mirror of
https://github.com/ioquake/jedi-academy.git
synced 2024-11-25 05:31:50 +00:00
832b4342a8
CVE-2006-2236 Buffer overflow in the Quake 3 Engine, as used by (1) ET 2.60, (2) Return to Castle Wolfenstein 1.41, and (3) Quake III Arena 1.32b allows remote attackers to execute arbitrary commands via a long remapShader command. from Thilo Schulz in ioquake3 svn 765 git d21411452ef32b86c0b79ddcaf49221701dcdb07 Add string length checking to function COM_StripExtension. This fixes the R_RemapShader buffer overflow exploit that can be found here: http://milw0rm.com/exploits/1750
3360 lines
83 KiB
C++
3360 lines
83 KiB
C++
//Anything above this #include will be ignored by the compiler
|
|
#include "../qcommon/exe_headers.h"
|
|
|
|
// tr_image.c
|
|
#include "tr_local.h"
|
|
#ifndef DEDICATED
|
|
#include "glext.h"
|
|
#endif
|
|
|
|
#include "../qcommon/platform.h"
|
|
|
|
#pragma warning (push, 3) //go back down to 3 for the stl include
|
|
#include <map>
|
|
#pragma warning (pop)
|
|
using namespace std;
|
|
|
|
|
|
/*
|
|
* Include file for users of JPEG library.
|
|
* You will need to have included system headers that define at least
|
|
* the typedefs FILE and size_t before you can include jpeglib.h.
|
|
* (stdio.h is sufficient on ANSI-conforming systems.)
|
|
* You may also wish to include "jerror.h".
|
|
*/
|
|
|
|
|
|
#define JPEG_INTERNALS
|
|
#include "../jpeg-6/jpeglib.h"
|
|
#include "../png/png.h"
|
|
|
|
#ifndef DEDICATED
|
|
|
|
static void LoadTGA( const char *name, byte **pic, int *width, int *height );
|
|
static void LoadJPG( const char *name, byte **pic, int *width, int *height );
|
|
|
|
|
|
static byte s_intensitytable[256];
|
|
static unsigned char s_gammatable[256];
|
|
|
|
int gl_filter_min = GL_LINEAR_MIPMAP_NEAREST;
|
|
int gl_filter_max = GL_LINEAR;
|
|
|
|
//#define FILE_HASH_SIZE 1024 // actually the shader code still needs this (from another module, great),
|
|
//static image_t* hashTable[FILE_HASH_SIZE];
|
|
|
|
/*
|
|
** R_GammaCorrect
|
|
*/
|
|
void R_GammaCorrect( byte *buffer, int bufSize ) {
|
|
int i;
|
|
|
|
for ( i = 0; i < bufSize; i++ ) {
|
|
buffer[i] = s_gammatable[buffer[i]];
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
char *name;
|
|
int minimize, maximize;
|
|
} textureMode_t;
|
|
|
|
textureMode_t modes[] = {
|
|
{"GL_NEAREST", GL_NEAREST, GL_NEAREST},
|
|
{"GL_LINEAR", GL_LINEAR, GL_LINEAR},
|
|
{"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST},
|
|
{"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR},
|
|
{"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST},
|
|
{"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR}
|
|
};
|
|
|
|
|
|
// makeup a nice clean, consistant name to query for and file under, for map<> usage...
|
|
//
|
|
static char *GenerateImageMappingName( const char *name )
|
|
{
|
|
static char sName[MAX_QPATH];
|
|
int i=0;
|
|
char letter;
|
|
|
|
while (name[i] != '\0' && i<MAX_QPATH-1)
|
|
{
|
|
letter = tolower((unsigned char)name[i]);
|
|
if (letter =='.') break; // don't include extension
|
|
if (letter =='\\') letter = '/'; // damn path names
|
|
sName[i++] = letter;
|
|
}
|
|
sName[i]=0;
|
|
|
|
return &sName[0];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
===============
|
|
GL_TextureMode
|
|
===============
|
|
*/
|
|
void GL_TextureMode( const char *string ) {
|
|
int i;
|
|
image_t *glt;
|
|
|
|
for ( i=0 ; i< 6 ; i++ ) {
|
|
if ( !Q_stricmp( modes[i].name, string ) ) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ( i == 6 ) {
|
|
Com_Printf ( "bad filter name\n");
|
|
for ( i=0 ; i< 6 ; i++ ) {
|
|
Com_Printf ("%s\n",modes[i].name);
|
|
}
|
|
return;
|
|
}
|
|
|
|
gl_filter_min = modes[i].minimize;
|
|
gl_filter_max = modes[i].maximize;
|
|
|
|
// If the level they requested is less than possible, set the max possible...
