mirror of
https://github.com/ioquake/jedi-academy.git
synced 2024-12-11 04:40:52 +00:00
1271 lines
30 KiB
C++
1271 lines
30 KiB
C++
// q_math.c -- stateless support routines that are included in each code module
|
|
|
|
// leave this at the top for PCH reasons...
|
|
#include "common_headers.h"
|
|
|
|
|
|
//#include "q_shared.h"
|
|
|
|
|
|
const vec3_t vec3_origin = {0,0,0};
|
|
const vec3_t axisDefault[3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
|
|
|
|
vec4_t colorTable[CT_MAX] =
|
|
{
|
|
{0, 0, 0, 0}, // CT_NONE
|
|
{0, 0, 0, 1}, // CT_BLACK
|
|
{1, 0, 0, 1}, // CT_RED
|
|
{0, 1, 0, 1}, // CT_GREEN
|
|
{0, 0, 1, 1}, // CT_BLUE
|
|
{1, 1, 0, 1}, // CT_YELLOW
|
|
{1, 0, 1, 1}, // CT_MAGENTA
|
|
{0, 1, 1, 1}, // CT_CYAN
|
|
{1, 1, 1, 1}, // CT_WHITE
|
|
{0.75f, 0.75f, 0.75f, 1}, // CT_LTGREY
|
|
{0.50f, 0.50f, 0.50f, 1}, // CT_MDGREY
|
|
{0.25f, 0.25f, 0.25f, 1}, // CT_DKGREY
|
|
{0.15f, 0.15f, 0.15f, 1}, // CT_DKGREY2
|
|
|
|
{0.992f, 0.652f, 0.0f, 1}, // CT_VLTORANGE -- needs values
|
|
{0.810f, 0.530f, 0.0f, 1}, // CT_LTORANGE
|
|
{0.610f, 0.330f, 0.0f, 1}, // CT_DKORANGE
|
|
{0.402f, 0.265f, 0.0f, 1}, // CT_VDKORANGE
|
|
|
|
{0.503f, 0.375f, 0.996f, 1}, // CT_VLTBLUE1
|
|
{0.367f, 0.261f, 0.722f, 1}, // CT_LTBLUE1
|
|
{0.199f, 0.0f, 0.398f, 1}, // CT_DKBLUE1
|
|
{0.160f, 0.117f, 0.324f, 1}, // CT_VDKBLUE1
|
|
|
|
{0.300f, 0.628f, 0.816f, 1}, // CT_VLTBLUE2 -- needs values
|
|
{0.300f, 0.628f, 0.816f, 1}, // CT_LTBLUE2
|
|
{0.191f, 0.289f, 0.457f, 1}, // CT_DKBLUE2
|
|
{0.125f, 0.250f, 0.324f, 1}, // CT_VDKBLUE2
|
|
|
|
{0.796f, 0.398f, 0.199f, 1}, // CT_VLTBROWN1 -- needs values
|
|
{0.796f, 0.398f, 0.199f, 1}, // CT_LTBROWN1
|
|
{0.558f, 0.207f, 0.027f, 1}, // CT_DKBROWN1
|
|
{0.328f, 0.125f, 0.035f, 1}, // CT_VDKBROWN1
|
|
|
|
{0.996f, 0.796f, 0.398f, 1}, // CT_VLTGOLD1 -- needs values
|
|
{0.996f, 0.796f, 0.398f, 1}, // CT_LTGOLD1
|
|
{0.605f, 0.441f, 0.113f, 1}, // CT_DKGOLD1
|
|
{0.386f, 0.308f, 0.148f, 1}, // CT_VDKGOLD1
|
|
|
|
{0.648f, 0.562f, 0.784f, 1}, // CT_VLTPURPLE1 -- needs values
|
|
{0.648f, 0.562f, 0.784f, 1}, // CT_LTPURPLE1
|
|
{0.437f, 0.335f, 0.597f, 1}, // CT_DKPURPLE1
|
|
{0.308f, 0.269f, 0.375f, 1}, // CT_VDKPURPLE1
|
|
|
|
{0.816f, 0.531f, 0.710f, 1}, // CT_VLTPURPLE2 -- needs values
|
|
{0.816f, 0.531f, 0.710f, 1}, // CT_LTPURPLE2
|
|
{0.566f, 0.269f, 0.457f, 1}, // CT_DKPURPLE2
|
|
{0.343f, 0.226f, 0.316f, 1}, // CT_VDKPURPLE2
|
|
|
|
{0.929f, 0.597f, 0.929f, 1}, // CT_VLTPURPLE3
|
|
{0.570f, 0.371f, 0.570f, 1}, // CT_LTPURPLE3
|
|
{0.355f, 0.199f, 0.355f, 1}, // CT_DKPURPLE3
|
|
{0.285f, 0.136f, 0.230f, 1}, // CT_VDKPURPLE3
|
|
|
|
{0.953f, 0.378f, 0.250f, 1}, // CT_VLTRED1
|
|
{0.953f, 0.378f, 0.250f, 1}, // CT_LTRED1
|
|
{0.593f, 0.121f, 0.109f, 1}, // CT_DKRED1
|
|
{0.429f, 0.171f, 0.113f, 1}, // CT_VDKRED1
|
|
{.25f, 0, 0, 1}, // CT_VDKRED
|
|
{.70f, 0, 0, 1}, // CT_DKRED
|
|
|
|
{0.717f, 0.902f, 1.0f, 1}, // CT_VLTAQUA
|
|
{0.574f, 0.722f, 0.804f, 1}, // CT_LTAQUA
|
|
{0.287f, 0.361f, 0.402f, 1}, // CT_DKAQUA
|
|
{0.143f, 0.180f, 0.201f, 1}, // CT_VDKAQUA
|
|
|
|
{0.871f, 0.386f, 0.375f, 1}, // CT_LTPINK
|
|
{0.435f, 0.193f, 0.187f, 1}, // CT_DKPINK
|
|
{ 0, .5f, .5f, 1}, // CT_LTCYAN
|
|
{ 0, .25f, .25f, 1}, // CT_DKCYAN
|
|
{ .179f, .51f, .92f, 1}, // CT_LTBLUE3
|
|
{ .199f, .71f, .92f, 1}, // CT_LTBLUE3
|
|
{ .5f, .05f, .4f, 1}, // CT_DKBLUE3
|
|
|
|
