jedi-academy/codemp/renderer/tr_image.cpp

3376 lines
83 KiB
C++

//Anything above this #include will be ignored by the compiler
#include "../qcommon/exe_headers.h"
// tr_image.c
#include "tr_local.h"
#ifndef DEDICATED
#include "glext.h"
#endif
#include "../qcommon/platform.h"
#pragma warning (push, 3) //go back down to 3 for the stl include
#include <map>
#pragma warning (pop)
using namespace std;
/*
* Include file for users of JPEG library.
* You will need to have included system headers that define at least
* the typedefs FILE and size_t before you can include jpeglib.h.
* (stdio.h is sufficient on ANSI-conforming systems.)
* You may also wish to include "jerror.h".
*/
#define JPEG_INTERNALS
#include "../jpeg-6/jpeglib.h"
#include "../png/png.h"
#ifndef DEDICATED
static void LoadTGA( const char *name, byte **pic, int *width, int *height );
static void LoadJPG( const char *name, byte **pic, int *width, int *height );
static byte s_intensitytable[256];
static unsigned char s_gammatable[256];
int gl_filter_min = GL_LINEAR_MIPMAP_NEAREST;
int gl_filter_max = GL_LINEAR;
//#define FILE_HASH_SIZE 1024 // actually the shader code still needs this (from another module, great),
//static image_t* hashTable[FILE_HASH_SIZE];
/*
** R_GammaCorrect
*/
void R_GammaCorrect( byte *buffer, int bufSize ) {
int i;
for ( i = 0; i < bufSize; i++ ) {
buffer[i] = s_gammatable[buffer[i]];
}
}
typedef struct {
char *name;
int minimize, maximize;
} textureMode_t;
textureMode_t modes[] = {
{"GL_NEAREST", GL_NEAREST, GL_NEAREST},
{"GL_LINEAR", GL_LINEAR, GL_LINEAR},
{"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST},
{"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR},
{"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST},
{"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR}
};
// makeup a nice clean, consistant name to query for and file under, for map<> usage...
//
static char *GenerateImageMappingName( const char *name )
{
static char sName[MAX_QPATH];
int i=0;
char letter;
while (name[i] != '\0' && i<MAX_QPATH-1)
{
letter = tolower((unsigned char)name[i]);
if (letter =='.') break; // don't include extension
if (letter =='\\') letter = '/'; // damn path names
sName[i++] = letter;
}
sName[i]=0;
return &sName[0];
}
/*
===============
GL_TextureMode
===============
*/
void GL_TextureMode( const char *string ) {
int i;
image_t *glt;
for ( i=0 ; i< 6 ; i++ ) {
if ( !Q_stricmp( modes[i].name, string ) ) {
break;
}
}
if ( i == 6 ) {
Com_Printf ( "bad filter name\n");
for ( i=0 ; i< 6 ; i++ ) {
Com_Printf ("%s\n",modes[i].name);
}
return;
}
gl_filter_min = modes[i].minimize;
gl_filter_max = modes[i].maximize;
// If the level they requested is less than possible, set the max possible...
if ( r_ext_texture_filter_anisotropic->value > glConfig.maxTextureFilterAnisotropy )
{
Cvar_Set( "r_ext_texture_filter_anisotropic", va("%f",glConfig.maxTextureFilterAnisotropy) );
}
// change all the existing mipmap texture objects
R_Images_StartIteration();
while ( (glt = R_Images_GetNextIteration()) != NULL)
{
if ( glt->mipmap ) {
GL_Bind (glt);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
if(glConfig.maxTextureFilterAnisotropy>0) {
if(r_ext_texture_filter_anisotropic->integer>1) {
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, r_ext_texture_filter_anisotropic->value);
} else {
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.0f);
}
}
}
}
}
static float R_BytesPerTex (int format)
{
switch ( format ) {
case 1:
//"I "
return 1;
break;
case 2:
//"IA "
return 2;
break;
case 3:
//"RGB "
return glConfig.colorBits/8.0f;
break;
case 4:
//"RGBA "
return glConfig.colorBits/8.0f;
break;
case GL_RGBA4:
//"RGBA4"
return 2;
break;
case GL_RGB5:
//"RGB5 "
return 2;
break;
case GL_RGBA8:
//"RGBA8"
return 4;
break;
case GL_RGB8:
//"RGB8"
return 4;
break;
case GL_RGB4_S3TC:
//"S3TC "
return 0.33333f;
break;
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
//"DXT1 "
return 0.33333f;
break;
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
//"DXT5 "
return 1;
break;
default:
//"???? "
return 4;
}
}
/*
===============
R_SumOfUsedImages
===============
*/
float R_SumOfUsedImages( qboolean bUseFormat )
{
int total = 0;
image_t *pImage;
R_Images_StartIteration();
while ( (pImage = R_Images_GetNextIteration()) != NULL)
{
if ( pImage->frameUsed == tr.frameCount- 1 ) {//it has already been advanced for the next frame, so...
if (bUseFormat)
{
float bytePerTex = R_BytesPerTex (pImage->internalFormat);
total += bytePerTex * (pImage->width * pImage->height);
}
else
{
total += pImage->width * pImage->height;
}
}
}
return total;
}
/*
===============
R_ImageList_f
===============
*/
void R_ImageList_f( void ) {
int i=0;
image_t *image;
int texels=0;
float texBytes = 0.0f;
const char *yesno[] = {"no ", "yes"};
Com_Printf ( "\n -w-- -h-- -mm- -if-- wrap --name-------\n");
int iNumImages = R_Images_StartIteration();
while ( (image = R_Images_GetNextIteration()) != NULL)
{
texels += image->width*image->height;
texBytes += image->width*image->height * R_BytesPerTex (image->internalFormat);
Com_Printf ( "%4i: %4i %4i %s ",
i, image->width, image->height, yesno[image->mipmap] );
switch ( image->internalFormat ) {
case 1:
Com_Printf ("I " );
break;
case 2:
Com_Printf ("IA " );
break;
case 3:
Com_Printf ("RGB " );
break;
case 4:
Com_Printf ("RGBA " );
break;
case GL_RGBA8:
Com_Printf ("RGBA8" );
break;
case GL_RGB8:
Com_Printf ("RGB8" );
break;
case GL_RGB4_S3TC:
Com_Printf ("S3TC " );
break;
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
Com_Printf ("DXT1 " );
break;
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
Com_Printf ("DXT5 " );
break;
case GL_RGBA4:
Com_Printf ("RGBA4" );
break;
case GL_RGB5:
Com_Printf ("RGB5 " );
break;
default:
Com_Printf ("???? " );
}
switch ( image->wrapClampMode ) {
case GL_REPEAT:
Com_Printf ("rept " );
break;
case GL_CLAMP:
Com_Printf ("clmp " );
break;
case GL_CLAMP_TO_EDGE:
Com_Printf ("clpE " );
break;
default:
Com_Printf ("%4i ", image->wrapClampMode );
break;
}
Com_Printf ("%s\n", image->imgName );
i++;
}
Com_Printf ( " ---------\n");
Com_Printf ( " -w-- -h-- -mm- -if- wrap --name-------\n");
Com_Printf ( " %i total texels (not including mipmaps)\n", texels );
Com_Printf ( " %.2fMB total texture mem (not including mipmaps)\n", texBytes/1048576.0f );
Com_Printf ( " %i total images\n\n", iNumImages );
}
//=======================================================================
/*
================
R_LightScaleTexture
Scale up the pixel values in a texture to increase the
lighting range
================
*/
void R_LightScaleTexture (unsigned *in, int inwidth, int inheight, qboolean only_gamma )
{
if ( only_gamma )
{
if ( !glConfig.deviceSupportsGamma )
{
int i, c;
byte *p;
p = (byte *)in;
c = inwidth*inheight;
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_gammatable[p[0]];
p[1] = s_gammatable[p[1]];
p[2] = s_gammatable[p[2]];
}
}
}
else
{
int i, c;
byte *p;
p = (byte *)in;
c = inwidth*inheight;
if ( glConfig.deviceSupportsGamma )
{
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_intensitytable[p[0]];
p[1] = s_intensitytable[p[1]];
p[2] = s_intensitytable[p[2]];
}
}
else
{
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_gammatable[s_intensitytable[p[0]]];
p[1] = s_gammatable[s_intensitytable[p[1]]];
p[2] = s_gammatable[s_intensitytable[p[2]]];
}
}
}
}
/*
================
R_MipMap2
Operates in place, quartering the size of the texture
Proper linear filter
================
*/
static void R_MipMap2( unsigned *in, int inWidth, int inHeight ) {
int i, j, k;
byte *outpix;
int inWidthMask, inHeightMask;
int total;
int outWidth, outHeight;
unsigned *temp;
outWidth = inWidth >> 1;
outHeight = inHeight >> 1;
temp = (unsigned int *)Hunk_AllocateTempMemory( outWidth * outHeight * 4 );
inWidthMask = inWidth - 1;
inHeightMask = inHeight - 1;
for ( i = 0 ; i < outHeight ; i++ ) {
for ( j = 0 ; j < outWidth ; j++ ) {
outpix = (byte *) ( temp + i * outWidth + j );
for ( k = 0 ; k < 4 ; k++ ) {
total =
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k];
outpix[k] = total / 36;
}
}
}
Com_Memcpy( in, temp, outWidth * outHeight * 4 );
Hunk_FreeTempMemory( temp );
}
/*
================
R_MipMap
Operates in place, quartering the size of the texture
================
*/
static void R_MipMap (byte *in, int width, int height) {
int i, j;
byte *out;
int row;
if ( !r_simpleMipMaps->integer ) {
R_MipMap2( (unsigned *)in, width, height );
return;
}
if ( width == 1 && height == 1 ) {
return;
}
row = width * 4;
out = in;
width >>= 1;
height >>= 1;
if ( width == 0 || height == 0 ) {
width += height; // get largest
for (i=0 ; i<width ; i++, out+=4, in+=8 ) {
out[0] = ( in[0] + in[4] )>>1;
out[1] = ( in[1] + in[5] )>>1;
out[2] = ( in[2] + in[6] )>>1;
out[3] = ( in[3] + in[7] )>>1;
}
return;
}
for (i=0 ; i<height ; i++, in+=row) {
for (j=0 ; j<width ; j++, out+=4, in+=8) {
out[0] = (in[0] + in[4] + in[row+0] + in[row+4])>>2;
out[1] = (in[1] + in[5] + in[row+1] + in[row+5])>>2;
out[2] = (in[2] + in[6] + in[row+2] + in[row+6])>>2;
out[3] = (in[3] + in[7] + in[row+3] + in[row+7])>>2;
}
}
}
/*
==================
R_BlendOverTexture
Apply a color blend over a set of pixels
==================
*/
static void R_BlendOverTexture( byte *data, int pixelCount, byte blend[4] ) {
int i;
int inverseAlpha;
int premult[3];
inverseAlpha = 255 - blend[3];
premult[0] = blend[0] * blend[3];
premult[1] = blend[1] * blend[3];
premult[2] = blend[2] * blend[3];
for ( i = 0 ; i < pixelCount ; i++, data+=4 ) {
data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9;
data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9;
data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9;
}
}
byte mipBlendColors[16][4] = {
{0,0,0,0},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
};
class CStringComparator
{
public:
bool operator()(const char *s1, const char *s2) const { return(strcmp(s1, s2) < 0); }
};
typedef map <LPCSTR, image_t *, CStringComparator> AllocatedImages_t;
AllocatedImages_t AllocatedImages;
AllocatedImages_t::iterator itAllocatedImages;
int giTextureBindNum = 1024; // will be set to this anyway at runtime, but wtf?