|
|
if ( r_ext_texture_filter_anisotropic->value > glConfig.maxTextureFilterAnisotropy )
|
|
{
|
|
Cvar_Set( "r_ext_texture_filter_anisotropic", va("%f",glConfig.maxTextureFilterAnisotropy) );
|
|
}
|
|
// change all the existing mipmap texture objects
|
|
R_Images_StartIteration();
|
|
while ( (glt = R_Images_GetNextIteration()) != NULL)
|
|
{
|
|
if ( glt->mipmap ) {
|
|
GL_Bind (glt);
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
|
|
|
|
if(glConfig.maxTextureFilterAnisotropy>0) {
|
|
if(r_ext_texture_filter_anisotropic->integer>1) {
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, r_ext_texture_filter_anisotropic->value);
|
|
} else {
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.0f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static float R_BytesPerTex (int format)
|
|
{
|
|
switch ( format ) {
|
|
case 1:
|
|
//"I "
|
|
return 1;
|
|
break;
|
|
case 2:
|
|
//"IA "
|
|
return 2;
|
|
break;
|
|
case 3:
|
|
//"RGB "
|
|
return glConfig.colorBits/8.0f;
|
|
break;
|
|
case 4:
|
|
//"RGBA "
|
|
return glConfig.colorBits/8.0f;
|
|
break;
|
|
|
|
case GL_RGBA4:
|
|
//"RGBA4"
|
|
return 2;
|
|
break;
|
|
case GL_RGB5:
|
|
//"RGB5 "
|
|
return 2;
|
|
break;
|
|
|
|
case GL_RGBA8:
|
|
//"RGBA8"
|
|
return 4;
|
|
break;
|
|
case GL_RGB8:
|
|
//"RGB8"
|
|
return 4;
|
|
break;
|
|
|
|
case GL_RGB4_S3TC:
|
|
//"S3TC "
|
|
return 0.33333f;
|
|
break;
|
|
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
|
|
//"DXT1 "
|
|
return 0.33333f;
|
|
break;
|
|
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
|
|
//"DXT5 "
|
|
return 1;
|
|
break;
|
|
default:
|
|
//"???? "
|
|
return 4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_SumOfUsedImages
|
|
===============
|
|
*/
|
|
float R_SumOfUsedImages( qboolean bUseFormat )
|
|
{
|
|
int total = 0;
|
|
image_t *pImage;
|
|
|
|
R_Images_StartIteration();
|
|
while ( (pImage = R_Images_GetNextIteration()) != NULL)
|
|
{
|
|
if ( pImage->frameUsed == tr.frameCount- 1 ) {//it has already been advanced for the next frame, so...
|
|
if (bUseFormat)
|
|
{
|
|
float bytePerTex = R_BytesPerTex (pImage->internalFormat);
|
|
total += bytePerTex * (pImage->width * pImage->height);
|
|
}
|
|
else
|
|
{
|
|
total += pImage->width * pImage->height;
|
|
}
|
|
}
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_ImageList_f
|
|
===============
|
|
*/
|
|
void R_ImageList_f( void ) {
|
|
int i=0;
|
|
image_t *image;
|
|
int texels=0;
|
|
float texBytes = 0.0f;
|
|
const char *yesno[] = {"no ", "yes"};
|
|
|
|
Com_Printf ( "\n -w-- -h-- -mm- -if-- wrap --name-------\n");
|
|
|
|
int iNumImages = R_Images_StartIteration();
|
|
while ( (image = R_Images_GetNextIteration()) != NULL)
|
|
{
|
|
texels += image->width*image->height;
|
|
texBytes += image->width*image->height * R_BytesPerTex (image->internalFormat);
|
|
Com_Printf ( "%4i: %4i %4i %s ",
|
|
i, image->width, image->height, yesno[image->mipmap] );
|
|
switch ( image->internalFormat ) {
|
|
case 1:
|
|
Com_Printf ("I " );
|
|
break;
|
|
case 2:
|
|
Com_Printf ("IA " );
|
|
break;
|
|
case 3:
|
|
Com_Printf ("RGB " );
|
|
break;
|
|
case 4:
|
|
Com_Printf ("RGBA " );
|
|
break;
|
|
case GL_RGBA8:
|
|
Com_Printf ("RGBA8" );
|
|
break;
|
|
case GL_RGB8:
|
|
Com_Printf ("RGB8" );
|
|
break;
|
|
case GL_RGB4_S3TC:
|
|
Com_Printf ("S3TC " );
|
|
break;
|
|
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
|
|
Com_Printf ("DXT1 " );
|
|
break;
|
|
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
|
|
Com_Printf ("DXT5 " );
|
|
break;
|
|
case GL_RGBA4:
|
|
Com_Printf ("RGBA4" );
|
|
break;
|
|
case GL_RGB5:
|
|
Com_Printf ("RGB5 " );
|
|
break;
|
|
default:
|
|
Com_Printf ("???? " );
|
|
}
|
|
|
|
switch ( image->wrapClampMode ) {
|
|
case GL_REPEAT:
|
|
Com_Printf ("rept " );
|
|
break;
|
|
case GL_CLAMP:
|
|
Com_Printf ("clmp " );
|
|
break;
|
|
case GL_CLAMP_TO_EDGE:
|
|
Com_Printf ("clpE " );
|
|
break;
|
|
default:
|
|
Com_Printf ("%4i ", image->wrapClampMode );
|
|
break;
|
|
}
|
|
|
|
Com_Printf ("%s\n", image->imgName );
|
|
i++;
|
|
}
|
|
Com_Printf ( " ---------\n");
|
|
Com_Printf ( " -w-- -h-- -mm- -if- wrap --name-------\n");
|
|
Com_Printf ( " %i total texels (not including mipmaps)\n", texels );
|
|
Com_Printf ( " %.2fMB total texture mem (not including mipmaps)\n", texBytes/1048576.0f );
|
|
Com_Printf ( " %i total images\n\n", iNumImages );
|
|
}
|
|
|
|
//=======================================================================
|
|
|
|
|
|
/*
|
|
================
|
|
R_LightScaleTexture
|
|
|
|
Scale up the pixel values in a texture to increase the
|
|
lighting range
|
|
================
|
|
*/
|
|
void R_LightScaleTexture (unsigned *in, int inwidth, int inheight, qboolean only_gamma )
|
|
{
|
|
if ( only_gamma )
|
|
{
|
|
if ( !glConfig.deviceSupportsGamma )
|
|
{
|
|
int i, c;
|
|
byte *p;
|
|
|
|
p = (byte *)in;
|
|
|
|
c = inwidth*inheight;
|
|
for (i=0 ; i<c ; i++, p+=4)
|
|
{
|
|
p[0] = s_gammatable[p[0]];
|
|
p[1] = s_gammatable[p[1]];
|
|
p[2] = s_gammatable[p[2]];