{ 0.0f, .613f, .097f, 1}, // CT_HUD_GREEN
|
|
{ 0.835f, .015f, .015f, 1}, // CT_HUD_RED
|
|
{ .567f, .685f, 1.0f, .75f}, // CT_ICON_BLUE
|
|
{ .515f, .406f, .507f, 1}, // CT_NO_AMMO_RED
|
|
|
|
{ 1.0f, .658f, .062f, 1}, // CT_HUD_ORANGE
|
|
{ 0.549f, .854f, 1.0f, 1.0f}, // CT_TITLE
|
|
};
|
|
|
|
|
|
vec4_t g_color_table[8] =
|
|
{
|
|
{0.0, 0.0, 0.0, 1.0},
|
|
{1.0, 0.0, 0.0, 1.0},
|
|
{0.0, 1.0, 0.0, 1.0},
|
|
{1.0, 1.0, 0.0, 1.0},
|
|
{0.0, 0.0, 1.0, 1.0},
|
|
{0.0, 1.0, 1.0, 1.0},
|
|
{1.0, 0.0, 1.0, 1.0},
|
|
{1.0, 1.0, 1.0, 1.0},
|
|
};
|
|
|
|
#pragma warning(disable : 4305) // truncation from const double to float
|
|
|
|
vec3_t bytedirs[NUMVERTEXNORMALS] =
|
|
{
|
|
{-0.525731, 0.000000, 0.850651}, {-0.442863, 0.238856, 0.864188},
|
|
{-0.295242, 0.000000, 0.955423}, {-0.309017, 0.500000, 0.809017},
|
|
{-0.162460, 0.262866, 0.951056}, {0.000000, 0.000000, 1.000000},
|
|
{0.000000, 0.850651, 0.525731}, {-0.147621, 0.716567, 0.681718},
|
|
{0.147621, 0.716567, 0.681718}, {0.000000, 0.525731, 0.850651},
|
|
{0.309017, 0.500000, 0.809017}, {0.525731, 0.000000, 0.850651},
|
|
{0.295242, 0.000000, 0.955423}, {0.442863, 0.238856, 0.864188},
|
|
{0.162460, 0.262866, 0.951056}, {-0.681718, 0.147621, 0.716567},
|
|
{-0.809017, 0.309017, 0.500000},{-0.587785, 0.425325, 0.688191},
|
|
{-0.850651, 0.525731, 0.000000},{-0.864188, 0.442863, 0.238856},
|
|
{-0.716567, 0.681718, 0.147621},{-0.688191, 0.587785, 0.425325},
|
|
{-0.500000, 0.809017, 0.309017}, {-0.238856, 0.864188, 0.442863},
|
|
{-0.425325, 0.688191, 0.587785}, {-0.716567, 0.681718, -0.147621},
|
|
{-0.500000, 0.809017, -0.309017}, {-0.525731, 0.850651, 0.000000},
|
|
{0.000000, 0.850651, -0.525731}, {-0.238856, 0.864188, -0.442863},
|
|
{0.000000, 0.955423, -0.295242}, {-0.262866, 0.951056, -0.162460},
|
|
{0.000000, 1.000000, 0.000000}, {0.000000, 0.955423, 0.295242},
|
|
{-0.262866, 0.951056, 0.162460}, {0.238856, 0.864188, 0.442863},
|
|
{0.262866, 0.951056, 0.162460}, {0.500000, 0.809017, 0.309017},
|
|
{0.238856, 0.864188, -0.442863},{0.262866, 0.951056, -0.162460},
|
|
{0.500000, 0.809017, -0.309017},{0.850651, 0.525731, 0.000000},
|
|
{0.716567, 0.681718, 0.147621}, {0.716567, 0.681718, -0.147621},
|
|
{0.525731, 0.850651, 0.000000}, {0.425325, 0.688191, 0.587785},
|
|
{0.864188, 0.442863, 0.238856}, {0.688191, 0.587785, 0.425325},
|
|
{0.809017, 0.309017, 0.500000}, {0.681718, 0.147621, 0.716567},
|
|
{0.587785, 0.425325, 0.688191}, {0.955423, 0.295242, 0.000000},
|
|
{1.000000, 0.000000, 0.000000}, {0.951056, 0.162460, 0.262866},
|
|
{0.850651, -0.525731, 0.000000},{0.955423, -0.295242, 0.000000},
|
|
{0.864188, -0.442863, 0.238856}, {0.951056, -0.162460, 0.262866},
|
|
{0.809017, -0.309017, 0.500000}, {0.681718, -0.147621, 0.716567},
|
|
{0.850651, 0.000000, 0.525731}, {0.864188, 0.442863, -0.238856},
|
|
{0.809017, 0.309017, -0.500000}, {0.951056, 0.162460, -0.262866},
|
|
{0.525731, 0.000000, -0.850651}, {0.681718, 0.147621, -0.716567},
|
|
{0.681718, -0.147621, -0.716567},{0.850651, 0.000000, -0.525731},
|
|
{0.809017, -0.309017, -0.500000}, {0.864188, -0.442863, -0.238856},
|
|
{0.951056, -0.162460, -0.262866}, {0.147621, 0.716567, -0.681718},
|
|
{0.309017, 0.500000, -0.809017}, {0.425325, 0.688191, -0.587785},
|
|
{0.442863, 0.238856, -0.864188}, {0.587785, 0.425325, -0.688191},
|
|
{0.688191, 0.587785, -0.425325}, {-0.147621, 0.716567, -0.681718},