// return = number of images in the list, for those interested
//
int R_Images_StartIteration(void)
{
itAllocatedImages = AllocatedImages.begin();
return AllocatedImages.size();
}
image_t *R_Images_GetNextIteration(void)
{
if (itAllocatedImages == AllocatedImages.end())
return NULL;
image_t *pImage = (*itAllocatedImages).second;
++itAllocatedImages;
return pImage;
}
// clean up anything to do with an image_t struct, but caller will have to clear the internal to an image_t struct ready for either struct free() or overwrite...
//
// (avoid using ri.xxxx stuff here in case running on dedicated)
//
static void R_Images_DeleteImageContents( image_t *pImage )
{
assert(pImage); // should never be called with NULL
if (pImage)
{
if (qglDeleteTextures) { //won't have one if we switched to dedicated.
qglDeleteTextures( 1, &pImage->texnum );
}
Z_Free(pImage);
}
}
/*
===============
Upload32
===============
*/
extern qboolean charSet;
static void Upload32( unsigned *data,
GLenum format,
qboolean mipmap,
qboolean picmip,
qboolean isLightmap,
qboolean allowTC,
int *pformat,
USHORT *pUploadWidth, USHORT *pUploadHeight, bool bRectangle = false )
{
GLuint uiTarget = GL_TEXTURE_2D;
if ( bRectangle )
{
uiTarget = GL_TEXTURE_RECTANGLE_EXT;
}
if (format == GL_RGBA)
{
int samples;
int i, c;
byte *scan;
float rMax = 0, gMax = 0, bMax = 0;
int width = *pUploadWidth;
int height = *pUploadHeight;
//
// perform optional picmip operation
//
if ( picmip ) {
for(i = 0; i < r_picmip->integer; i++) {
R_MipMap( (byte *)data, width, height );
width >>= 1;
height >>= 1;
if (width < 1) {
width = 1;
}
if (height < 1) {
height = 1;
}
}
}
//
// clamp to the current upper OpenGL limit
// scale both axis down equally so we don't have to
// deal with a half mip resampling
//
while ( width > glConfig.maxTextureSize || height > glConfig.maxTextureSize ) {
R_MipMap( (byte *)data, width, height );
width >>= 1;
height >>= 1;
}
//
// scan the texture for each channel's max values
// and verify if the alpha channel is being used or not
//
c = width*height;
scan = ((byte *)data);
samples = 3;
for ( i = 0; i < c; i++ )
{
if ( scan[i*4+0] > rMax )
{
rMax = scan[i*4+0];
}
if ( scan[i*4+1] > gMax )
{
gMax = scan[i*4+1];
}
if ( scan[i*4+2] > bMax )
{
bMax = scan[i*4+2];
}
if ( scan[i*4 + 3] != 255 )
{
samples = 4;
break;
}
}
// select proper internal format
if ( samples == 3 )
{
if ( glConfig.textureCompression == TC_S3TC && allowTC )
{
*pformat = GL_RGB4_S3TC;
}
else if ( glConfig.textureCompression == TC_S3TC_DXT && allowTC )
{ // Compress purely color - no alpha
if ( r_texturebits->integer == 16 ) {
*pformat = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; //this format cuts to 16 bit
}
else {//if we aren't using 16 bit then, use 32 bit compression
*pformat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
}
}
else if ( isLightmap && r_texturebitslm->integer > 0 )
{
// Allow different bit depth when we are a lightmap
if ( r_texturebitslm->integer == 16 )
{
*pformat = GL_RGB5;
}
else if ( r_texturebitslm->integer == 32 )
{
*pformat = GL_RGB8;
}
}
else if ( r_texturebits->integer == 16 )
{
*pformat = GL_RGB5;
}
else if ( r_texturebits->integer == 32 )
{
*pformat = GL_RGB8;
}
else
{
*pformat = 3;
}
}
else if ( samples == 4 )
{
if ( glConfig.textureCompression == TC_S3TC_DXT && allowTC)
{ // Compress both alpha and color
*pformat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
}
else if ( r_texturebits->integer == 16 )
{
*pformat = GL_RGBA4;
}
else if ( r_texturebits->integer == 32 )
{
*pformat = GL_RGBA8;
}
else
{
*pformat = 4;
}
}
*pUploadWidth = width;
*pUploadHeight = height;
// copy or resample data as appropriate for first MIP level
if (!mipmap)
{
qglTexImage2D( uiTarget, 0, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
goto done;
}
R_LightScaleTexture (data, width, height, (qboolean)!mipmap );
qglTexImage2D( uiTarget, 0, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
if (mipmap)
{
int miplevel;
miplevel = 0;
while (width > 1 || height > 1)
{
R_MipMap( (byte *)data, width, height );
width >>= 1;
height >>= 1;
if (width < 1)
width = 1;
if (height < 1)
height = 1;
miplevel++;
if ( r_colorMipLevels->integer )
{
R_BlendOverTexture( (byte *)data, width * height, mipBlendColors[miplevel] );
}
qglTexImage2D( uiTarget, miplevel, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
}
}
}
else
{
}
done:
if (mipmap)
{
qglTexParameterf(uiTarget, GL_TEXTURE_MIN_FILTER, gl_filter_min);
qglTexParameterf(uiTarget, GL_TEXTURE_MAG_FILTER, gl_filter_max);
if(r_ext_texture_filter_anisotropic->integer>1 && glConfig.maxTextureFilterAnisotropy>0)
{
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, r_ext_texture_filter_anisotropic->value );
}
}
else
{
qglTexParameterf(uiTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameterf(uiTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
GL_CheckErrors();
}
#if 0
//3d tex version -rww
static void Upload32_3D( unsigned *data,
int img_depth,
qboolean mipmap,
qboolean picmip,
qboolean isLightmap,
qboolean allowTC,
int *pformat,
USHORT *pUploadWidth, USHORT *pUploadHeight )
{
int samples;
int i, c;
byte *scan;
float rMax = 0, gMax = 0, bMax = 0;
int width = *pUploadWidth;
int height = *pUploadHeight;
int depth = img_depth;
//
// perform optional picmip operation
//
if ( picmip ) {
for(i = 0; i < r_picmip->integer; i++) {
R_MipMap( (byte *)data, width, height );
width >>= 1;
height >>= 1;
if (width < 1) {
width = 1;
}
if (height < 1) {
height = 1;
}
}
}
//
// clamp to the current upper OpenGL limit
// scale both axis down equally so we don't have to
// deal with a half mip resampling
//
while ( width > glConfig.maxTextureSize || height > glConfig.maxTextureSize ) {
R_MipMap( (byte *)data, width, height );
width >>= 1;
height >>= 1;
}
//
// scan the texture for each channel's max values
// and verify if the alpha channel is being used or not
//
c = width*height;
scan = ((byte *)data);
samples = 3;
for ( i = 0; i < c; i++ )
{
if ( scan[i*4+0] > rMax )
{
rMax = scan[i*4+0];
}
if ( scan[i*4+1] > gMax )
{
gMax = scan[i*4+1];
}
if ( scan[i*4+2] > bMax )
{
bMax = scan[i*4+2];
}
if ( scan[i*4 + 3] != 255 )
{
samples = 4;
break;
}
}
// select proper internal format
if ( samples == 3 )
{
if ( glConfig.textureCompression == TC_S3TC && allowTC )
{
*pformat = GL_RGB4_S3TC;
}
else if ( glConfig.textureCompression == TC_S3TC_DXT && allowTC )
{ // Compress purely color - no alpha
if ( r_texturebits->integer == 16 ) {
*pformat = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; //this format cuts to 16 bit
}
else {//if we aren't using 16 bit then, use 32 bit compression
*pformat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
}
}
else if ( isLightmap && r_texturebitslm->integer > 0 )
{
// Allow different bit depth when we are a lightmap
if ( r_texturebitslm->integer == 16 )
{
*pformat = GL_RGB5;
}
else if ( r_texturebitslm->integer == 32 )
{
*pformat = GL_RGB8;
}
}
else if ( r_texturebits->integer == 16 )
{
*pformat = GL_RGB5;
}
else if ( r_texturebits->integer == 32 )
{
*pformat = GL_RGB8;
}
else
{
*pformat = 3;
}
}
else if ( samples == 4 )
{
if ( glConfig.textureCompression == TC_S3TC_DXT && allowTC)
{ // Compress both alpha and color
*pformat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
}
else if ( r_texturebits->integer == 16 )
{
*pformat = GL_RGBA4;
}
else if ( r_texturebits->integer == 32 )
{
*pformat = GL_RGBA8;
}
else
{
*pformat = 4;
}
}
*pUploadWidth = width;
*pUploadHeight = height;
// copy or resample data as appropriate for first MIP level
if (!mipmap)
{
qglTexImage3DEXT (GL_TEXTURE_3D, 0, *pformat, width, height, depth, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
goto done;
}
R_LightScaleTexture (data, width, height, (qboolean)!mipmap );
qglTexImage3DEXT (GL_TEXTURE_3D, 0, *pformat, width, height, depth, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
if (mipmap)
{
int miplevel;
miplevel = 0;
while (width > 1 || height > 1)
{
R_MipMap( (byte *)data, width, height );
width >>= 1;
height >>= 1;
if (width < 1)
width = 1;
if (height < 1)
height = 1;
miplevel++;
if ( r_colorMipLevels->integer )
{
R_BlendOverTexture( (byte *)data, width * height, mipBlendColors[miplevel] );
}
qglTexImage2D (GL_TEXTURE_2D, miplevel, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
}
}
done:
if (mipmap)
{
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
if(r_ext_texture_filter_anisotropic->integer>1 && glConfig.maxTextureFilterAnisotropy>0) {
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 2.0f);
}
}
else
{
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
GL_CheckErrors();
}
#endif
static void GL_ResetBinds(void)
{
memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) );
if ( qglBindTexture )
{
if ( qglActiveTextureARB )
{
GL_SelectTexture( 1 );
qglBindTexture( GL_TEXTURE_2D, 0 );
GL_SelectTexture( 0 );
qglBindTexture( GL_TEXTURE_2D, 0 );
}
else
{
qglBindTexture( GL_TEXTURE_2D, 0 );
}
}
}
// special function used in conjunction with "devmapbsp"...