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int i, c;
|
|
byte *p;
|
|
|
|
p = (byte *)in;
|
|
|
|
c = inwidth*inheight;
|
|
|
|
if ( glConfig.deviceSupportsGamma )
|
|
{
|
|
for (i=0 ; i<c ; i++, p+=4)
|
|
{
|
|
p[0] = s_intensitytable[p[0]];
|
|
p[1] = s_intensitytable[p[1]];
|
|
p[2] = s_intensitytable[p[2]];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i=0 ; i<c ; i++, p+=4)
|
|
{
|
|
p[0] = s_gammatable[s_intensitytable[p[0]]];
|
|
p[1] = s_gammatable[s_intensitytable[p[1]]];
|
|
p[2] = s_gammatable[s_intensitytable[p[2]]];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_MipMap2
|
|
|
|
Operates in place, quartering the size of the texture
|
|
Proper linear filter
|
|
================
|
|
*/
|
|
static void R_MipMap2( unsigned *in, int inWidth, int inHeight ) {
|
|
int i, j, k;
|
|
byte *outpix;
|
|
int inWidthMask, inHeightMask;
|
|
int total;
|
|
int outWidth, outHeight;
|
|
unsigned *temp;
|
|
|
|
outWidth = inWidth >> 1;
|
|
outHeight = inHeight >> 1;
|
|
temp = (unsigned int *)Hunk_AllocateTempMemory( outWidth * outHeight * 4 );
|
|
|
|
inWidthMask = inWidth - 1;
|
|
inHeightMask = inHeight - 1;
|
|
|
|
for ( i = 0 ; i < outHeight ; i++ ) {
|
|
for ( j = 0 ; j < outWidth ; j++ ) {
|
|
outpix = (byte *) ( temp + i * outWidth + j );
|
|
for ( k = 0 ; k < 4 ; k++ ) {
|
|
total =
|
|
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
|
|
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
|
|
|
|
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
|
|
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
|
|
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
|
|
|
|
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
|
|
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
|
|
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
|
|
|
|
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
|
|
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k];
|
|
outpix[k] = total / 36;
|
|
}
|
|
}
|
|
}
|
|
|
|
Com_Memcpy( in, temp, outWidth * outHeight * 4 );
|
|
Hunk_FreeTempMemory( temp );
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_MipMap
|
|
|
|
Operates in place, quartering the size of the texture
|
|
================
|
|
*/
|
|
static void R_MipMap (byte *in, int width, int height) {
|
|
int i, j;
|
|
byte *out;
|
|
int row;
|
|
|
|
if ( !r_simpleMipMaps->integer ) {
|
|
R_MipMap2( (unsigned *)in, width, height );
|
|
return;
|
|
}
|
|
|
|
if ( width == 1 && height == 1 ) {
|
|
return;
|
|
}
|
|
|
|
row = width * 4;
|
|
out = in;
|
|
width >>= 1;
|
|
height >>= 1;
|
|
|
|
if ( width == 0 || height == 0 ) {
|
|
width += height; // get largest
|
|
for (i=0 ; i<width ; i++, out+=4, in+=8 ) {
|
|
out[0] = ( in[0] + in[4] )>>1;
|
|
out[1] = ( in[1] + in[5] )>>1;
|
|
out[2] = ( in[2] + in[6] )>>1;
|
|
out[3] = ( in[3] + in[7] )>>1;
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (i=0 ; i<height ; i++, in+=row) {
|
|
for (j=0 ; j<width ; j++, out+=4, in+=8) {
|
|
out[0] = (in[0] + in[4] + in[row+0] + in[row+4])>>2;
|
|
out[1] = (in[1] + in[5] + in[row+1] + in[row+5])>>2;
|
|
out[2] = (in[2] + in[6] + in[row+2] + in[row+6])>>2;
|
|
out[3] = (in[3] + in[7] + in[row+3] + in[row+7])>>2;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
==================
|
|
R_BlendOverTexture
|
|
|
|
Apply a color blend over a set of pixels
|
|
==================
|
|
*/
|
|
static void R_BlendOverTexture( byte *data, int pixelCount, byte blend[4] ) {
|
|
int i;
|
|
int inverseAlpha;
|
|
int premult[3];
|
|
|
|
inverseAlpha = 255 - blend[3];
|
|
premult[0] = blend[0] * blend[3];
|
|
premult[1] = blend[1] * blend[3];
|
|
premult[2] = blend[2] * blend[3];
|
|
|
|
for ( i = 0 ; i < pixelCount ; i++, data+=4 ) {
|
|
data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9;
|
|
data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9;
|
|
data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9;
|
|
}
|
|
}
|
|
|
|
byte mipBlendColors[16][4] = {
|
|
{0,0,0,0},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
class CStringComparator
|
|
{
|
|
public:
|
|
bool operator()(const char *s1, const char *s2) const { return(strcmp(s1, s2) < 0); }
|
|
};
|
|
|
|
typedef map <LPCSTR, image_t *, CStringComparator> AllocatedImages_t;
|
|
AllocatedImages_t AllocatedImages;
|
|
AllocatedImages_t::iterator itAllocatedImages;
|
|
int giTextureBindNum = 1024; // will be set to this anyway at runtime, but wtf?
|
|
|
|
|
|
// return = number of images in the list, for those interested
|
|
//
|
|
int R_Images_StartIteration(void)
|
|
{
|
|
itAllocatedImages = AllocatedImages.begin();
|
|
return AllocatedImages.size();
|
|
}
|
|
|
|
image_t *R_Images_GetNextIteration(void)
|
|
{
|
|
if (itAllocatedImages == AllocatedImages.end())
|
|
return NULL;
|
|
|
|
image_t *pImage = (*itAllocatedImages).second;
|
|
++itAllocatedImages;
|
|
return pImage;
|
|
}
|
|
|
|
// clean up anything to do with an image_t struct, but caller will have to clear the internal to an image_t struct ready for either struct free() or overwrite...