|
|
{-0.309017, 0.500000, -0.809017}, {0.000000, 0.525731, -0.850651},
|
|
{-0.525731, 0.000000, -0.850651}, {-0.442863, 0.238856, -0.864188},
|
|
{-0.295242, 0.000000, -0.955423}, {-0.162460, 0.262866, -0.951056},
|
|
{0.000000, 0.000000, -1.000000}, {0.295242, 0.000000, -0.955423},
|
|
{0.162460, 0.262866, -0.951056}, {-0.442863, -0.238856, -0.864188},
|
|
{-0.309017, -0.500000, -0.809017}, {-0.162460, -0.262866, -0.951056},
|
|
{0.000000, -0.850651, -0.525731}, {-0.147621, -0.716567, -0.681718},
|
|
{0.147621, -0.716567, -0.681718}, {0.000000, -0.525731, -0.850651},
|
|
{0.309017, -0.500000, -0.809017}, {0.442863, -0.238856, -0.864188},
|
|
{0.162460, -0.262866, -0.951056}, {0.238856, -0.864188, -0.442863},
|
|
{0.500000, -0.809017, -0.309017}, {0.425325, -0.688191, -0.587785},
|
|
{0.716567, -0.681718, -0.147621}, {0.688191, -0.587785, -0.425325},
|
|
{0.587785, -0.425325, -0.688191}, {0.000000, -0.955423, -0.295242},
|
|
{0.000000, -1.000000, 0.000000}, {0.262866, -0.951056, -0.162460},
|
|
{0.000000, -0.850651, 0.525731}, {0.000000, -0.955423, 0.295242},
|
|
{0.238856, -0.864188, 0.442863}, {0.262866, -0.951056, 0.162460},
|
|
{0.500000, -0.809017, 0.309017}, {0.716567, -0.681718, 0.147621},
|
|
{0.525731, -0.850651, 0.000000}, {-0.238856, -0.864188, -0.442863},
|
|
{-0.500000, -0.809017, -0.309017}, {-0.262866, -0.951056, -0.162460},
|
|
{-0.850651, -0.525731, 0.000000}, {-0.716567, -0.681718, -0.147621},
|
|
{-0.716567, -0.681718, 0.147621}, {-0.525731, -0.850651, 0.000000},
|
|
{-0.500000, -0.809017, 0.309017}, {-0.238856, -0.864188, 0.442863},
|
|
{-0.262866, -0.951056, 0.162460}, {-0.864188, -0.442863, 0.238856},
|
|
{-0.809017, -0.309017, 0.500000}, {-0.688191, -0.587785, 0.425325},
|
|
{-0.681718, -0.147621, 0.716567}, {-0.442863, -0.238856, 0.864188},
|
|
{-0.587785, -0.425325, 0.688191}, {-0.309017, -0.500000, 0.809017},
|
|
{-0.147621, -0.716567, 0.681718}, {-0.425325, -0.688191, 0.587785},
|
|
{-0.162460, -0.262866, 0.951056}, {0.442863, -0.238856, 0.864188},
|
|
{0.162460, -0.262866, 0.951056}, {0.309017, -0.500000, 0.809017},
|
|
{0.147621, -0.716567, 0.681718}, {0.000000, -0.525731, 0.850651},
|
|
{0.425325, -0.688191, 0.587785}, {0.587785, -0.425325, 0.688191},
|
|
{0.688191, -0.587785, 0.425325}, {-0.955423, 0.295242, 0.000000},
|
|
{-0.951056, 0.162460, 0.262866}, {-1.000000, 0.000000, 0.000000},
|
|
{-0.850651, 0.000000, 0.525731}, {-0.955423, -0.295242, 0.000000},
|
|
{-0.951056, -0.162460, 0.262866}, {-0.864188, 0.442863, -0.238856},
|
|
{-0.951056, 0.162460, -0.262866}, {-0.809017, 0.309017, -0.500000},
|
|
{-0.864188, -0.442863, -0.238856}, {-0.951056, -0.162460, -0.262866},
|
|
{-0.809017, -0.309017, -0.500000}, {-0.681718, 0.147621, -0.716567},
|
|
{-0.681718, -0.147621, -0.716567}, {-0.850651, 0.000000, -0.525731},
|
|
{-0.688191, 0.587785, -0.425325}, {-0.587785, 0.425325, -0.688191},
|
|
{-0.425325, 0.688191, -0.587785}, {-0.425325, -0.688191, -0.587785},
|
|
{-0.587785, -0.425325, -0.688191}, {-0.688191, -0.587785, -0.425325}
|
|
};
|
|
#pragma warning(default : 4305) // truncation from const double to float
|
|
|
|
//==============================================================
|
|
|
|
|
|
//=======================================================
|
|
|
|
/*
|
|
erandom
|
|
|
|
This function produces a random number with a exponential
|
|
distribution and the specified mean value.