//
// (avoid using ri.xxxx stuff here in case running on dedicated)
//
void R_Images_DeleteLightMaps(void)
{
qboolean bEraseOccured = qfalse;
for (AllocatedImages_t::iterator itImage = AllocatedImages.begin(); itImage != AllocatedImages.end(); bEraseOccured?itImage:++itImage)
{
bEraseOccured = qfalse;
image_t *pImage = (*itImage).second;
if (pImage->imgName[0] == '*' && strstr(pImage->imgName,"lightmap")) // loose check, but should be ok
{
R_Images_DeleteImageContents(pImage);
#ifndef __linux__
itImage = AllocatedImages.erase(itImage);
bEraseOccured = qtrue;
#else
// MS & Dinkimware got the map::erase return wrong (it's null)
AllocatedImages_t::iterator itTemp = itImage;
itImage++;
AllocatedImages.erase(itTemp);
#endif
}
}
GL_ResetBinds();
}
// special function currently only called by Dissolve code...
//
void R_Images_DeleteImage(image_t *pImage)
{
// Even though we supply the image handle, we need to get the corresponding iterator entry...
//
AllocatedImages_t::iterator itImage = AllocatedImages.find(pImage->imgName);
if (itImage != AllocatedImages.end())
{
R_Images_DeleteImageContents(pImage);
AllocatedImages.erase(itImage);
}
else
{
assert(0);
}
}
// called only at app startup, vid_restart, app-exit
//
void R_Images_Clear(void)
{
image_t *pImage;
// int iNumImages =
R_Images_StartIteration();
while ( (pImage = R_Images_GetNextIteration()) != NULL)
{
R_Images_DeleteImageContents(pImage);
}
AllocatedImages.clear();
giTextureBindNum = 1024;
}
void RE_RegisterImages_Info_f( void )
{
image_t *pImage = NULL;
int iImage = 0;
int iTexels = 0;
int iNumImages = R_Images_StartIteration();
while ( (pImage = R_Images_GetNextIteration()) != NULL)
{
Com_Printf ("%d: (%4dx%4dy) \"%s\"",iImage, pImage->width, pImage->height, pImage->imgName);
Com_DPrintf (S_COLOR_RED ", levused %d",pImage->iLastLevelUsedOn);
Com_Printf ("\n");
iTexels += pImage->width * pImage->height;
iImage++;
}
Com_Printf ("%d Images. %d (%.2fMB) texels total, (not including mipmaps)\n",iNumImages, iTexels, (float)iTexels / 1024.0f / 1024.0f);
Com_DPrintf (S_COLOR_RED "RE_RegisterMedia_GetLevel(): %d",RE_RegisterMedia_GetLevel());
}
// implement this if you need to, do a find for the caller. I don't need it though, so far.
//
//void RE_RegisterImages_LevelLoadBegin(const char *psMapName);
// currently, this just goes through all the images and dumps any not referenced on this level...
//
qboolean RE_RegisterImages_LevelLoadEnd(void)
{
Com_DPrintf (S_COLOR_RED "RE_RegisterImages_LevelLoadEnd():\n");
// int iNumImages = AllocatedImages.size(); // more for curiosity, really.
qboolean bEraseOccured = qfalse;
for (AllocatedImages_t::iterator itImage = AllocatedImages.begin(); itImage != AllocatedImages.end(); bEraseOccured?itImage:++itImage)
{
bEraseOccured = qfalse;
image_t *pImage = (*itImage).second;
// don't un-register system shaders (*fog, *dlight, *white, *default), but DO de-register lightmaps ("*<mapname>/lightmap%d")
if (pImage->imgName[0] != '*' || strchr(pImage->imgName,'/'))
{
// image used on this level?
//
if ( pImage->iLastLevelUsedOn != RE_RegisterMedia_GetLevel() )
{
// nope, so dump it...
//
Com_DPrintf (S_COLOR_RED "Dumping image \"%s\"\n",pImage->imgName);
R_Images_DeleteImageContents(pImage);
#ifndef __linux__
itImage = AllocatedImages.erase(itImage);
bEraseOccured = qtrue;
#else
AllocatedImages_t::iterator itTemp = itImage;
itImage++;
AllocatedImages.erase(itTemp);
#endif
}
}
}
// this check can be deleted AFAIC, it seems to be just a quake thing...
//
// iNumImages = R_Images_StartIteration();
// if (iNumImages > MAX_DRAWIMAGES)
// {
// Com_Printf (S_COLOR_YELLOW "Level uses %d images, old limit was MAX_DRAWIMAGES (%d)\n", iNumImages, MAX_DRAWIMAGES);
// }
Com_DPrintf (S_COLOR_RED "RE_RegisterImages_LevelLoadEnd(): Ok\n");
GL_ResetBinds();
return bEraseOccured;
}
// returns image_t struct if we already have this, else NULL. No disk-open performed
// (important for creating default images).
//
// This is called by both R_FindImageFile and anything that creates default images...
//
static image_t *R_FindImageFile_NoLoad(const char *name, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode )
{
if (!name) {
return NULL;
}
char *pName = GenerateImageMappingName(name);
//
// see if the image is already loaded
//
AllocatedImages_t::iterator itAllocatedImage = AllocatedImages.find(pName);
if (itAllocatedImage != AllocatedImages.end())
{
image_t *pImage = (*itAllocatedImage).second;
// the white image can be used with any set of parms, but other mismatches are errors...
//
if ( strcmp( pName, "*white" ) ) {
if ( pImage->mipmap != !!mipmap ) {
Com_Printf (S_COLOR_YELLOW "WARNING: reused image %s with mixed mipmap parm\n", pName );
}
if ( pImage->allowPicmip != !!allowPicmip ) {
Com_Printf (S_COLOR_YELLOW "WARNING: reused image %s with mixed allowPicmip parm\n", pName );
}
if ( pImage->wrapClampMode != glWrapClampMode ) {
Com_Printf (S_COLOR_YELLOW "WARNING: reused image %s with mixed glWrapClampMode parm\n", pName );
}
}
pImage->iLastLevelUsedOn = RE_RegisterMedia_GetLevel();
return pImage;
}
return NULL;
}
/*
================
R_CreateImage
This is the only way any image_t are created
================
*/
image_t *R_CreateImage( const char *name, const byte *pic, int width, int height,
GLenum format, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode, bool bRectangle )
{
image_t *image;
qboolean isLightmap = qfalse;
if (strlen(name) >= MAX_QPATH ) {
Com_Error (ERR_DROP, "R_CreateImage: \"%s\" is too long\n", name);
}
if(glConfig.clampToEdgeAvailable && glWrapClampMode == GL_CLAMP) {
glWrapClampMode = GL_CLAMP_TO_EDGE;
}
if (name[0] == '*')
{
char *psLightMapNameSearchPos = strrchr(name,'/');
if ( psLightMapNameSearchPos && !strncmp( psLightMapNameSearchPos+1, "lightmap", 8 ) ) {
isLightmap = qtrue;
}
}
if ( (width&(width-1)) || (height&(height-1)) )
{
Com_Error( ERR_FATAL, "R_CreateImage: %s dimensions (%i x %i) not power of 2!\n",name,width,height);
}
image = R_FindImageFile_NoLoad(name, mipmap, allowPicmip, allowTC, glWrapClampMode );
if (image) {
return image;
}
image = (image_t*) Z_Malloc( sizeof( image_t ), TAG_IMAGE_T, qtrue );
// memset(image,0,sizeof(*image)); // qtrue above does this
image->texnum = 1024 + giTextureBindNum++; // ++ is of course staggeringly important...
// record which map it was used on...
//
image->iLastLevelUsedOn = RE_RegisterMedia_GetLevel();
image->mipmap = !!mipmap;
image->allowPicmip = !!allowPicmip;
Q_strncpyz(image->imgName, name, sizeof(image->imgName));
image->width = width;
image->height = height;
image->wrapClampMode = glWrapClampMode;
if ( qglActiveTextureARB ) {
GL_SelectTexture( 0 );
}
GLuint uiTarget = GL_TEXTURE_2D;
if ( bRectangle )
{
qglDisable( uiTarget );
uiTarget = GL_TEXTURE_RECTANGLE_EXT;
qglEnable( uiTarget );
glWrapClampMode = GL_CLAMP_TO_EDGE; // default mode supported by rectangle.
qglBindTexture( uiTarget, image->texnum );
}
else
{
GL_Bind(image);
}
Upload32( (unsigned *)pic, format,
(qboolean)image->mipmap,
allowPicmip,
isLightmap,
allowTC,
&image->internalFormat,
&image->width,
&image->height, bRectangle );
qglTexParameterf( uiTarget, GL_TEXTURE_WRAP_S, glWrapClampMode );
qglTexParameterf( uiTarget, GL_TEXTURE_WRAP_T, glWrapClampMode );
qglBindTexture( uiTarget, 0 ); //jfm: i don't know why this is here, but it breaks lightmaps when there's only 1
glState.currenttextures[glState.currenttmu] = 0; //mark it not bound
LPCSTR psNewName = GenerateImageMappingName(name);
Q_strncpyz(image->imgName, psNewName, sizeof(image->imgName));
AllocatedImages[ image->imgName ] = image;
if ( bRectangle )
{
qglDisable( uiTarget );
qglEnable( GL_TEXTURE_2D );
}
return image;
}
//rwwRMG - added
void R_CreateAutomapImage( const char *name, const byte *pic, int width, int height,
qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode )
{
R_CreateImage(name, pic, width, height, GL_RGBA, mipmap, allowPicmip, allowTC, glWrapClampMode);
}
/*
=========================================================
TARGA LOADING
=========================================================
*/
/*
Ghoul2 Insert Start
*/
bool LoadTGAPalletteImage ( const char *name, byte **pic, int *width, int *height)
{
int columns, rows, numPixels;
byte *buf_p;
byte *buffer;
TargaHeader targa_header;
byte *dataStart;
*pic = NULL;
//
// load the file
//
FS_ReadFile ( ( char * ) name, (void **)&buffer);
if (!buffer) {
return false;
}
buf_p = buffer;
targa_header.id_length = *buf_p++;
targa_header.colormap_type = *buf_p++;
targa_header.image_type = *buf_p++;
targa_header.colormap_index = LittleShort ( *(short *)buf_p );
buf_p += 2;
targa_header.colormap_length = LittleShort ( *(short *)buf_p );
buf_p += 2;
targa_header.colormap_size = *buf_p++;
targa_header.x_origin = LittleShort ( *(short *)buf_p );
buf_p += 2;
targa_header.y_origin = LittleShort ( *(short *)buf_p );
buf_p += 2;
targa_header.width = LittleShort ( *(short *)buf_p );
buf_p += 2;
targa_header.height = LittleShort ( *(short *)buf_p );
buf_p += 2;
targa_header.pixel_size = *buf_p++;
targa_header.attributes = *buf_p++;
if (targa_header.image_type!=1 )
{
Com_Error (ERR_DROP, "LoadTGAPalletteImage: Only type 1 (uncompressed pallettised) TGA images supported\n");
}
if ( targa_header.colormap_type == 0 )
{
Com_Error( ERR_DROP, "LoadTGAPalletteImage: colormaps ONLY supported\n" );
}
columns = targa_header.width;
rows = targa_header.height;
numPixels = columns * rows;
if (width)
*width = columns;
if (height)
*height = rows;
*pic = (unsigned char *) Z_Malloc (numPixels, TAG_TEMP_WORKSPACE, qfalse );
if (targa_header.id_length != 0)
{
buf_p += targa_header.id_length; // skip TARGA image comment
}
dataStart = buf_p + (targa_header.colormap_length * (targa_header.colormap_size / 4));
memcpy(*pic, dataStart, numPixels);
FS_FreeFile (buffer);
return true;
}
#endif // #ifndef DEDICATED
// My TGA loader...