|
|
//
|
|
// (avoid using ri.xxxx stuff here in case running on dedicated)
|
|
//
|
|
static void R_Images_DeleteImageContents( image_t *pImage )
|
|
{
|
|
assert(pImage); // should never be called with NULL
|
|
if (pImage)
|
|
{
|
|
if (qglDeleteTextures) { //won't have one if we switched to dedicated.
|
|
qglDeleteTextures( 1, &pImage->texnum );
|
|
}
|
|
Z_Free(pImage);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
===============
|
|
Upload32
|
|
|
|
===============
|
|
*/
|
|
extern qboolean charSet;
|
|
static void Upload32( unsigned *data,
|
|
GLenum format,
|
|
qboolean mipmap,
|
|
qboolean picmip,
|
|
qboolean isLightmap,
|
|
qboolean allowTC,
|
|
int *pformat,
|
|
unsigned short *pUploadWidth, unsigned short *pUploadHeight, bool bRectangle = false )
|
|
{
|
|
GLuint uiTarget = GL_TEXTURE_2D;
|
|
if ( bRectangle )
|
|
{
|
|
uiTarget = GL_TEXTURE_RECTANGLE_EXT;
|
|
}
|
|
|
|
if (format == GL_RGBA)
|
|
{
|
|
int samples;
|
|
int i, c;
|
|
byte *scan;
|
|
float rMax = 0, gMax = 0, bMax = 0;
|
|
int width = *pUploadWidth;
|
|
int height = *pUploadHeight;
|
|
|
|
//
|
|
// perform optional picmip operation
|
|
//
|
|
if ( picmip ) {
|
|
for(i = 0; i < r_picmip->integer; i++) {
|
|
R_MipMap( (byte *)data, width, height );
|
|
width >>= 1;
|
|
height >>= 1;
|
|
if (width < 1) {
|
|
width = 1;
|
|
}
|
|
if (height < 1) {
|
|
height = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// clamp to the current upper OpenGL limit
|
|
// scale both axis down equally so we don't have to
|
|
// deal with a half mip resampling
|
|
//
|
|
while ( width > glConfig.maxTextureSize || height > glConfig.maxTextureSize ) {
|
|
R_MipMap( (byte *)data, width, height );
|
|
width >>= 1;
|
|
height >>= 1;
|
|
}
|
|
|
|
//
|
|
// scan the texture for each channel's max values
|
|
// and verify if the alpha channel is being used or not
|
|
//
|
|
c = width*height;
|
|
scan = ((byte *)data);
|
|
samples = 3;
|
|
for ( i = 0; i < c; i++ )
|
|
{
|
|
if ( scan[i*4+0] > rMax )
|
|
{
|
|
rMax = scan[i*4+0];
|
|
}
|
|
if ( scan[i*4+1] > gMax )
|
|
{
|
|
gMax = scan[i*4+1];
|
|
}
|
|
if ( scan[i*4+2] > bMax )
|
|
{
|
|
bMax = scan[i*4+2];
|
|
}
|
|
if ( scan[i*4 + 3] != 255 )
|
|
{
|
|
samples = 4;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// select proper internal format
|
|
if ( samples == 3 )
|
|
{
|
|
if ( glConfig.textureCompression == TC_S3TC && allowTC )
|
|
{
|
|
*pformat = GL_RGB4_S3TC;
|
|
}
|
|
else if ( glConfig.textureCompression == TC_S3TC_DXT && allowTC )
|
|
{ // Compress purely color - no alpha
|
|
if ( r_texturebits->integer == 16 ) {
|
|
*pformat = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; //this format cuts to 16 bit
|
|
}
|
|
else {//if we aren't using 16 bit then, use 32 bit compression
|
|
*pformat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
|
|
}
|
|
}
|
|
else if ( isLightmap && r_texturebitslm->integer > 0 )
|
|
{
|
|
// Allow different bit depth when we are a lightmap
|
|
if ( r_texturebitslm->integer == 16 )
|
|
{
|
|
*pformat = GL_RGB5;
|
|
}
|
|
else if ( r_texturebitslm->integer == 32 )
|
|
{
|
|
*pformat = GL_RGB8;
|
|
}
|
|
}
|
|
else if ( r_texturebits->integer == 16 )
|
|
{
|
|
*pformat = GL_RGB5;
|
|
}
|
|
else if ( r_texturebits->integer == 32 )
|
|
{
|
|
*pformat = GL_RGB8;
|
|
}
|
|
else
|
|
{
|
|
*pformat = 3;
|
|
}
|
|
}
|
|
else if ( samples == 4 )
|
|
{
|
|
if ( glConfig.textureCompression == TC_S3TC_DXT && allowTC)
|
|
{ // Compress both alpha and color
|
|
*pformat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
|
|
}
|
|
else if ( r_texturebits->integer == 16 )
|
|
{
|
|
*pformat = GL_RGBA4;
|
|
}
|
|
else if ( r_texturebits->integer == 32 )
|
|
{
|
|
*pformat = GL_RGBA8;
|
|
}
|
|
else
|
|
{
|
|
*pformat = 4;
|
|
}
|
|
}
|
|
|
|
*pUploadWidth = width;
|
|
*pUploadHeight = height;
|
|
|
|
// copy or resample data as appropriate for first MIP level
|
|
if (!mipmap)
|
|
{
|
|
qglTexImage2D( uiTarget, 0, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
|
|
goto done;
|
|
}
|
|
|
|
R_LightScaleTexture (data, width, height, (qboolean)!mipmap );
|
|
|
|
qglTexImage2D( uiTarget, 0, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
|
|
|
|
if (mipmap)
|
|
{
|
|
int miplevel;
|
|
|
|
miplevel = 0;
|
|
while (width > 1 || height > 1)
|
|
{
|
|
R_MipMap( (byte *)data, width, height );
|
|
width >>= 1;
|
|
height >>= 1;