|
|
*/
|
|
float erandom( float mean ) {
|
|
float r;
|
|
|
|
do {
|
|
r = random();
|
|
} while ( r == 0.0 );
|
|
|
|
return -mean * log( r );
|
|
}
|
|
|
|
signed char ClampChar( int i ) {
|
|
if ( i < -128 ) {
|
|
return -128;
|
|
}
|
|
if ( i > 127 ) {
|
|
return 127;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
signed short ClampShort( int i ) {
|
|
if ( i < (short)0x8000 ) {
|
|
return (short)0x8000;
|
|
}
|
|
if ( i > 0x7fff ) {
|
|
return 0x7fff;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
|
|
// this isn't a real cheap function to call!
|
|
int DirToByte( vec3_t dir ) {
|
|
int i, best;
|
|
float d, bestd;
|
|
|
|
if ( !dir ) {
|
|
return 0;
|
|
}
|
|
|
|
bestd = 0;
|
|
best = 0;
|
|
for (i=0 ; i<NUMVERTEXNORMALS ; i++)
|
|
{
|
|
d = DotProduct (dir, bytedirs[i]);
|
|
if (d > bestd)
|
|
{
|
|
bestd = d;
|
|
best = i;
|
|
}
|
|
}
|
|
|
|
return best;
|
|
}
|
|
|
|
void ByteToDir( int b, vec3_t dir ) {
|
|
if ( b < 0 || b >= NUMVERTEXNORMALS ) {
|
|
VectorCopy( vec3_origin, dir );
|
|
return;
|
|
}
|
|
VectorCopy (bytedirs[b], dir);
|
|
}
|
|
|
|
|
|
unsigned ColorBytes3 (float r, float g, float b) {
|
|
unsigned i;
|
|
|
|
( (byte *)&i )[0] = r * 255;
|
|
( (byte *)&i )[1] = g * 255;
|
|
( (byte *)&i )[2] = b * 255;
|
|
|
|
return i;
|
|
}
|
|
|
|
unsigned ColorBytes4 (float r, float g, float b, float a) {
|
|
unsigned i;
|
|
|
|
( (byte *)&i )[0] = r * 255;
|
|
( (byte *)&i )[1] = g * 255;
|
|
( (byte *)&i )[2] = b * 255;
|
|
( (byte *)&i )[3] = a * 255;
|
|
|
|
return i;
|
|
}
|
|
|
|
float NormalizeColor( const vec3_t in, vec3_t out ) {
|
|
float max;
|
|
|
|
max = in[0];
|
|
if ( in[1] > max ) {
|
|
max = in[1];
|
|
}
|
|
if ( in[2] > max ) {
|
|
max = in[2];
|
|
}
|
|
|
|
if ( !max ) {
|
|
VectorClear( out );
|
|
} else {
|
|
out[0] = in[0] / max;
|
|
out[1] = in[1] / max;
|
|
out[2] = in[2] / max;
|
|
}
|
|
return max;
|
|
}
|
|
|
|
void VectorAdvance( const vec3_t veca, const float scale, const vec3_t vecb, vec3_t vecc)
|
|
{
|
|
vecc[0] = veca[0] + (scale * (vecb[0] - veca[0]));
|
|
vecc[1] = veca[1] + (scale * (vecb[1] - veca[1]));
|
|
vecc[2] = veca[2] + (scale * (vecb[2] - veca[2]));
|
|
}
|
|
|
|
//============================================================================
|
|
|
|
/*
|
|
=====================
|
|
PlaneFromPoints
|
|
|
|
Returns false if the triangle is degenrate.
|
|
The normal will point out of the clock for clockwise ordered points
|
|
=====================
|
|
*/
|
|
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
|
|
vec3_t d1, d2;
|
|
|
|
VectorSubtract( b, a, d1 );
|
|
VectorSubtract( c, a, d2 );
|
|
CrossProduct( d2, d1, plane );
|
|
if ( VectorNormalize( plane ) == 0 ) {
|
|
return qfalse;
|
|
}
|
|
|
|
plane[3] = DotProduct( a, plane );
|
|
return qtrue;
|
|
}
|
|
|
|
#ifdef _XBOX
|
|
qboolean PlaneFromPoints( vec4_t plane, const short a[3], const short b[3], const short c[3] ) {
|
|
vec3_t d1, d2;
|
|
|
|
VectorSubtract( b, a, d1 );
|
|
VectorSubtract( c, a, d2 );
|
|
CrossProduct( d2, d1, plane );
|
|
if ( VectorNormalize( plane ) == 0 ) {
|
|
return qfalse;
|
|
}
|
|
|
|
plane[3] = DotProduct( a, plane );
|
|
return qtrue;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
===============
|
|
RotatePointAroundVector
|
|
|
|
This is not implemented very well...