//
//---------------------------------------------------
#pragma pack(push,1)
typedef struct
{
byte byIDFieldLength; // must be 0
byte byColourmapType; // 0 = truecolour, 1 = paletted, else bad
byte byImageType; // 1 = colour mapped (palette), uncompressed, 2 = truecolour, uncompressed, else bad
word w1stColourMapEntry; // must be 0
word wColourMapLength; // 256 for 8-bit palettes, else 0 for true-colour
byte byColourMapEntrySize; // 24 for 8-bit palettes, else 0 for true-colour
word wImageXOrigin; // ignored
word wImageYOrigin; // ignored
word wImageWidth; // in pixels
word wImageHeight; // in pixels
byte byImagePlanes; // bits per pixel (8 for paletted, else 24 for true-colour)
byte byScanLineOrder; // Image descriptor bytes
// bits 0-3 = # attr bits (alpha chan)
// bits 4-5 = pixel order/dir
// bits 6-7 scan line interleave (00b=none,01b=2way interleave,10b=4way)
} TGAHeader_t;
#pragma pack(pop)
// *pic == pic, else NULL for failed.
//
// returns false if found but had a format error, else true for either OK or not-found (there's a reason for this)
//
void LoadTGA ( const char *name, byte **pic, int *width, int *height)
{
char sErrorString[1024];
bool bFormatErrors = false;
// these don't need to be declared or initialised until later, but the compiler whines that 'goto' skips them.
//
byte *pRGBA = NULL;
byte *pOut = NULL;
byte *pIn = NULL;
*pic = NULL;
#define TGA_FORMAT_ERROR(blah) {sprintf(sErrorString,blah); bFormatErrors = true; goto TGADone;}
//#define TGA_FORMAT_ERROR(blah) Com_Error( ERR_DROP, blah );
//
// load the file
//
byte *pTempLoadedBuffer = 0;
FS_ReadFile ( ( char * ) name, (void **)&pTempLoadedBuffer);
if (!pTempLoadedBuffer) {
return;
}
TGAHeader_t *pHeader = (TGAHeader_t *) pTempLoadedBuffer;
if (pHeader->byColourmapType!=0)
{
TGA_FORMAT_ERROR("LoadTGA: colourmaps not supported\n" );
}
if (pHeader->byImageType != 2 && pHeader->byImageType != 3 && pHeader->byImageType != 10)
{
TGA_FORMAT_ERROR("LoadTGA: Only type 2 (RGB), 3 (gray), and 10 (RLE-RGB) images supported\n");
}
if (pHeader->w1stColourMapEntry != 0)
{
TGA_FORMAT_ERROR("LoadTGA: colourmaps not supported\n" );
}
if (pHeader->wColourMapLength !=0 && pHeader->wColourMapLength != 256)
{
TGA_FORMAT_ERROR("LoadTGA: ColourMapLength must be either 0 or 256\n" );
}
if (pHeader->byColourMapEntrySize != 0 && pHeader->byColourMapEntrySize != 24)
{
TGA_FORMAT_ERROR("LoadTGA: ColourMapEntrySize must be either 0 or 24\n" );
}
if ( ( pHeader->byImagePlanes != 24 && pHeader->byImagePlanes != 32) && (pHeader->byImagePlanes != 8 && pHeader->byImageType != 3))
{
TGA_FORMAT_ERROR("LoadTGA: Only type 2 (RGB), 3 (gray), and 10 (RGB) TGA images supported\n");
}
if ((pHeader->byScanLineOrder&0x30)!=0x00 &&
(pHeader->byScanLineOrder&0x30)!=0x10 &&
(pHeader->byScanLineOrder&0x30)!=0x20 &&
(pHeader->byScanLineOrder&0x30)!=0x30
)
{
TGA_FORMAT_ERROR("LoadTGA: ScanLineOrder must be either 0x00,0x10,0x20, or 0x30\n");
}
// these last checks are so i can use ID's RLE-code. I don't dare fiddle with it or it'll probably break...
//
if ( pHeader->byImageType == 10)
{
if ((pHeader->byScanLineOrder & 0x30) != 0x00)
{
TGA_FORMAT_ERROR("LoadTGA: RLE-RGB Images (type 10) must be in bottom-to-top format\n");
}
if (pHeader->byImagePlanes != 24 && pHeader->byImagePlanes != 32) // probably won't happen, but avoids compressed greyscales?
{
TGA_FORMAT_ERROR("LoadTGA: RLE-RGB Images (type 10) must be 24 or 32 bit\n");
}
}
// now read the actual bitmap in...
//
// Image descriptor bytes
// bits 0-3 = # attr bits (alpha chan)
// bits 4-5 = pixel order/dir
// bits 6-7 scan line interleave (00b=none,01b=2way interleave,10b=4way)
//
int iYStart,iXStart,iYStep,iXStep;
switch(pHeader->byScanLineOrder & 0x30)
{
default: // default case stops the compiler complaining about using uninitialised vars
case 0x00: // left to right, bottom to top
iXStart = 0;
iXStep = 1;
iYStart = pHeader->wImageHeight-1;
iYStep = -1;
break;
case 0x10: // right to left, bottom to top
iXStart = pHeader->wImageWidth-1;
iXStep = -1;
iYStart = pHeader->wImageHeight-1;
iYStep = -1;
break;
case 0x20: // left to right, top to bottom
iXStart = 0;
iXStep = 1;
iYStart = 0;
iYStep = 1;
break;
case 0x30: // right to left, top to bottom
iXStart = pHeader->wImageWidth-1;
iXStep = -1;
iYStart = 0;
iYStep = 1;
break;
}
// feed back the results...
//
if (width)
*width = pHeader->wImageWidth;
if (height)
*height = pHeader->wImageHeight;
pRGBA = (byte *) Z_Malloc (pHeader->wImageWidth * pHeader->wImageHeight * 4, TAG_TEMP_WORKSPACE, qfalse);
*pic = pRGBA;
pOut = pRGBA;
pIn = pTempLoadedBuffer + sizeof(*pHeader);
// I don't know if this ID-thing here is right, since comments that I've seen are at the end of the file,
// with a zero in this field. However, may as well...
//
if (pHeader->byIDFieldLength != 0)
pIn += pHeader->byIDFieldLength; // skip TARGA image comment
byte red,green,blue,alpha;
if ( pHeader->byImageType == 2 || pHeader->byImageType == 3 ) // RGB or greyscale
{
for (int y=iYStart, iYCount=0; iYCount<pHeader->wImageHeight; y+=iYStep, iYCount++)
{
pOut = pRGBA + y * pHeader->wImageWidth *4;
for (int x=iXStart, iXCount=0; iXCount<pHeader->wImageWidth; x+=iXStep, iXCount++)
{
switch (pHeader->byImagePlanes)
{
case 8:
blue = *pIn++;
green = blue;
red = blue;
*pOut++ = red;
*pOut++ = green;
*pOut++ = blue;
*pOut++ = 255;
break;
case 24:
blue = *pIn++;
green = *pIn++;
red = *pIn++;
*pOut++ = red;
*pOut++ = green;
*pOut++ = blue;
*pOut++ = 255;
break;
case 32:
blue = *pIn++;
green = *pIn++;
red = *pIn++;
alpha = *pIn++;
*pOut++ = red;
*pOut++ = green;
*pOut++ = blue;
*pOut++ = alpha;
break;
default:
assert(0); // if we ever hit this, someone deleted a header check higher up
TGA_FORMAT_ERROR("LoadTGA: Image can only have 8, 24 or 32 planes for RGB/greyscale\n");
break;
}
}
}
}
else
if (pHeader->byImageType == 10) // RLE-RGB
{
// I've no idea if this stuff works, I normally reject RLE targas, but this is from ID's code
// so maybe I should try and support it...