|
|
if (width < 1)
|
|
width = 1;
|
|
if (height < 1)
|
|
height = 1;
|
|
miplevel++;
|
|
|
|
if ( r_colorMipLevels->integer )
|
|
{
|
|
R_BlendOverTexture( (byte *)data, width * height, mipBlendColors[miplevel] );
|
|
}
|
|
|
|
qglTexImage2D( uiTarget, miplevel, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
}
|
|
|
|
done:
|
|
|
|
if (mipmap)
|
|
{
|
|
qglTexParameterf(uiTarget, GL_TEXTURE_MIN_FILTER, gl_filter_min);
|
|
qglTexParameterf(uiTarget, GL_TEXTURE_MAG_FILTER, gl_filter_max);
|
|
if(r_ext_texture_filter_anisotropic->integer>1 && glConfig.maxTextureFilterAnisotropy>0)
|
|
{
|
|
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, r_ext_texture_filter_anisotropic->value );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
qglTexParameterf(uiTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
|
|
qglTexParameterf(uiTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
|
|
}
|
|
|
|
GL_CheckErrors();
|
|
}
|
|
|
|
#if 0
|
|
//3d tex version -rww
|
|
static void Upload32_3D( unsigned *data,
|
|
int img_depth,
|
|
qboolean mipmap,
|
|
qboolean picmip,
|
|
qboolean isLightmap,
|
|
qboolean allowTC,
|
|
int *pformat,
|
|
unsigned short *pUploadWidth, unsigned short *pUploadHeight )
|
|
{
|
|
int samples;
|
|
int i, c;
|
|
byte *scan;
|
|
float rMax = 0, gMax = 0, bMax = 0;
|
|
int width = *pUploadWidth;
|
|
int height = *pUploadHeight;
|
|
int depth = img_depth;
|
|
|
|
//
|
|
// perform optional picmip operation
|
|
//
|
|
if ( picmip ) {
|
|
for(i = 0; i < r_picmip->integer; i++) {
|
|
R_MipMap( (byte *)data, width, height );
|
|
width >>= 1;
|
|
height >>= 1;
|
|
if (width < 1) {
|
|
width = 1;
|
|
}
|
|
if (height < 1) {
|
|
height = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// clamp to the current upper OpenGL limit
|
|
// scale both axis down equally so we don't have to
|
|
// deal with a half mip resampling
|
|
//
|
|
while ( width > glConfig.maxTextureSize || height > glConfig.maxTextureSize ) {
|
|
R_MipMap( (byte *)data, width, height );
|
|
width >>= 1;
|
|
height >>= 1;
|
|
}
|
|
|
|
//
|
|
// scan the texture for each channel's max values
|
|
// and verify if the alpha channel is being used or not
|
|
//
|
|
c = width*height;
|
|
scan = ((byte *)data);
|
|
samples = 3;
|
|
for ( i = 0; i < c; i++ )
|
|
{
|
|
if ( scan[i*4+0] > rMax )
|
|
{
|
|
rMax = scan[i*4+0];
|
|
}
|
|
if ( scan[i*4+1] > gMax )
|
|
{
|
|
gMax = scan[i*4+1];
|
|
}
|
|
if ( scan[i*4+2] > bMax )
|
|
{
|
|
bMax = scan[i*4+2];
|
|
}
|
|
if ( scan[i*4 + 3] != 255 )
|
|
{
|
|
samples = 4;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// select proper internal format
|
|
if ( samples == 3 )
|
|
{
|
|
if ( glConfig.textureCompression == TC_S3TC && allowTC )
|
|
{
|
|
*pformat = GL_RGB4_S3TC;
|
|
}
|
|
else if ( glConfig.textureCompression == TC_S3TC_DXT && allowTC )
|
|
{ // Compress purely color - no alpha
|
|
if ( r_texturebits->integer == 16 ) {
|
|
*pformat = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; //this format cuts to 16 bit
|
|
}
|
|
else {//if we aren't using 16 bit then, use 32 bit compression
|
|
*pformat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
|
|
}
|
|
}
|
|
else if ( isLightmap && r_texturebitslm->integer > 0 )
|
|
{
|
|
// Allow different bit depth when we are a lightmap
|
|
if ( r_texturebitslm->integer == 16 )
|
|
{
|
|
*pformat = GL_RGB5;
|
|
}
|
|
else if ( r_texturebitslm->integer == 32 )
|
|
{
|
|
*pformat = GL_RGB8;
|
|
}
|
|
}
|
|
else if ( r_texturebits->integer == 16 )
|
|
{
|
|
*pformat = GL_RGB5;
|
|
}
|
|
else if ( r_texturebits->integer == 32 )
|
|
{
|
|
*pformat = GL_RGB8;
|
|
}
|
|
else
|
|
{
|
|
*pformat = 3;
|
|
}
|
|
}
|
|
else if ( samples == 4 )
|
|
{
|
|
if ( glConfig.textureCompression == TC_S3TC_DXT && allowTC)
|
|
{ // Compress both alpha and color
|
|
*pformat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
|
|
}
|
|
else if ( r_texturebits->integer == 16 )
|
|
{
|
|
*pformat = GL_RGBA4;
|
|
}
|
|
else if ( r_texturebits->integer == 32 )
|
|
{
|
|
*pformat = GL_RGBA8;
|
|
}
|
|
else
|
|
{
|
|
*pformat = 4;
|
|
}
|
|
}
|
|
|
|
*pUploadWidth = width;
|
|
*pUploadHeight = height;
|
|
|
|
// copy or resample data as appropriate for first MIP level
|
|
if (!mipmap)
|
|
{
|
|
qglTexImage3DEXT (GL_TEXTURE_3D, 0, *pformat, width, height, depth, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