|
|
===============
|
|
*/
|
|
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
|
|
float degrees ) {
|
|
float m[3][3];
|
|
float im[3][3];
|
|
float zrot[3][3];
|
|
float tmpmat[3][3];
|
|
float rot[3][3];
|
|
int i;
|
|
vec3_t vr, vup, vf;
|
|
float rad;
|
|
|
|
vf[0] = dir[0];
|
|
vf[1] = dir[1];
|
|
vf[2] = dir[2];
|
|
|
|
PerpendicularVector( vr, dir );
|
|
CrossProduct( vr, vf, vup );
|
|
|
|
m[0][0] = vr[0];
|
|
m[1][0] = vr[1];
|
|
m[2][0] = vr[2];
|
|
|
|
m[0][1] = vup[0];
|
|
m[1][1] = vup[1];
|
|
m[2][1] = vup[2];
|
|
|
|
m[0][2] = vf[0];
|
|
m[1][2] = vf[1];
|
|
m[2][2] = vf[2];
|
|
|
|
memcpy( im, m, sizeof( im ) );
|
|
|
|
im[0][1] = m[1][0];
|
|
im[0][2] = m[2][0];
|
|
im[1][0] = m[0][1];
|
|
im[1][2] = m[2][1];
|
|
im[2][0] = m[0][2];
|
|
im[2][1] = m[1][2];
|
|
|
|
memset( zrot, 0, sizeof( zrot ) );
|
|
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
|
|
|
|
rad = DEG2RAD( degrees );
|
|
zrot[0][0] = cos( rad );
|
|
zrot[0][1] = sin( rad );
|
|
zrot[1][0] = -sin( rad );
|
|
zrot[1][1] = cos( rad );
|
|
|
|
MatrixMultiply( m, zrot, tmpmat );
|
|
MatrixMultiply( tmpmat, im, rot );
|
|
|
|
for ( i = 0; i < 3; i++ ) {
|
|
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
|
|
}
|
|
}
|
|
|
|
/*
|
|
===============
|
|
RotateAroundDirection
|
|
===============
|
|
*/
|
|
void RotateAroundDirection( vec3_t axis[3], float yaw ) {
|
|
|
|
// create an arbitrary axis[1]
|
|
PerpendicularVector( axis[1], axis[0] );
|
|
|
|
// rotate it around axis[0] by yaw
|
|
if ( yaw ) {
|
|
vec3_t temp;
|
|
|
|
VectorCopy( axis[1], temp );
|
|
RotatePointAroundVector( axis[1], axis[0], temp, yaw );
|
|
}
|
|
|
|
// cross to get axis[2]
|
|
CrossProduct( axis[0], axis[1], axis[2] );
|
|
}
|
|
|
|
|
|
|
|
void vectoangles( const vec3_t value1, vec3_t angles ) {
|
|
float forward;
|
|
float yaw, pitch;
|
|
|
|
if ( value1[1] == 0 && value1[0] == 0 ) {
|
|
yaw = 0;
|
|
if ( value1[2] > 0 ) {
|
|
pitch = 90;
|
|
}
|
|
else {
|
|
pitch = 270;
|
|
}
|
|
}
|
|
else {
|
|
if ( value1[0] ) {
|
|
yaw = ( atan2 ( value1[1], value1[0] ) * 180 / M_PI );
|
|
}
|
|
else if ( value1[1] > 0 ) {
|
|
yaw = 90;
|
|
}
|
|
else {
|
|
yaw = 270;
|
|
}
|
|
if ( yaw < 0 ) {
|
|
yaw += 360;
|
|
}
|
|
|
|
forward = sqrt ( value1[0]*value1[0] + value1[1]*value1[1] );
|
|
pitch = ( atan2(value1[2], forward) * 180 / M_PI );
|
|
if ( pitch < 0 ) {
|
|
pitch += 360;
|
|
}
|
|
}
|
|
|
|
angles[PITCH] = -pitch;
|
|
angles[YAW] = yaw;
|
|
angles[ROLL] = 0;
|
|
}
|
|
|
|
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
|
|
{
|
|
float d;
|
|
vec3_t n;
|
|
float inv_denom;
|
|
|
|
inv_denom = 1.0F / DotProduct( normal, normal );
|
|
|
|
d = DotProduct( normal, p ) * inv_denom;
|
|
|
|
n[0] = normal[0] * inv_denom;
|
|
n[1] = normal[1] * inv_denom;
|
|
n[2] = normal[2] * inv_denom;
|
|
|
|
dst[0] = p[0] - d * n[0];
|
|
dst[1] = p[1] - d * n[1];
|
|
dst[2] = p[2] - d * n[2];
|
|
}
|
|
|
|
/*
|
|
================
|
|
MakeNormalVectors
|
|
|
|
Given a normalized forward vector, create two
|
|
other perpendicular vectors
|
|
================
|
|
*/
|
|
void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) {
|
|
float d;
|
|
|
|
// this rotate and negate guarantees a vector
|
|
// not colinear with the original
|
|
right[1] = -forward[0];
|
|
right[2] = forward[1];
|
|
right[0] = forward[2];
|
|
|
|
d = DotProduct (right, forward);
|
|
VectorMA (right, -d, forward, right);
|
|
VectorNormalize (right);
|
|
CrossProduct (right, forward, up);
|
|
}
|
|
|
|
//============================================================================
|
|
|
|
/*
|
|
** float q_rsqrt( float number )
|
|
*/
|
|
float Q_rsqrt( float number )
|
|
{
|
|
long i;
|
|
float x2, y;
|
|
const float threehalfs = 1.5F;
|
|
|
|
x2 = number * 0.5F;
|
|
y = number;
|
|
i = * ( long * ) &y; // evil floating point bit level hacking
|
|
i = 0x5f3759df - ( i >> 1 ); // what the fuck?