//
byte packetHeader, packetSize, j;
for (int y = pHeader->wImageHeight-1; y >= 0; y--)
{
pOut = pRGBA + y * pHeader->wImageWidth *4;
for (int x=0; x<pHeader->wImageWidth;)
{
packetHeader = *pIn++;
packetSize = 1 + (packetHeader & 0x7f);
if (packetHeader & 0x80) // run-length packet
{
switch (pHeader->byImagePlanes)
{
case 24:
blue = *pIn++;
green = *pIn++;
red = *pIn++;
alpha = 255;
break;
case 32:
blue = *pIn++;
green = *pIn++;
red = *pIn++;
alpha = *pIn++;
break;
default:
assert(0); // if we ever hit this, someone deleted a header check higher up
TGA_FORMAT_ERROR("LoadTGA: RLE-RGB can only have 24 or 32 planes\n");
break;
}
for (j=0; j<packetSize; j++)
{
*pOut++ = red;
*pOut++ = green;
*pOut++ = blue;
*pOut++ = alpha;
x++;
if (x == pHeader->wImageWidth) // run spans across rows
{
x = 0;
if (y > 0)
y--;
else
goto breakOut;
pOut = pRGBA + y * pHeader->wImageWidth * 4;
}
}
}
else
{ // non run-length packet
for (j=0; j<packetSize; j++)
{
switch (pHeader->byImagePlanes)
{
case 24:
blue = *pIn++;
green = *pIn++;
red = *pIn++;
*pOut++ = red;
*pOut++ = green;
*pOut++ = blue;
*pOut++ = 255;
break;
case 32:
blue = *pIn++;
green = *pIn++;
red = *pIn++;
alpha = *pIn++;
*pOut++ = red;
*pOut++ = green;
*pOut++ = blue;
*pOut++ = alpha;
break;
default:
assert(0); // if we ever hit this, someone deleted a header check higher up
TGA_FORMAT_ERROR("LoadTGA: RLE-RGB can only have 24 or 32 planes\n");
break;
}
x++;
if (x == pHeader->wImageWidth) // pixel packet run spans across rows
{
x = 0;
if (y > 0)
y--;
else
goto breakOut;
pOut = pRGBA + y * pHeader->wImageWidth * 4;
}
}
}
}
breakOut:;
}
}
TGADone:
FS_FreeFile (pTempLoadedBuffer);
if (bFormatErrors)
{
Com_Error( ERR_DROP, "%s( File: \"%s\" )\n",sErrorString,name);
}
}
#ifndef DEDICATED
static void LoadJPG( const char *filename, unsigned char **pic, int *width, int *height ) {
/* This struct contains the JPEG decompression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
*/
struct jpeg_decompress_struct cinfo;
/* We use our private extension JPEG error handler.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
JSAMPARRAY buffer; /* Output row buffer */
int row_stride; /* physical row width in output buffer */
unsigned char *out;
byte *fbuffer;
byte *bbuf;
/* In this example we want to open the input file before doing anything else,
* so that the setjmp() error recovery below can assume the file is open.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to read binary files.
*/
fileHandle_t h;
const int len = FS_FOpenFileRead(filename, &h, qfalse);
if (!h)
{
return;
}
fbuffer = (byte *)Z_Malloc(len + 4096, TAG_TEMP_WORKSPACE);
FS_Read(fbuffer, len, h);
FS_FCloseFile(h);
/* Step 1: allocate and initialize JPEG decompression object */
/* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG decompression object. */
jpeg_create_decompress(&cinfo);
/* Step 2: specify data source (eg, a file) */
jpeg_stdio_src(&cinfo, fbuffer);
/* Step 3: read file parameters with jpeg_read_header() */
(void) jpeg_read_header(&cinfo, TRUE);
/* We can ignore the return value from jpeg_read_header since
* (a) suspension is not possible with the stdio data source, and
* (b) we passed TRUE to reject a tables-only JPEG file as an error.
* See libjpeg.doc for more info.
*/
/* Step 4: set parameters for decompression */
/* In this example, we don't need to change any of the defaults set by
* jpeg_read_header(), so we do nothing here.
*/
/* Step 5: Start decompressor */
(void) jpeg_start_decompress(&cinfo);
/* We can ignore the return value since suspension is not possible
* with the stdio data source.
*/
/* We may need to do some setup of our own at this point before reading
* the data. After jpeg_start_decompress() we have the correct scaled
* output image dimensions available, as well as the output colormap
* if we asked for color quantization.
* In this example, we need to make an output work buffer of the right size.
*/
/* JSAMPLEs per row in output buffer */
row_stride = cinfo.output_width * cinfo.output_components;
// rww - 9-13-01 [1-26-01-sof2]
if (cinfo.output_components != 4 && cinfo.output_components != 1) {
Com_Printf("JPG %s is unsupported color depth (%d)\n",filename,cinfo.output_components);
}
out = (unsigned char *)Z_Malloc(cinfo.output_width*cinfo.output_height*4, TAG_TEMP_WORKSPACE, qfalse );
*pic = out;
*width = cinfo.output_width;
*height = cinfo.output_height;
/* Step 6: while (scan lines remain to be read) */
/* jpeg_read_scanlines(...); */
/* Here we use the library's state variable cinfo.output_scanline as the
* loop counter, so that we don't have to keep track ourselves.
*/
while (cinfo.output_scanline < cinfo.output_height) {
/* jpeg_read_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could ask for
* more than one scanline at a time if that's more convenient.
*/
bbuf = ((out+(row_stride*cinfo.output_scanline)));
buffer = &bbuf;
(void) jpeg_read_scanlines(&cinfo, buffer, 1);
}
if (cinfo.output_components == 1)
{
byte *pbDest = (*pic + (cinfo.output_width * cinfo.output_height * 4))-1;
byte *pbSrc = (*pic + (cinfo.output_width * cinfo.output_height ))-1;
int iPixels = cinfo.output_width * cinfo.output_height;
for (int i=0; i<iPixels; i++)
{
byte b = *pbSrc--;
*pbDest-- = 255;
*pbDest-- = b;
*pbDest-- = b;
*pbDest-- = b;
}
}
else
// clear all the alphas to 255
{
int i, j;
byte *buf;
buf = *pic;
j = cinfo.output_width * cinfo.output_height * 4;
for ( i = 3 ; i < j ; i+=4 )
{
buf[i] = 255;
}
}
/* Step 7: Finish decompression */
(void) jpeg_finish_decompress(&cinfo);
/* We can ignore the return value since suspension is not possible
* with the stdio data source.
*/
/* Step 8: Release JPEG decompression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_decompress(&cinfo);
/* After finish_decompress, we can close the input file.
* Here we postpone it until after no more JPEG errors are possible,
* so as to simplify the setjmp error logic above. (Actually, I don't
* think that jpeg_destroy can do an error exit, but why assume anything...)
*/
Z_Free(fbuffer);
/* At this point you may want to check to see whether any corrupt-data
* warnings occurred (test whether jerr.pub.num_warnings is nonzero).
*/
/* And we're done! */
}
/* Expanded data destination object for stdio output */
typedef struct {
struct jpeg_destination_mgr pub; /* public fields */
byte* outfile; /* target stream */
int size;
} my_destination_mgr;
typedef my_destination_mgr * my_dest_ptr;
/*
* Initialize destination --- called by jpeg_start_compress
* before any data is actually written.
*/
void init_destination (j_compress_ptr cinfo)
{
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
dest->pub.next_output_byte = dest->outfile;
dest->pub.free_in_buffer = dest->size;
}
/*
* Empty the output buffer --- called whenever buffer fills up.
*
* In typical applications, this should write the entire output buffer
* (ignoring the current state of next_output_byte & free_in_buffer),
* reset the pointer & count to the start of the buffer, and return TRUE
* indicating that the buffer has been dumped.
*
* In applications that need to be able to suspend compression due to output
* overrun, a FALSE return indicates that the buffer cannot be emptied now.
* In this situation, the compressor will return to its caller (possibly with
* an indication that it has not accepted all the supplied scanlines). The
* application should resume compression after it has made more room in the
* output buffer. Note that there are substantial restrictions on the use of
* suspension --- see the documentation.
*
* When suspending, the compressor will back up to a convenient restart point
* (typically the start of the current MCU). next_output_byte & free_in_buffer
* indicate where the restart point will be if the current call returns FALSE.
* Data beyond this point will be regenerated after resumption, so do not
* write it out when emptying the buffer externally.
*/
boolean empty_output_buffer (j_compress_ptr cinfo)
{
return TRUE;
}
/*
* Compression initialization.
* Before calling this, all parameters and a data destination must be set up.
*
* We require a write_all_tables parameter as a failsafe check when writing
* multiple datastreams from the same compression object. Since prior runs
* will have left all the tables marked sent_table=TRUE, a subsequent run
* would emit an abbreviated stream (no tables) by default. This may be what
* is wanted, but for safety's sake it should not be the default behavior:
* programmers should have to make a deliberate choice to emit abbreviated
* images. Therefore the documentation and examples should encourage people
* to pass write_all_tables=TRUE; then it will take active thought to do the
* wrong thing.
*/
GLOBAL void
jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
{
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (write_all_tables)
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
/* (Re)initialize error mgr and destination modules */
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
(*cinfo->dest->init_destination) (cinfo);
/* Perform master selection of active modules */
jinit_compress_master(cinfo);
/* Set up for the first pass */
(*cinfo->master->prepare_for_pass) (cinfo);
/* Ready for application to drive first pass through jpeg_write_scanlines
* or jpeg_write_raw_data.
*/
cinfo->next_scanline = 0;
cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
}
/*
* Write some scanlines of data to the JPEG compressor.
*
* The return value will be the number of lines actually written.
* This should be less than the supplied num_lines only in case that
* the data destination module has requested suspension of the compressor,
* or if more than image_height scanlines are passed in.
*
* Note: we warn about excess calls to jpeg_write_scanlines() since
* this likely signals an application programmer error. However,
* excess scanlines passed in the last valid call are *silently* ignored,
* so that the application need not adjust num_lines for end-of-image
* when using a multiple-scanline buffer.
*/
GLOBAL JDIMENSION
jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
JDIMENSION num_lines)
{
JDIMENSION row_ctr, rows_left;
if (cinfo->global_state != CSTATE_SCANNING)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->next_scanline >= cinfo->image_height)
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
cinfo->progress->pass_limit = (long) cinfo->image_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Give master control module another chance if this is first call to
* jpeg_write_scanlines. This lets output of the frame/scan headers be
* delayed so that application can write COM, etc, markers between
* jpeg_start_compress and jpeg_write_scanlines.
*/
if (cinfo->master->call_pass_startup)
(*cinfo->master->pass_startup) (cinfo);
/* Ignore any extra scanlines at bottom of image. */
rows_left = cinfo->image_height - cinfo->next_scanline;
if (num_lines > rows_left)
num_lines = rows_left;
row_ctr = 0;
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
cinfo->next_scanline += row_ctr;
return row_ctr;
}
/*
* Terminate destination --- called by jpeg_finish_compress
* after all data has been written. Usually needs to flush buffer.
*
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
* application must deal with any cleanup that should happen even
* for error exit.
*/
static int hackSize;
void term_destination (j_compress_ptr cinfo)
{
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
size_t datacount = dest->size - dest->pub.free_in_buffer;
hackSize = datacount;
}
/*
* Prepare for output to a stdio stream.
* The caller must have already opened the stream, and is responsible
* for closing it after finishing compression.
*/
void jpegDest (j_compress_ptr cinfo, byte* outfile, int size)
{
my_dest_ptr dest;
/* The destination object is made permanent so that multiple JPEG images
* can be written to the same file without re-executing jpeg_stdio_dest.
* This makes it dangerous to use this manager and a different destination
* manager serially with the same JPEG object, because their private object
* sizes may be different. Caveat programmer.