|
|
goto done;
|
|
}
|
|
|
|
R_LightScaleTexture (data, width, height, (qboolean)!mipmap );
|
|
|
|
qglTexImage3DEXT (GL_TEXTURE_3D, 0, *pformat, width, height, depth, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
|
|
|
|
if (mipmap)
|
|
{
|
|
int miplevel;
|
|
|
|
miplevel = 0;
|
|
while (width > 1 || height > 1)
|
|
{
|
|
R_MipMap( (byte *)data, width, height );
|
|
width >>= 1;
|
|
height >>= 1;
|
|
if (width < 1)
|
|
width = 1;
|
|
if (height < 1)
|
|
height = 1;
|
|
miplevel++;
|
|
|
|
if ( r_colorMipLevels->integer )
|
|
{
|
|
R_BlendOverTexture( (byte *)data, width * height, mipBlendColors[miplevel] );
|
|
}
|
|
|
|
qglTexImage2D (GL_TEXTURE_2D, miplevel, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
|
|
}
|
|
}
|
|
done:
|
|
|
|
if (mipmap)
|
|
{
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
|
|
if(r_ext_texture_filter_anisotropic->integer>1 && glConfig.maxTextureFilterAnisotropy>0) {
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 2.0f);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
|
|
}
|
|
|
|
GL_CheckErrors();
|
|
}
|
|
#endif
|
|
|
|
static void GL_ResetBinds(void)
|
|
{
|
|
memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) );
|
|
if ( qglBindTexture )
|
|
{
|
|
if ( qglActiveTextureARB )
|
|
{
|
|
GL_SelectTexture( 1 );
|
|
qglBindTexture( GL_TEXTURE_2D, 0 );
|
|
GL_SelectTexture( 0 );
|
|
qglBindTexture( GL_TEXTURE_2D, 0 );
|
|
}
|
|
else
|
|
{
|
|
qglBindTexture( GL_TEXTURE_2D, 0 );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// special function used in conjunction with "devmapbsp"...
|
|
//
|
|
// (avoid using ri.xxxx stuff here in case running on dedicated)
|
|
//
|
|
void R_Images_DeleteLightMaps(void)
|
|
{
|
|
qboolean bEraseOccured = qfalse;
|
|
for (AllocatedImages_t::iterator itImage = AllocatedImages.begin(); itImage != AllocatedImages.end(); bEraseOccured?itImage:++itImage)
|
|
{
|
|
bEraseOccured = qfalse;
|
|
|
|
image_t *pImage = (*itImage).second;
|
|
|
|
if (pImage->imgName[0] == '*' && strstr(pImage->imgName,"lightmap")) // loose check, but should be ok
|
|
{
|
|
R_Images_DeleteImageContents(pImage);
|
|
AllocatedImages.erase(itImage++);
|
|
bEraseOccured = qtrue;
|
|
}
|
|
}
|
|
|
|
GL_ResetBinds();
|
|
}
|
|
|
|
// special function currently only called by Dissolve code...
|
|
//
|
|
void R_Images_DeleteImage(image_t *pImage)
|
|
{
|
|
// Even though we supply the image handle, we need to get the corresponding iterator entry...
|
|
//
|
|
AllocatedImages_t::iterator itImage = AllocatedImages.find(pImage->imgName);
|
|
if (itImage != AllocatedImages.end())
|
|
{
|
|
R_Images_DeleteImageContents(pImage);
|
|
AllocatedImages.erase(itImage);
|
|
}
|
|
else
|
|
{
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
// called only at app startup, vid_restart, app-exit
|
|
//
|
|
void R_Images_Clear(void)
|
|
{
|
|
image_t *pImage;
|
|
// int iNumImages =
|
|
R_Images_StartIteration();
|
|
while ( (pImage = R_Images_GetNextIteration()) != NULL)
|
|
{
|
|
R_Images_DeleteImageContents(pImage);
|
|
}
|
|
|
|
AllocatedImages.clear();
|
|
|
|
giTextureBindNum = 1024;
|
|
}
|
|
|
|
|
|
void RE_RegisterImages_Info_f( void )
|
|
{
|
|
image_t *pImage = NULL;
|
|
int iImage = 0;
|
|
int iTexels = 0;
|
|
|
|
int iNumImages = R_Images_StartIteration();
|
|
while ( (pImage = R_Images_GetNextIteration()) != NULL)
|
|
{
|
|
Com_Printf ("%d: (%4dx%4dy) \"%s\"",iImage, pImage->width, pImage->height, pImage->imgName);
|
|
Com_DPrintf (S_COLOR_RED ", levused %d",pImage->iLastLevelUsedOn);
|
|
Com_Printf ("\n");
|
|
|
|
iTexels += pImage->width * pImage->height;
|
|
iImage++;
|
|
}
|
|
Com_Printf ("%d Images. %d (%.2fMB) texels total, (not including mipmaps)\n",iNumImages, iTexels, (float)iTexels / 1024.0f / 1024.0f);
|
|
Com_DPrintf (S_COLOR_RED "RE_RegisterMedia_GetLevel(): %d",RE_RegisterMedia_GetLevel());
|
|
}
|
|
|
|
|
|
// implement this if you need to, do a find for the caller. I don't need it though, so far.
|
|
//
|
|
//void RE_RegisterImages_LevelLoadBegin(const char *psMapName);
|
|
|
|
|
|
// currently, this just goes through all the images and dumps any not referenced on this level...
|
|
//
|
|
qboolean RE_RegisterImages_LevelLoadEnd(void)
|
|
{
|
|
Com_DPrintf (S_COLOR_RED "RE_RegisterImages_LevelLoadEnd():\n");
|
|
|
|
// int iNumImages = AllocatedImages.size(); // more for curiosity, really.