|
|
y = * ( float * ) &i;
|
|
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
|
|
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
|
|
|
|
return y;
|
|
}
|
|
|
|
float Q_fabs( float f ) {
|
|
int tmp = * ( int * ) &f;
|
|
tmp &= 0x7FFFFFFF;
|
|
return * ( float * ) &tmp;
|
|
}
|
|
|
|
//============================================================
|
|
|
|
|
|
//float AngleMod(float a) {
|
|
// a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
|
|
// return a;
|
|
//}
|
|
|
|
|
|
|
|
//============================================================
|
|
|
|
|
|
/*
|
|
=================
|
|
SetPlaneSignbits
|
|
=================
|
|
*/
|
|
void SetPlaneSignbits (cplane_t *out) {
|
|
int bits, j;
|
|
|
|
// for fast box on planeside test
|
|
bits = 0;
|
|
for (j=0 ; j<3 ; j++) {
|
|
if (out->normal[j] < 0) {
|
|
bits |= 1<<j;
|
|
}
|
|
}
|
|
out->signbits = bits;
|
|
}
|
|
|
|
|
|
/*
|
|
==================
|
|
BoxOnPlaneSide
|
|
|
|
Returns 1, 2, or 1 + 2
|
|
|
|
// this is the slow, general version
|
|
int BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
|
|
{
|
|
int i;
|
|
float dist1, dist2;
|
|
int sides;
|
|
vec3_t corners[2];
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
{
|
|
if (p->normal[i] < 0)
|
|
{
|
|
corners[0][i] = emins[i];
|
|
corners[1][i] = emaxs[i];
|
|
}
|
|
else
|
|
{
|
|
corners[1][i] = emins[i];
|
|
corners[0][i] = emaxs[i];
|
|
}
|
|
}
|
|
dist1 = DotProduct (p->normal, corners[0]) - p->dist;
|
|
dist2 = DotProduct (p->normal, corners[1]) - p->dist;
|
|
sides = 0;
|
|
if (dist1 >= 0)
|
|
sides = 1;
|
|
if (dist2 < 0)
|
|
sides |= 2;
|
|
|
|
return sides;
|
|
}
|
|
|
|
==================
|
|
*/
|
|
|
|
#ifndef _MSC_VER
|
|
|
|
int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
|
|
{
|
|
float dist1, dist2;
|
|
int sides;
|
|
|
|
// fast axial cases
|
|
if (p->type < 3)
|
|
{
|
|
if (p->dist <= emins[p->type])
|
|
return 1;
|
|
if (p->dist >= emaxs[p->type])
|
|
return 2;
|
|
return 3;
|
|
}
|
|
|
|
// general case
|
|
switch (p->signbits)
|
|
{
|
|
case 0:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 1:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 2:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 3:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 4:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 5:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 6:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 7:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
default:
|
|
dist1 = dist2 = 0; // shut up compiler
|
|
break;
|
|
}
|
|
|
|
sides = 0;
|
|
if (dist1 >= p->dist)
|
|
sides = 1;
|
|
if (dist2 < p->dist)
|
|
sides |= 2;
|
|
|
|
return sides;
|
|
}
|
|
#else
|
|
#pragma warning( disable: 4035 )
|
|
|
|
__declspec( naked ) int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
|
|
{
|
|
static int bops_initialized;
|
|
static int Ljmptab[8];
|
|
|
|
__asm {
|
|
|
|
push ebx
|
|
|
|
cmp bops_initialized, 1
|
|
je initialized
|
|
mov bops_initialized, 1
|
|
|
|
mov Ljmptab[0*4], offset Lcase0
|
|
mov Ljmptab[1*4], offset Lcase1
|
|
mov Ljmptab[2*4], offset Lcase2
|
|
mov Ljmptab[3*4], offset Lcase3
|
|
mov Ljmptab[4*4], offset Lcase4
|
|
mov Ljmptab[5*4], offset Lcase5
|
|
mov Ljmptab[6*4], offset Lcase6
|
|
mov Ljmptab[7*4], offset Lcase7
|
|
|
|
initialized:
|
|
|
|
mov edx,dword ptr[4+12+esp]
|
|
mov ecx,dword ptr[4+4+esp]
|
|
xor eax,eax
|
|
mov ebx,dword ptr[4+8+esp]
|
|
mov al,byte ptr[17+edx]
|
|
cmp al,8
|
|
jge Lerror
|
|
fld dword ptr[0+edx]
|
|
fld st(0)
|
|
jmp dword ptr[Ljmptab+eax*4]
|
|
Lcase0:
|
|
fmul dword ptr[ebx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ebx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase1:
|
|
fmul dword ptr[ecx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ebx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase2:
|
|
fmul dword ptr[ebx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ecx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase3:
|
|
fmul dword ptr[ecx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ecx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase4:
|
|
fmul dword ptr[ebx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ebx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase5:
|
|
fmul dword ptr[ecx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ebx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase6:
|
|
fmul dword ptr[ebx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ecx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase7:
|
|
fmul dword ptr[ecx]
|
|
fld dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[4+ecx]
|
|
fld dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul dword ptr[4+ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul dword ptr[8+ecx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul dword ptr[8+ebx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
LSetSides:
|
|
faddp st(2),st(0)
|
|
fcomp dword ptr[12+edx]
|
|
xor ecx,ecx
|
|
fnstsw ax
|
|
fcomp dword ptr[12+edx]
|
|
and ah,1
|
|
xor ah,1
|
|
add cl,ah
|
|
fnstsw ax
|
|
and ah,1
|
|
add ah,ah
|
|
add cl,ah
|
|
pop ebx
|
|
mov eax,ecx
|
|
ret
|
|
Lerror:
|
|
int 3
|
|
}
|
|
}
|
|
#pragma warning( default: 4035 )
|
|
|
|
#endif // !def _MSC_VER
|
|
|
|
/*
|
|
=================
|
|
RadiusFromBounds
|
|
=================
|
|
*/
|
|
float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) {
|
|
int i;
|
|
vec3_t corner;
|
|
float a, b;
|
|
|
|
for (i=0 ; i<3 ; i++) {
|
|
a = Q_fabs( mins[i] );
|
|
b = Q_fabs( maxs[i] );
|
|
corner[i] = a > b ? a : b;
|
|
}
|
|
|
|
return VectorLength (corner);
|
|
}
|
|
|
|
|
|
void ClearBounds( vec3_t mins, vec3_t maxs ) {
|
|
mins[0] = mins[1] = mins[2] = WORLD_SIZE; //99999; // I used WORLD_SIZE instead of MAX_WORLD_COORD...
