers to pinch the image inwards to avoid sampling over borders, as well as to cope with non-square source image //the resulting z is prescaled to result in a value between -0.5 and 0.5. //also make sure we're in the right quadrant type thing return axis + ((l_shadowmapproj.xyz*t.xyz + vec3(0.0, 0.0, l_shadowmapproj.w)) / -t.z); #endif } float ShadowmapFilter(void) { vec3 shadowcoord = ShadowmapCoord(); #if 0//def GL_ARB_texture_gather vec2 ipart, fpart; #define dosamp(x,y) textureGatherOffset(s_t2, ipart.xy, vec2(x,y))) vec4 tl = step(shadowcoord.z, dosamp(-1.0, -1.0)); vec4 bl = step(shadowcoord.z, dosamp(-1.0, 1.0)); vec4 tr = step(shadowcoord.z, dosamp(1.0, -1.0)); vec4 br = step(shadowcoord.z, dosamp(1.0, 1.0)); //we now have 4*4 results, woo //we can just average them for 1/16th precision, but that's still limited graduations //the middle four pixels are 'full strength', but we interpolate the sides to effectively give 3*3 vec4 col = vec4(tl.ba, tr.ba) + vec4(bl.rg, br.rg) + //middle two rows are full strength mix(vec4(tl.rg, tr.rg), vec4(bl.ba, br.ba), fpart.y); //top+bottom rows return dot(mix(col.rgb, col.agb, fpart.x), vec3(1.0/9.0)); //blend r+a, gb are mixed because its pretty much free and gives a nicer dot instruction instead of lots of adds. #else #ifdef USE_ARB_SHADOW //with arb_shadow, we can benefit from hardware acclerated pcf, for smoother shadows #define dosamp(x,y) shadow2D(s_t2, shadowcoord.xyz + (vec3(x,y,0.0)*l_shadowmapscale.xyx)).r #else //this will probably be a bit blocky. #define dosamp(x,y) float(texture2D(s_t2, shadowcoord.xy + (vec2(x,y)*l_shadowmapscale.xy)).r >= shadowcoord.z) #endif float s = 0.0; #if r_glsl_pcf >= 1 && r_glsl_pcf < 5 s += dosamp(0.0, 0.0); return s; #elif r_glsl_pcf >= 5 && r_glsl_pcf < 9 s += dosamp(-1.0, 0.0); s += dosamp(0.0, -1.0); s += dosamp(0.0, 0.0); s += dosamp(0.0, 1.0); s += dosamp(1.0, 0.0); return s/5.0; #else s += dosamp(-1.0, -1.0); s += dosamp(-1.0, 0.0); s += dosamp(-1.0, 1.0); s += dosamp(0.0, -1.0); s += dosamp(0.0, 0.0); s += dosamp(0.0, 1.0); s += dosamp(1.0, -1.0); s += dosamp(1.0, 0.0); s += dosamp(1.0, 1.0); return s/9.0; #endif #endif } #endif #ifdef OFFSETMAPPING #include "sys/offsetmapping.h" #endif void main () { vec3 bases = vec3(texture2D(s_t0, tcbase)); #ifdef UPPER vec4 uc = texture2D(s_t4, tcbase); bases.rgb += uc.rgb*e_uppercolour*uc.a; #endif #ifdef LOWER vec4 lc = texture2D(s_t3, tcbase); bases.rgb += lc.rgb*e_lowercolour*lc.a; #endif float colorscale = 1; //float colorscale = max(1.0 - (dot(lightvector, lightvector)/(l_lightradius*l_lightradius)), 0.0); vec3 diff; #ifdef NOBUMP //surface can only support ambient lighting, even for lights that try to avoid it. diff = bases * (l_lightcolourscale.x+l_lightcolourscale.y); #else vec3 nl = normalize(lightvector); //we still do bumpmapping even without bumps to ensure colours are always sane. light.exe does it too. diff = bases * (l_lightcolourscale.x + l_lightcolourscale.y * max(dot(vec3(0.0, 0.0, 1.0), nl), 0.0)); #endif #ifdef CUBE /*filter the colour by the cubemap projection*/ diff *= textureCube(s_t1, vtexprojcoord.xyz).rgb; #endif #if defined(SPOT) /*filter the colour by the spotlight. discard anything behind the light so we don't get a mirror image*/ if (vtexprojcoord.w < 0.0) discard; vec2 spot = ((vtexprojcoord.st)/vtexprojcoord.w);colorscale*=1.0-(dot(spot,spot)); #endif #ifdef PCF /*filter the light by the shadowmap. logically a boolean, but we allow fractions for softer shadows*/ //diff.rgb = (vtexprojcoord.xyz/vtexprojcoord.w) * 0.5 + 0.5; colorscale *= ShadowmapFilter(); // diff = ShadowmapCoord(); #endif #if defined(PROJECTION) /*2d projection, not used*/ // diff *= texture2d(s_t3, shadowcoord); #endif //gl_FragColor.rgb = fog3additive(colorscale*l_lightcolour); gl_FragColor.rgb = fog3additive(diff * 1.5*clamp(floor(lightvector + 0.75) * l_lightcolour * 1.2 * floor(colorscale + 0.5), 0, 1.5)); } #endif