|
|
|
|
qboolean bEraseOccured = qfalse;
|
|
for (AllocatedImages_t::iterator itImage = AllocatedImages.begin(); itImage != AllocatedImages.end(); bEraseOccured?itImage:++itImage)
|
|
{
|
|
bEraseOccured = qfalse;
|
|
|
|
image_t *pImage = (*itImage).second;
|
|
|
|
// don't un-register system shaders (*fog, *dlight, *white, *default), but DO de-register lightmaps ("*<mapname>/lightmap%d")
|
|
if (pImage->imgName[0] != '*' || strchr(pImage->imgName,'/'))
|
|
{
|
|
// image used on this level?
|
|
//
|
|
if ( pImage->iLastLevelUsedOn != RE_RegisterMedia_GetLevel() )
|
|
{
|
|
// nope, so dump it...
|
|
//
|
|
Com_DPrintf (S_COLOR_RED "Dumping image \"%s\"\n",pImage->imgName);
|
|
|
|
R_Images_DeleteImageContents(pImage);
|
|
AllocatedImages.erase(itImage++);
|
|
bEraseOccured = qtrue;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// this check can be deleted AFAIC, it seems to be just a quake thing...
|
|
//
|
|
// iNumImages = R_Images_StartIteration();
|
|
// if (iNumImages > MAX_DRAWIMAGES)
|
|
// {
|
|
// Com_Printf (S_COLOR_YELLOW "Level uses %d images, old limit was MAX_DRAWIMAGES (%d)\n", iNumImages, MAX_DRAWIMAGES);
|
|
// }
|
|
|
|
Com_DPrintf (S_COLOR_RED "RE_RegisterImages_LevelLoadEnd(): Ok\n");
|
|
|
|
GL_ResetBinds();
|
|
|
|
return bEraseOccured;
|
|
}
|
|
|
|
|
|
|
|
// returns image_t struct if we already have this, else NULL. No disk-open performed
|
|
// (important for creating default images).
|
|
//
|
|
// This is called by both R_FindImageFile and anything that creates default images...
|
|
//
|
|
static image_t *R_FindImageFile_NoLoad(const char *name, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode )
|
|
{
|
|
if (!name) {
|
|
return NULL;
|
|
}
|
|
|
|
char *pName = GenerateImageMappingName(name);
|
|
|
|
//
|
|
// see if the image is already loaded
|
|
//
|
|
AllocatedImages_t::iterator itAllocatedImage = AllocatedImages.find(pName);
|
|
if (itAllocatedImage != AllocatedImages.end())
|
|
{
|
|
image_t *pImage = (*itAllocatedImage).second;
|
|
|
|
// the white image can be used with any set of parms, but other mismatches are errors...
|
|
//
|
|
if ( strcmp( pName, "*white" ) ) {
|
|
if ( pImage->mipmap != !!mipmap ) {
|
|
Com_Printf (S_COLOR_YELLOW "WARNING: reused image %s with mixed mipmap parm\n", pName );
|
|
}
|
|
if ( pImage->allowPicmip != !!allowPicmip ) {
|
|
Com_Printf (S_COLOR_YELLOW "WARNING: reused image %s with mixed allowPicmip parm\n", pName );
|
|
}
|
|
if ( pImage->wrapClampMode != glWrapClampMode ) {
|
|
Com_Printf (S_COLOR_YELLOW "WARNING: reused image %s with mixed glWrapClampMode parm\n", pName );
|
|
}
|
|
}
|
|
|
|
pImage->iLastLevelUsedOn = RE_RegisterMedia_GetLevel();
|
|
|
|
return pImage;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
================
|
|
R_CreateImage
|
|
|
|
This is the only way any image_t are created
|
|
================
|
|
*/
|
|
image_t *R_CreateImage( const char *name, const byte *pic, int width, int height,
|
|
GLenum format, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode, bool bRectangle )
|
|
{
|
|
image_t *image;
|
|
qboolean isLightmap = qfalse;
|
|
|
|
if (strlen(name) >= MAX_QPATH ) {
|
|
Com_Error (ERR_DROP, "R_CreateImage: \"%s\" is too long\n", name);
|
|
}
|
|
|
|
if(glConfig.clampToEdgeAvailable && glWrapClampMode == GL_CLAMP) {
|
|
glWrapClampMode = GL_CLAMP_TO_EDGE;
|
|
}
|
|
|
|
if (name[0] == '*')
|
|
{
|
|
const char *psLightMapNameSearchPos = strrchr(name,'/');
|
|
if ( psLightMapNameSearchPos && !strncmp( psLightMapNameSearchPos+1, "lightmap", 8 ) ) {
|
|
isLightmap = qtrue;
|
|
}
|
|
}
|
|
|
|
if ( (width&(width-1)) || (height&(height-1)) )
|
|
{
|
|
Com_Error( ERR_FATAL, "R_CreateImage: %s dimensions (%i x %i) not power of 2!\n",name,width,height);
|
|
}
|
|
|
|
image = R_FindImageFile_NoLoad(name, mipmap, allowPicmip, allowTC, glWrapClampMode );
|
|
if (image) {
|
|
return image;
|
|
}
|
|
|
|
image = (image_t*) Z_Malloc( sizeof( image_t ), TAG_IMAGE_T, qtrue );
|
|
// memset(image,0,sizeof(*image)); // qtrue above does this
|
|
|
|
image->texnum = 1024 + giTextureBindNum++; // ++ is of course staggeringly important...
|
|
|
|
// record which map it was used on...