*/
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
cinfo->dest = (struct jpeg_destination_mgr *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
sizeof(my_destination_mgr));
}
dest = (my_dest_ptr) cinfo->dest;
dest->pub.init_destination = init_destination;
dest->pub.empty_output_buffer = empty_output_buffer;
dest->pub.term_destination = term_destination;
dest->outfile = outfile;
dest->size = size;
}
void SaveJPG(char * filename, int quality, int image_width, int image_height, unsigned char *image_buffer) {
/* This struct contains the JPEG compression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
* It is possible to have several such structures, representing multiple
* compression/decompression processes, in existence at once. We refer
* to any one struct (and its associated working data) as a "JPEG object".
*/
struct jpeg_compress_struct cinfo;
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
int row_stride; /* physical row width in image buffer */
unsigned char *out;
/* Step 1: allocate and initialize JPEG compression object */
/* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress(&cinfo);
/* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */
/* Here we use the library-supplied code to send compressed data to a
* stdio stream. You can also write your own code to do something else.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to write binary files.
*/
out = (unsigned char *)Hunk_AllocateTempMemory(image_width*image_height*4);
jpegDest(&cinfo, out, image_width*image_height*4);
/* Step 3: set parameters for compression */
/* First we supply a description of the input image.
* Four fields of the cinfo struct must be filled in:
*/
cinfo.image_width = image_width; /* image width and height, in pixels */
cinfo.image_height = image_height;
cinfo.input_components = 4; /* # of color components per pixel */
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
/* Now use the library's routine to set default compression parameters.
* (You must set at least cinfo.in_color_space before calling this,
* since the defaults depend on the source color space.)
*/
jpeg_set_defaults(&cinfo);
/* Now you can set any non-default parameters you wish to.
* Here we just illustrate the use of quality (quantization table) scaling:
*/
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
/* Step 4: Start compressor */
/* TRUE ensures that we will write a complete interchange-JPEG file.
* Pass TRUE unless you are very sure of what you're doing.
*/
jpeg_start_compress(&cinfo, TRUE);
/* Step 5: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */
/* Here we use the library's state variable cinfo.next_scanline as the
* loop counter, so that we don't have to keep track ourselves.
* To keep things simple, we pass one scanline per call; you can pass
* more if you wish, though.
*/
row_stride = image_width * 4; /* JSAMPLEs per row in image_buffer */
while (cinfo.next_scanline < cinfo.image_height) {
/* jpeg_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = & image_buffer[((cinfo.image_height-1)*row_stride)-cinfo.next_scanline * row_stride];
(void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
}
/* Step 6: Finish compression */
jpeg_finish_compress(&cinfo);
/* After finish_compress, we can close the output file. */
FS_WriteFile( filename, out, hackSize );
Hunk_FreeTempMemory(out);
/* Step 7: release JPEG compression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_compress(&cinfo);
/* And we're done! */
}
//===================================================================
/*
=================
R_LoadImage
Loads any of the supported image types into a cannonical
32 bit format.
=================
*/
void R_LoadImage( const char *shortname, byte **pic, int *width, int *height, GLenum *format ) {
int bytedepth;
char name[MAX_QPATH];
*pic = NULL;
*width = 0;
*height = 0;
*format = GL_RGBA;
COM_StripExtension(shortname,name);
COM_DefaultExtension(name, sizeof(name), ".jpg");
LoadJPG( name, pic, width, height );
if (*pic) {
return;
}
COM_StripExtension(shortname,name);
COM_DefaultExtension(name, sizeof(name), ".png");
LoadPNG32( name, pic, width, height, &bytedepth ); // try png first
if (*pic){
return;
}
COM_StripExtension(shortname,name);
COM_DefaultExtension(name, sizeof(name), ".tga");
LoadTGA( name, pic, width, height ); // try tga first
if (*pic){
return;
}
}
void R_LoadDataImage( const char *name, byte **pic, int *width, int *height)
{
int len;
char work[MAX_QPATH];
*pic = NULL;
*width = 0;
*height = 0;
len = strlen(name);
if(len >= MAX_QPATH)
{
return;
}
if (len < 5)
{
return;
}
// MD_PushTag(TAG_DATA_IMAGE_LOAD);
strcpy(work, name);
COM_DefaultExtension( work, sizeof( work ), ".png" );
LoadPNG8( work, pic, width, height );
if (!pic || !*pic)
{ //png load failed, try jpeg
strcpy(work, name);
COM_DefaultExtension( work, sizeof( work ), ".jpg" );
LoadJPG( work, pic, width, height );
}
if (!pic || !*pic)
{ //both png and jpeg failed, try targa
strcpy(work, name);
COM_DefaultExtension( work, sizeof( work ), ".tga" );
LoadTGA( work, pic, width, height );
}
if(*pic)
{
// MD_PopTag();
return;
}
// Dataimage loading failed
Com_Printf("Couldn't read %s -- dataimage load failed\n", name);
// MD_PopTag();
}
#endif // !DEDICATED
void R_InvertImage(byte *data, int width, int height, int depth)
{
byte *newData;
byte *oldData;
byte *saveData;
int y, stride;
stride = width * depth;
oldData = data + ((height - 1) * stride);
newData = (byte *)Z_Malloc(height * stride, TAG_TEMP_IMAGE, qfalse );
saveData = newData;
for(y = 0; y < height; y++)
{
memcpy(newData, oldData, stride);
newData += stride;
oldData -= stride;
}
memcpy(data, saveData, height * stride);
Z_Free(saveData);
}
// Lanczos3 image resampling. Better than bicubic, based on sin(x)/x algorithm
#define LANCZOS3 (3.0f)
#define M_PI_OVER_3 (M_PI / 3.0f)
typedef struct
{
int pixel;
float weight;
} contrib_t;
typedef struct
{
int n; // number of contributors
contrib_t *p; // pointer to list of contributions
} contrib_list_t;
// sin(x)/x * sin(x/3)/(x/3)
float Lanczos3(float t)
{
if(!t)
{
return(1.0f);
}
t = (float)fabs(t);
if(t < 3.0f)
{
return(sinf(t * M_PI) * sinf(t * M_PI_OVER_3) / (t * M_PI * t * M_PI_OVER_3));
}
return(0.0f);
}
void R_Resample(byte *source, int swidth, int sheight, byte *dest, int dwidth, int dheight, int components)
{
int i, j, k, l, count, left, right, num;
int pixel;
byte *raster;
float center, weight, scale, width, height;
contrib_list_t *contributors;
// MD_PushTag(TAG_RESAMPLE);
byte *work = (byte *)Z_Malloc(dwidth * sheight * components, TAG_RESAMPLE);
// Pre calculate filter contributions for rows
contributors = (contrib_list_t *)Z_Malloc(sizeof(contrib_list_t) * dwidth, TAG_RESAMPLE);
float xscale = (float)dwidth / (float)swidth;
if(xscale < 1.0f)
{
width = ceilf(LANCZOS3 / xscale);
scale = xscale;
}
else
{
width = LANCZOS3;
scale = 1.0f;
}
num = ((int)width * 2) + 1;
for(i = 0; i < dwidth; i++)
{
contributors[i].n = 0;
contributors[i].p = (contrib_t *)Z_Malloc(num * sizeof(contrib_t), TAG_RESAMPLE);
center = (float)i / xscale;
left = (int)ceilf(center - width);
right = (int)floorf(center + width);
for(j = left; j <= right; j++)
{
weight = Lanczos3((center - (float)j) * scale) * scale;
if(j < 0)
{
pixel = -j;
}
else if(j >= swidth)
{
pixel = (swidth - j) + swidth - 1;
}
else
{
pixel = j;
}
count = contributors[i].n++;
contributors[i].p[count].pixel = pixel;
contributors[i].p[count].weight = weight;
}
}
// Apply filters to zoom horizontally from source to work
for(k = 0; k < sheight; k++)
{
raster = source + (k * swidth * components);
for(i = 0; i < dwidth; i++)
{
for(l = 0; l < components; l++)
{
weight = 0.0f;
for(j = 0; j < contributors[i].n; j++)
{
weight += raster[(contributors[i].p[j].pixel * components) + l] * contributors[i].p[j].weight;
}
pixel = (byte)Com_Clamp(0.0f, 255.0f, weight);
work[(k * dwidth * components) + (i * components) + l] = pixel;
}
}
}
// Clean up
for(i = 0; i < dwidth; i++)
{
Z_Free(contributors[i].p);
}
Z_Free(contributors);
// Columns
contributors = (contrib_list_t *)Z_Malloc(sizeof(contrib_list_t) * dheight, TAG_RESAMPLE);
float yscale = (float)dheight / (float)sheight;
if(yscale < 1.0f)
{
height = ceilf(LANCZOS3 / yscale);
scale = yscale;
}
else
{
height = LANCZOS3;
scale = 1.0f;
}
num = ((int)height * 2) + 1;
for(i = 0; i < dheight; i++)
{
contributors[i].n = 0;
contributors[i].p = (contrib_t *)Z_Malloc(num * sizeof(contrib_t), TAG_RESAMPLE);
center = (float)i / yscale;
left = (int)ceilf(center - height);
right = (int)floorf(center + height);
for(j = left; j <= right; j++)
{
weight = Lanczos3((center - (float)j) * scale) * scale;
if(j < 0)
{
pixel = -j;
}
else if(j >= sheight)
{
pixel = (sheight - j) + sheight - 1;
}
else
{
pixel = j;
}
count = contributors[i].n++;
contributors[i].p[count].pixel = pixel;
contributors[i].p[count].weight = weight;
}
}
// Apply filter to columns
for(k = 0; k < dwidth; k++)
{
for(l = 0; l < components; l++)
{
for(i = 0; i < dheight; i++)
{
weight = 0.0f;
for(j = 0; j < contributors[i].n; j++)
{
weight += work[(contributors[i].p[j].pixel * dwidth * components) + (k * components) + l] * contributors[i].p[j].weight;
}
pixel = (byte)Com_Clamp(0.0f, 255.0f, weight);
dest[(i * dwidth * components) + (k * components) + l] = pixel;
}
}
}
// Clean up
for(i = 0; i < dheight; i++)
{
Z_Free(contributors[i].p);
}
Z_Free(contributors);
Z_Free(work);
// MD_PopTag();
}
#ifndef DEDICATED
/*
===============
R_FindImageFile
Finds or loads the given image.
Returns NULL if it fails, not a default image.
==============
*/
image_t *R_FindImageFile( const char *name, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode ) {
image_t *image;
int width, height;
byte *pic;
GLenum format;
if (!name
|| com_dedicated->integer // stop ghoul2 horribleness as regards image loading from server
)
{
return NULL;
}
// need to do this here as well as in R_CreateImage, or R_FindImageFile_NoLoad() may complain about
// different clamp parms used...