|
|
maxs[0] = maxs[1] = maxs[2] = -WORLD_SIZE; //-99999; // ... so it would definately be beyond furthese legal.
|
|
}
|
|
|
|
|
|
vec_t DistanceHorizontal( const vec3_t p1, const vec3_t p2 ) {
|
|
vec3_t v;
|
|
|
|
VectorSubtract( p2, p1, v );
|
|
return sqrt( v[0]*v[0] + v[1]*v[1] ); //Leave off the z component
|
|
}
|
|
|
|
vec_t DistanceHorizontalSquared( const vec3_t p1, const vec3_t p2 ) {
|
|
vec3_t v;
|
|
|
|
VectorSubtract( p2, p1, v );
|
|
return v[0]*v[0] + v[1]*v[1]; //Leave off the z component
|
|
}
|
|
|
|
int Q_log2( int val ) {
|
|
int answer;
|
|
|
|
answer = 0;
|
|
while ( ( val>>=1 ) != 0 ) {
|
|
answer++;
|
|
}
|
|
return answer;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
PlaneTypeForNormal
|
|
=================
|
|
*/
|
|
int PlaneTypeForNormal (vec3_t normal) {
|
|
if ( normal[0] == 1.0 )
|
|
return PLANE_X;
|
|
if ( normal[1] == 1.0 )
|
|
return PLANE_Y;
|
|
if ( normal[2] == 1.0 )
|
|
return PLANE_Z;
|
|
|
|
return PLANE_NON_AXIAL;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
================
|
|
MatrixMultiply
|
|
================
|
|
*/
|
|
void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
}
|
|
|
|
|
|
void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) {
|
|
float angle;
|
|
static float sr, sp, sy, cr, cp, cy;
|
|
// static to help MS compiler fp bugs
|
|
|
|
angle = angles[YAW] * (M_PI*2 / 360.0);
|
|
sy = sin(angle);
|
|
cy = cos(angle);
|
|
angle = angles[PITCH] * (M_PI*2 / 360.0);
|
|
sp = sin(angle);
|
|
cp = cos(angle);
|
|
|
|
if (forward)
|
|
{
|
|
forward[0] = cp*cy;
|
|
forward[1] = cp*sy;
|
|
forward[2] = -sp;
|
|
}
|
|
if (right || up)
|
|
{
|
|
angle = angles[ROLL] * (M_PI*2 / 360.0);
|
|
sr = sin(angle);
|
|
cr = cos(angle);
|
|
if (right)
|
|
{
|
|
right[0] = (-sr*sp*cy + cr*sy);
|
|
right[1] = (-sr*sp*sy + -cr*cy);
|
|
right[2] = -sr*cp;
|
|
}
|
|
if (up)
|
|
{
|
|
up[0] = (cr*sp*cy + sr*sy);
|
|
up[1] = (cr*sp*sy + -sr*cy);
|
|
up[2] = cr*cp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** assumes "src" is normalized
|
|
*/
|
|
void PerpendicularVector( vec3_t dst, const vec3_t src )
|
|
{
|
|
int pos;
|
|
int i;
|
|
float minelem = 1.0F;
|
|
vec3_t tempvec;
|
|
|
|
/*
|
|
** find the smallest magnitude axially aligned vector
|
|
** bias towards using z instead of x or y
|
|
*/
|
|
for ( pos = 0, i = 2; i >= 0; i-- )
|
|
{
|
|
if ( Q_fabs( src[i] ) < minelem )
|
|
{
|
|
pos = i;
|
|
minelem = Q_fabs( src[i] );
|
|
}
|
|
}
|
|
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
|
|
tempvec[pos] = 1.0F;
|
|
|
|
/*
|
|
** project the point onto the plane defined by src
|
|
*/
|
|
ProjectPointOnPlane( dst, tempvec, src );
|
|
|
|
/*
|
|
** normalize the result
|
|
*/
|
|
VectorNormalize( dst );
|
|
}
|
|
|
|
/*
|
|
-------------------------
|
|
DotProductNormalize
|
|
-------------------------
|
|
*/
|
|
|
|
float DotProductNormalize( const vec3_t inVec1, const vec3_t inVec2 )
|
|
{
|
|
vec3_t v1, v2;
|
|
|
|
VectorNormalize2( inVec1, v1 );
|
|
VectorNormalize2( inVec2, v2 );
|
|
|
|
return DotProduct(v1, v2);
|
|
}
|
|
|
|
/*
|
|
-------------------------
|
|
G_FindClosestPointOnLineSegment
|
|
-------------------------
|
|
*/
|
|
|
|
qboolean G_FindClosestPointOnLineSegment( const vec3_t start, const vec3_t end, const vec3_t from, vec3_t result )
|
|
{
|
|
vec3_t vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From;
|
|
float distEnd2From, distEnd2Result, theta, cos_theta;
|
|
|
|
//Find the perpendicular vector to vec from start to end
|
|
VectorSubtract( from, start, vecStart2From);
|
|
VectorSubtract( end, start, vecStart2End);
|
|
|
|
float dot = DotProductNormalize( vecStart2From, vecStart2End );
|
|
|
|
if ( dot <= 0 )
|
|
{
|
|