//
if(glConfig.clampToEdgeAvailable && glWrapClampMode == GL_CLAMP) {
glWrapClampMode = GL_CLAMP_TO_EDGE;
}
image = R_FindImageFile_NoLoad(name, mipmap, allowPicmip, allowTC, glWrapClampMode );
if (image) {
return image;
}
//
// load the pic from disk
//
R_LoadImage( name, &pic, &width, &height, &format );
if ( pic == NULL ) { // if we dont get a successful load
return NULL; // bail
}
// refuse to find any files not power of 2 dims...
//
if ( (width&(width-1)) || (height&(height-1)) )
{
Com_Printf ("Refusing to load non-power-2-dims(%d,%d) pic \"%s\"...\n", width,height,name );
return NULL;
}
image = R_CreateImage( ( char * ) name, pic, width, height, format, mipmap, allowPicmip, allowTC, glWrapClampMode );
Z_Free( pic );
return image;
}
/*
================
R_CreateDlightImage
================
*/
#define DLIGHT_SIZE 16
static void R_CreateDlightImage( void )
{
int width, height;
byte *pic;
GLenum format;
R_LoadImage("gfx/2d/dlight", &pic, &width, &height, &format);
if (pic)
{
tr.dlightImage = R_CreateImage("*dlight", pic, width, height, GL_RGBA, qfalse, qfalse, qfalse, GL_CLAMP );
Z_Free(pic);
}
else
{ // if we dont get a successful load
int x,y;
byte data[DLIGHT_SIZE][DLIGHT_SIZE][4];
int b;
// make a centered inverse-square falloff blob for dynamic lighting
for (x=0 ; x<DLIGHT_SIZE ; x++) {
for (y=0 ; y<DLIGHT_SIZE ; y++) {
float d;
d = ( DLIGHT_SIZE/2 - 0.5f - x ) * ( DLIGHT_SIZE/2 - 0.5f - x ) +
( DLIGHT_SIZE/2 - 0.5f - y ) * ( DLIGHT_SIZE/2 - 0.5f - y );
b = 4000 / d;
if (b > 255) {
b = 255;
} else if ( b < 75 ) {
b = 0;
}
data[y][x][0] =
data[y][x][1] =
data[y][x][2] = b;
data[y][x][3] = 255;
}
}
tr.dlightImage = R_CreateImage("*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, GL_RGBA, qfalse, qfalse, qfalse, GL_CLAMP );
}
}
/*
=================
R_InitFogTable
=================
*/
void R_InitFogTable( void ) {
int i;
float d;
float exp;
exp = 0.5;
for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) {
d = pow ( (float)i/(FOG_TABLE_SIZE-1), exp );
tr.fogTable[i] = d;
}
}
/*
================
R_FogFactor
Returns a 0.0 to 1.0 fog density value
This is called for each texel of the fog texture on startup
and for each vertex of transparent shaders in fog dynamically
================
*/
float R_FogFactor( float s, float t ) {
float d;
s -= 1.0/512;
if ( s < 0 ) {
return 0;
}
if ( t < 1.0/32 ) {
return 0;
}
if ( t < 31.0/32 ) {
s *= (t - 1.0f/32.0f) / (30.0f/32.0f);
}
// we need to leave a lot of clamp range
s *= 8;
if ( s > 1.0 ) {
s = 1.0;
}
d = tr.fogTable[ (int)(s * (FOG_TABLE_SIZE-1)) ];
return d;
}
/*
================
R_CreateFogImage
================
*/
#define FOG_S 256
#define FOG_T 32
static void R_CreateFogImage( void ) {
int x,y;
byte *data;
float g;
float d;
float borderColor[4];
data = (unsigned char *)Hunk_AllocateTempMemory( FOG_S * FOG_T * 4 );
g = 2.0;
// S is distance, T is depth
for (x=0 ; x<FOG_S ; x++) {
for (y=0 ; y<FOG_T ; y++) {
d = R_FogFactor( ( x + 0.5f ) / FOG_S, ( y + 0.5f ) / FOG_T );
data[(y*FOG_S+x)*4+0] =
data[(y*FOG_S+x)*4+1] =
data[(y*FOG_S+x)*4+2] = 255;
data[(y*FOG_S+x)*4+3] = 255*d;
}
}
// standard openGL clamping doesn't really do what we want -- it includes
// the border color at the edges. OpenGL 1.2 has clamp-to-edge, which does
// what we want.
tr.fogImage = R_CreateImage("*fog", (byte *)data, FOG_S, FOG_T, GL_RGBA, qfalse, qfalse, qfalse, GL_CLAMP );
Hunk_FreeTempMemory( data );
borderColor[0] = 1.0;
borderColor[1] = 1.0;
borderColor[2] = 1.0;
borderColor[3] = 1;
qglTexParameterfv( GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor );
}
/*
==================
R_CreateDefaultImage
==================
*/
#define DEFAULT_SIZE 16
static void R_CreateDefaultImage( void ) {
int x;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
// the default image will be a box, to allow you to see the mapping coordinates
Com_Memset( data, 32, sizeof( data ) );
for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) {
data[0][x][0] =
data[0][x][1] =
data[0][x][2] =
data[0][x][3] = 255;
data[x][0][0] =
data[x][0][1] =
data[x][0][2] =
data[x][0][3] = 255;
data[DEFAULT_SIZE-1][x][0] =
data[DEFAULT_SIZE-1][x][1] =
data[DEFAULT_SIZE-1][x][2] =
data[DEFAULT_SIZE-1][x][3] = 255;
data[x][DEFAULT_SIZE-1][0] =
data[x][DEFAULT_SIZE-1][1] =
data[x][DEFAULT_SIZE-1][2] =
data[x][DEFAULT_SIZE-1][3] = 255;
}
tr.defaultImage = R_CreateImage("*default", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, GL_RGBA, qtrue, qfalse, qfalse, GL_REPEAT );
}
/*
==================
R_CreateBuiltinImages
==================
*/
void R_CreateBuiltinImages( void ) {
int x,y;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
R_CreateDefaultImage();
// we use a solid white image instead of disabling texturing
Com_Memset( data, 255, sizeof( data ) );
tr.whiteImage = R_CreateImage("*white", (byte *)data, 8, 8, GL_RGBA, qfalse, qfalse, qfalse, GL_REPEAT);
tr.screenImage = R_CreateImage("*screen", (byte *)data, 8, 8, GL_RGBA, qfalse, qfalse, qfalse, GL_REPEAT );
// Create the scene glow image. - AReis
tr.screenGlow = 1024 + giTextureBindNum++;
qglDisable( GL_TEXTURE_2D );
qglEnable( GL_TEXTURE_RECTANGLE_EXT );
qglBindTexture( GL_TEXTURE_RECTANGLE_EXT, tr.screenGlow );
qglTexImage2D( GL_TEXTURE_RECTANGLE_EXT, 0, GL_RGBA16, glConfig.vidWidth, glConfig.vidHeight, 0, GL_RGB, GL_FLOAT, 0 );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP );
// Create the scene image. - AReis
tr.sceneImage = 1024 + giTextureBindNum++;
qglBindTexture( GL_TEXTURE_RECTANGLE_EXT, tr.sceneImage );
qglTexImage2D( GL_TEXTURE_RECTANGLE_EXT, 0, GL_RGBA16, glConfig.vidWidth, glConfig.vidHeight, 0, GL_RGB, GL_FLOAT, 0 );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP );
// Create the minimized scene blur image.
if ( r_DynamicGlowWidth->integer > glConfig.vidWidth )
{
r_DynamicGlowWidth->integer = glConfig.vidWidth;
}
if ( r_DynamicGlowHeight->integer > glConfig.vidHeight )
{
r_DynamicGlowHeight->integer = glConfig.vidHeight;
}
tr.blurImage = 1024 + giTextureBindNum++;
qglBindTexture( GL_TEXTURE_RECTANGLE_EXT, tr.blurImage );
qglTexImage2D( GL_TEXTURE_RECTANGLE_EXT, 0, GL_RGBA16, r_DynamicGlowWidth->integer, r_DynamicGlowHeight->integer, 0, GL_RGB, GL_FLOAT, 0 );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP );
qglDisable( GL_TEXTURE_RECTANGLE_EXT );
qglEnable( GL_TEXTURE_2D );
// with overbright bits active, we need an image which is some fraction of full color,
// for default lightmaps, etc
for (x=0 ; x<DEFAULT_SIZE ; x++) {
for (y=0 ; y<DEFAULT_SIZE ; y++) {
data[y][x][0] =
data[y][x][1] =
data[y][x][2] = tr.identityLightByte;
data[y][x][3] = 255;
}
}
tr.identityLightImage = R_CreateImage("*identityLight", (byte *)data, 8, 8, GL_RGBA, qfalse, qfalse, qfalse, GL_REPEAT);
for(x=0;x<NUM_SCRATCH_IMAGES;x++) {
// scratchimage is usually used for cinematic drawing
tr.scratchImage[x] = R_CreateImage(va("*scratch%d",x), (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, GL_RGBA, qfalse, qtrue, qfalse, GL_CLAMP);
}
R_CreateDlightImage();
R_CreateFogImage();
}
/*
===============
R_SetColorMappings
===============
*/
void R_SetColorMappings( void ) {
int i, j;
float g;
int inf;
int shift;
// setup the overbright lighting
tr.overbrightBits = r_overBrightBits->integer;
if ( !glConfig.deviceSupportsGamma ) {
tr.overbrightBits = 0; // need hardware gamma for overbright
}
// never overbright in windowed mode
if ( !glConfig.isFullscreen )
{
tr.overbrightBits = 0;
}
if ( tr.overbrightBits > 1 ) {
tr.overbrightBits = 1;
}
if ( tr.overbrightBits < 0 ) {
tr.overbrightBits = 0;
}
tr.identityLight = 1.0f / ( 1 << tr.overbrightBits );
tr.identityLightByte = 255 * tr.identityLight;
if ( r_intensity->value < 1.0f ) {
Cvar_Set( "r_intensity", "1" );
}
if ( r_gamma->value < 0.5f ) {
Cvar_Set( "r_gamma", "0.5" );
} else if ( r_gamma->value > 3.0f ) {
Cvar_Set( "r_gamma", "3.0" );
}
g = r_gamma->value;
shift = tr.overbrightBits;
for ( i = 0; i < 256; i++ ) {
if ( g == 1 ) {
inf = i;
} else {
inf = 255 * pow ( i/255.0f, 1.0f / g ) + 0.5f;
}
inf <<= shift;
if (inf < 0) {
inf = 0;
}
if (inf > 255) {
inf = 255;
}
s_gammatable[i] = inf;
}
for (i=0 ; i<256 ; i++) {
j = i * r_intensity->value;
if (j > 255) {
j = 255;
}
s_intensitytable[i] = j;
}
if ( glConfig.deviceSupportsGamma )
{
GLimp_SetGamma( s_gammatable, s_gammatable, s_gammatable );
}
}
/*
===============
R_InitImages
===============
*/
void R_InitImages( void ) {
//memset(hashTable, 0, sizeof(hashTable)); // DO NOT DO THIS NOW (because of image cacheing) -ste.
// build brightness translation tables
R_SetColorMappings();
// create default texture and white texture
R_CreateBuiltinImages();
}
/*
===============
R_DeleteTextures
===============
*/
// (only gets called during vid_restart now (and app exit), not during map load)
//
void R_DeleteTextures( void ) {
R_Images_Clear();
GL_ResetBinds();
}
/*
============================================================================
SKINS
============================================================================
*/
static char *CommaParse( char **data_p );
//can't be dec'd here since we need it for non-dedicated builds now as well.
/*
===============
RE_RegisterSkin
===============
*/
#endif // !DEDICATED
bool gServerSkinHack = false;
shader_t *R_FindServerShader( const char *name, const int *lightmapIndex, const byte *styles, qboolean mipRawImage );
char *CommaParse( char **data_p );
/*
===============
RE_SplitSkins
input = skinname, possibly being a macro for three skins
return= true if three part skins found
output= qualified names to three skins if return is true, undefined if false
===============
*/
bool RE_SplitSkins(const char *INname, char *skinhead, char *skintorso, char *skinlower)
{ //INname= "models/players/jedi_tf/|head01_skin1|torso01|lower01";
if (strchr(INname, '|'))
{
char name[MAX_QPATH];
strcpy(name, INname);
char *p = strchr(name, '|');
*p=0;
p++;
//fill in the base path
strcpy (skinhead, name);
strcpy (skintorso, name);
strcpy (skinlower, name);
//now get the the individual files
//advance to second
char *p2 = strchr(p, '|');
assert(p2);
if (!p2)
{
return false;
}
*p2=0;
p2++;
strcat (skinhead, p);
strcat (skinhead, ".skin");
//advance to third
p = strchr(p2, '|');
assert(p);
if (!p)
{
return false;
}
*p=0;
p++;
strcat (skintorso,p2);
strcat (skintorso, ".skin");
strcat (skinlower,p);
strcat (skinlower, ".skin");
return true;
}
return false;
}
// given a name, go get the skin we want and return
qhandle_t RE_RegisterIndividualSkin( const char *name , qhandle_t hSkin)
{
skin_t *skin;
skinSurface_t *surf;
char *text, *text_p;
char *token;
char surfName[MAX_QPATH];
// load and parse the skin file
FS_ReadFile( name, (void **)&text );
if ( !text ) {
#ifndef FINAL_BUILD
Com_Printf( "WARNING: RE_RegisterSkin( '%s' ) failed to load!\n", name );
#endif
return 0;
}
assert (tr.skins[hSkin]); //should already be setup, but might be an 3part append
skin = tr.skins[hSkin];
text_p = text;
while ( text_p && *text_p ) {
// get surface name
token = CommaParse( &text_p );
Q_strncpyz( surfName, token, sizeof( surfName ) );
if ( !token[0] ) {
break;
}
// lowercase the surface name so skin compares are faster
Q_strlwr( surfName );
if ( *text_p == ',' ) {
text_p++;
}
if ( !strncmp( token, "tag_", 4 ) ) { //these aren't in there, but just in case you load an id style one...
continue;
}
// parse the shader name
token = CommaParse( &text_p );
if ( !strcmp( &surfName[strlen(surfName)-4], "_off") )
{
if ( !strcmp( token ,"*off" ) )
{
continue; //don't need these double offs
}
surfName[strlen(surfName)-4] = 0; //remove the "_off"
}
if (sizeof( skin->surfaces) / sizeof( skin->surfaces[0] ) <= skin->numSurfaces)
{
assert( sizeof( skin->surfaces) / sizeof( skin->surfaces[0] ) > skin->numSurfaces );
Com_Printf( "WARNING: RE_RegisterSkin( '%s' ) more than %d surfaces!\n", name, sizeof( skin->surfaces) / sizeof( skin->surfaces[0] ) );
break;
}
surf = skin->surfaces[ skin->numSurfaces ] = (skinSurface_t *) Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low );
Q_strncpyz( surf->name, surfName, sizeof( surf->name ) );
if (gServerSkinHack)
{
surf->shader = R_FindServerShader( token, lightmapsNone, stylesDefault, qtrue );
}
else
{
surf->shader = R_FindShader( token, lightmapsNone, stylesDefault, qtrue );
}
skin->numSurfaces++;
}
FS_FreeFile( text );
// never let a skin have 0 shaders
if ( skin->numSurfaces == 0 ) {
return 0; // use default skin
}
return hSkin;
}
qhandle_t RE_RegisterSkin( const char *name ) {
qhandle_t hSkin;
skin_t *skin;
if ( !name || !name[0] ) {
Com_Printf( "Empty name passed to RE_RegisterSkin\n" );
return 0;
}
if ( strlen( name ) >= MAX_QPATH ) {
Com_Printf( "Skin name exceeds MAX_QPATH\n" );
return 0;
}
// see if the skin is already loaded
for ( hSkin = 1; hSkin < tr.numSkins ; hSkin++ ) {
skin = tr.skins[hSkin];
if ( !Q_stricmp( skin->name, name ) ) {
if( skin->numSurfaces == 0 ) {
return 0; // default skin
}
return hSkin;
}
}
// allocate a new skin
if ( tr.numSkins == MAX_SKINS ) {
Com_Printf( "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name );
return 0;
}
tr.numSkins++;
skin = (struct skin_s *)Hunk_Alloc( sizeof( skin_t ), h_low );
tr.skins[hSkin] = skin;
Q_strncpyz( skin->name, name, sizeof( skin->name ) );
skin->numSurfaces = 0;
// make sure the render thread is stopped
R_SyncRenderThread();
// If not a .skin file, load as a single shader
if ( strcmp( name + strlen( name ) - 5, ".skin" ) ) {
/* skin->numSurfaces = 1;
skin->surfaces[0] = (skinSurface_t *)Hunk_Alloc( sizeof(skin->surfaces[0]), h_low );
skin->surfaces[0]->shader = R_FindShader( name, lightmapsNone, stylesDefault, qtrue );
return hSkin;
*/
}
char skinhead[MAX_QPATH]={0};
char skintorso[MAX_QPATH]={0};
char skinlower[MAX_QPATH]={0};
if ( RE_SplitSkins(name, (char*)&skinhead, (char*)&skintorso, (char*)&skinlower ) )
{//three part
hSkin = RE_RegisterIndividualSkin(skinhead, hSkin);
if (hSkin)
{
hSkin = RE_RegisterIndividualSkin(skintorso, hSkin);
if (hSkin)
{
hSkin = RE_RegisterIndividualSkin(skinlower, hSkin);
}
}
}
else
{//single skin
hSkin = RE_RegisterIndividualSkin(name, hSkin);
}
return(hSkin);
}
/*
==================
CommaParse
This is unfortunate, but the skin files aren't
compatable with our normal parsing rules.
==================
*/
static char *CommaParse( char **data_p ) {
int c = 0, len;
char *data;
static char com_token[MAX_TOKEN_CHARS];
data = *data_p;
len = 0;
com_token[0] = 0;
// make sure incoming data is valid
if ( !data ) {
*data_p = NULL;
return com_token;
}
while ( 1 ) {
// skip whitespace
while( (c = *data) <= ' ') {
if( !c ) {
break;
}
data++;
}
c = *data;
// skip double slash comments
if ( c == '/' && data[1] == '/' )
{
while (*data && *data != '\n')
data++;
}
// skip /* */ comments
else if ( c=='/' && data[1] == '*' )
{
while ( *data && ( *data != '*' || data[1] != '/' ) )
{
data++;
}
if ( *data )
{
data += 2;
}
}
else
{
break;
}
}
if ( c == 0 ) {
return "";
}
// handle quoted strings
if (c == '\"')
{
data++;
while (1)
{
c = *data++;
if (c=='\"' || !c)
{
com_token[len] = 0;
*data_p = ( char * ) data;
return com_token;
}
if (len < MAX_TOKEN_CHARS)
{
com_token[len] = c;
len++;
}
}
}
// parse a regular word
do
{
if (len < MAX_TOKEN_CHARS)
{
com_token[len] = c;
len++;
}
data++;
c = *data;
} while (c>32 && c != ',' );
if (len == MAX_TOKEN_CHARS)
{
// Com_Printf ("Token exceeded %i chars, discarded.\n", MAX_TOKEN_CHARS);
len = 0;
}
com_token[len] = 0;
*data_p = ( char * ) data;
return com_token;
}
/*
===============
RE_RegisterServerSkin
Mangled version of the above function to load .skin files on the server.
===============
*/
extern qboolean Com_TheHunkMarkHasBeenMade(void);
extern qboolean ShaderHashTableExists(void);
qhandle_t RE_RegisterServerSkin( const char *name ) {
qhandle_t r;
if (com_cl_running &&
com_cl_running->integer &&
Com_TheHunkMarkHasBeenMade() &&
ShaderHashTableExists())
{ //If the client is running then we can go straight into the normal registerskin func
return RE_RegisterSkin(name);
}
gServerSkinHack = true;
r = RE_RegisterSkin(name);
gServerSkinHack = false;
return r;
}
/*
===============
R_InitSkins
===============
*/
void R_InitSkins( void ) {
skin_t *skin;
tr.numSkins = 1;
// make the default skin have all default shaders
skin = tr.skins[0] = (struct skin_s *)/*ri.*/Hunk_Alloc( sizeof( skin_t ), h_low );
Q_strncpyz( skin->name, "<default skin>", sizeof( skin->name ) );
skin->numSurfaces = 1;
skin->surfaces[0] = (skinSurface_t *)/*ri.*/Hunk_Alloc( sizeof( skinSurface_t ), h_low );
skin->surfaces[0]->shader = tr.defaultShader;
}
/*
===============
R_GetSkinByHandle
===============
*/
skin_t *R_GetSkinByHandle( qhandle_t hSkin ) {
if ( hSkin < 1 || hSkin >= tr.numSkins ) {
return tr.skins[0];
}
return tr.skins[ hSkin ];
}
#ifndef DEDICATED
/*
===============
R_SkinList_f
===============
*/
void R_SkinList_f( void ) {
int i, j;
skin_t *skin;
Com_Printf ( "------------------\n");
for ( i = 0 ; i < tr.numSkins ; i++ ) {
skin = tr.skins[i];
Com_Printf ("%3i:%s\n", i, skin->name );
for ( j = 0 ; j < skin->numSurfaces ; j++ ) {
Com_Printf (" %s = %s\n",
skin->surfaces[j]->name, skin->surfaces[j]->shader->name );
}
}
Com_Printf ( "------------------\n");
}
#endif // !DEDICATED