//The perpendicular would be beyond or through the start point
|
|
VectorCopy( start, result );
|
|
return qfalse;
|
|
}
|
|
|
|
if ( dot == 1 )
|
|
{
|
|
//parallel, closer of 2 points will be the target
|
|
if( (VectorLengthSquared( vecStart2From )) < (VectorLengthSquared( vecStart2End )) )
|
|
{
|
|
VectorCopy( from, result );
|
|
}
|
|
else
|
|
{
|
|
VectorCopy( end, result );
|
|
}
|
|
return qfalse;
|
|
}
|
|
|
|
//Try other end
|
|
VectorSubtract( from, end, vecEnd2From);
|
|
VectorSubtract( start, end, vecEnd2Start);
|
|
|
|
dot = DotProductNormalize( vecEnd2From, vecEnd2Start );
|
|
|
|
if ( dot <= 0 )
|
|
{//The perpendicular would be beyond or through the start point
|
|
VectorCopy( end, result );
|
|
return qfalse;
|
|
}
|
|
|
|
if ( dot == 1 )
|
|
{//parallel, closer of 2 points will be the target
|
|
if( (VectorLengthSquared( vecEnd2From )) < (VectorLengthSquared( vecEnd2Start )))
|
|
{
|
|
VectorCopy( from, result );
|
|
}
|
|
else
|
|
{
|
|
VectorCopy( end, result );
|
|
}
|
|
return qfalse;
|
|
}
|
|
|
|
// /|
|
|
// c / |
|
|
// / |a
|
|
// theta /)__|
|
|
// b
|
|
//cos(theta) = b / c
|
|
//solve for b
|
|
//b = cos(theta) * c
|
|
|
|
//angle between vecs end2from and end2start, should be between 0 and 90
|
|
theta = 90 * (1 - dot);//theta
|
|
|
|
//Get length of side from End2Result using sine of theta
|
|
distEnd2From = VectorLength( vecEnd2From );//c
|
|
cos_theta = cos(DEG2RAD(theta));//cos(theta)
|
|
distEnd2Result = cos_theta * distEnd2From;//b
|
|
|
|
//Extrapolate to find result
|
|
VectorNormalize( vecEnd2Start );
|
|
VectorMA( end, distEnd2Result, vecEnd2Start, result );
|
|
|
|
//perpendicular intersection is between the 2 endpoints
|
|
return qtrue;
|
|
}
|
|
|
|
float G_PointDistFromLineSegment( const vec3_t start, const vec3_t end, const vec3_t from )
|
|
{
|
|
vec3_t vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From, intersection;
|
|
float distEnd2From, distStart2From, distEnd2Result, theta, cos_theta;
|
|
|
|
//Find the perpendicular vector to vec from start to end
|
|
VectorSubtract( from, start, vecStart2From);
|
|
VectorSubtract( end, start, vecStart2End);
|
|
VectorSubtract( from, end, vecEnd2From);
|
|
VectorSubtract( start, end, vecEnd2Start);
|
|
|
|
float dot = DotProductNormalize( vecStart2From, vecStart2End );
|
|
|
|
distStart2From = Distance( start, from );
|
|
distEnd2From = Distance( end, from );
|
|
|
|
if ( dot <= 0 )
|
|
{
|
|
//The perpendicular would be beyond or through the start point
|
|
return distStart2From;
|
|
}
|
|
|
|
if ( dot == 1 )
|
|
{
|
|
//parallel, closer of 2 points will be the target
|
|
return ((distStart2From<distEnd2From)?distStart2From:distEnd2From);
|
|
}
|
|
|
|
//Try other end
|
|
|
|
dot = DotProductNormalize( vecEnd2From, vecEnd2Start );
|
|
|
|
if ( dot <= 0 )
|
|
{//The perpendicular would be beyond or through the end point
|
|
return distEnd2From;
|
|
}
|
|
|
|
if ( dot == 1 )
|
|
{//parallel, closer of 2 points will be the target
|
|
return ((distStart2From<distEnd2From)?distStart2From:distEnd2From);
|
|
}
|
|
|
|
// /|
|
|
// c / |
|
|
// / |a
|
|
// theta /)__|
|
|
// b
|
|
//cos(theta) = b / c
|
|
//solve for b
|
|
//b = cos(theta) * c
|
|
|
|
//angle between vecs end2from and end2start, should be between 0 and 90
|
|
theta = 90 * (1 - dot);//theta
|
|
|
|
//Get length of side from End2Result using sine of theta
|
|
cos_theta = cos(DEG2RAD(theta));//cos(theta)
|
|
distEnd2Result = cos_theta * distEnd2From;//b
|
|
|
|
//Extrapolate to find result
|
|
VectorNormalize( vecEnd2Start );
|
|
VectorMA( end, distEnd2Result, vecEnd2Start, intersection );
|
|
|
|
//perpendicular intersection is between the 2 endpoints, return dist to it from from
|
|
return Distance( intersection, from );
|
|
}
|