|
|
//
|
|
image->iLastLevelUsedOn = RE_RegisterMedia_GetLevel();
|
|
|
|
image->mipmap = !!mipmap;
|
|
image->allowPicmip = !!allowPicmip;
|
|
|
|
Q_strncpyz(image->imgName, name, sizeof(image->imgName));
|
|
|
|
image->width = width;
|
|
image->height = height;
|
|
image->wrapClampMode = glWrapClampMode;
|
|
|
|
if ( qglActiveTextureARB ) {
|
|
GL_SelectTexture( 0 );
|
|
}
|
|
|
|
GLuint uiTarget = GL_TEXTURE_2D;
|
|
if ( bRectangle )
|
|
{
|
|
qglDisable( uiTarget );
|
|
uiTarget = GL_TEXTURE_RECTANGLE_EXT;
|
|
qglEnable( uiTarget );
|
|
glWrapClampMode = GL_CLAMP_TO_EDGE; // default mode supported by rectangle.
|
|
qglBindTexture( uiTarget, image->texnum );
|
|
}
|
|
else
|
|
{
|
|
GL_Bind(image);
|
|
}
|
|
|
|
Upload32( (unsigned *)pic, format,
|
|
(qboolean)image->mipmap,
|
|
allowPicmip,
|
|
isLightmap,
|
|
allowTC,
|
|
&image->internalFormat,
|
|
&image->width,
|
|
&image->height, bRectangle );
|
|
|
|
qglTexParameterf( uiTarget, GL_TEXTURE_WRAP_S, glWrapClampMode );
|
|
qglTexParameterf( uiTarget, GL_TEXTURE_WRAP_T, glWrapClampMode );
|
|
|
|
qglBindTexture( uiTarget, 0 ); //jfm: i don't know why this is here, but it breaks lightmaps when there's only 1
|
|
glState.currenttextures[glState.currenttmu] = 0; //mark it not bound
|
|
|
|
LPCSTR psNewName = GenerateImageMappingName(name);
|
|
Q_strncpyz(image->imgName, psNewName, sizeof(image->imgName));
|
|
AllocatedImages[ image->imgName ] = image;
|
|
|
|
if ( bRectangle )
|
|
{
|
|
qglDisable( uiTarget );
|
|
qglEnable( GL_TEXTURE_2D );
|
|
}
|
|
|
|
return image;
|
|
}
|
|
|
|
//rwwRMG - added
|
|
void R_CreateAutomapImage( const char *name, const byte *pic, int width, int height,
|
|
qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode )
|
|
{
|
|
R_CreateImage(name, pic, width, height, GL_RGBA, mipmap, allowPicmip, allowTC, glWrapClampMode);
|
|
}
|
|
|
|
/*
|
|
=========================================================
|
|
|
|
TARGA LOADING
|
|
|
|
=========================================================
|
|
*/
|
|
/*
|
|
Ghoul2 Insert Start
|
|
*/
|
|
|
|
bool LoadTGAPalletteImage ( const char *name, byte **pic, int *width, int *height)
|
|
{
|
|
int columns, rows, numPixels;
|
|
byte *buf_p;
|
|
byte *buffer;
|
|
TargaHeader targa_header;
|
|
byte *dataStart;
|
|
|
|
*pic = NULL;
|
|
|
|
//
|
|
// load the file
|
|
//
|
|
FS_ReadFile ( ( char * ) name, (void **)&buffer);
|
|
if (!buffer) {
|
|
return false;
|
|
}
|
|
|
|
buf_p = buffer;
|
|
|
|
targa_header.id_length = *buf_p++;
|
|
targa_header.colormap_type = *buf_p++;
|
|
targa_header.image_type = *buf_p++;
|
|
|
|
targa_header.colormap_index = LittleShort ( *(short *)buf_p );
|
|
buf_p += 2;
|
|
targa_header.colormap_length = LittleShort ( *(short *)buf_p );
|
|
buf_p += 2;
|
|
targa_header.colormap_size = *buf_p++;
|
|
targa_header.x_origin = LittleShort ( *(short *)buf_p );
|
|
buf_p += 2;
|
|
targa_header.y_origin = LittleShort ( *(short *)buf_p );
|
|
buf_p += 2;
|
|
targa_header.width = LittleShort ( *(short *)buf_p );
|
|
buf_p += 2;
|
|
targa_header.height = LittleShort ( *(short *)buf_p );
|
|
buf_p += 2;
|
|
targa_header.pixel_size = *buf_p++;
|
|
targa_header.attributes = *buf_p++;
|
|
|
|
if (targa_header.image_type!=1 )
|
|
{
|
|
Com_Error (ERR_DROP, "LoadTGAPalletteImage: Only type 1 (uncompressed pallettised) TGA images supported\n");
|
|
}
|
|
|
|
if ( targa_header.colormap_type == 0 )
|
|
{
|
|
Com_Error( ERR_DROP, "LoadTGAPalletteImage: colormaps ONLY supported\n" );
|
|
}
|
|
|
|
columns = targa_header.width;
|
|
rows = targa_header.height;
|
|
numPixels = columns * rows;
|
|
|
|
if (width)
|
|
*width = columns;
|
|
if (height)
|
|
*height = rows;
|
|
|
|
*pic = (unsigned char *) Z_Malloc (numPixels, TAG_TEMP_WORKSPACE, qfalse );
|
|
if (targa_header.id_length != 0)
|
|
{
|
|
buf_p += targa_header.id_length; // skip TARGA image comment
|
|
}
|
|
dataStart = buf_p + (targa_header.colormap_length * (targa_header.colormap_size / 4));
|
|
memcpy(*pic, dataStart, numPixels);
|
|
FS_FreeFile (buffer);
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif // #ifndef DEDICATED
|
|
|
|
// My TGA loader...
|
|
//
|
|
//---------------------------------------------------
|
|
#pragma pack(push,1)
|
|
typedef struct
|
|
{
|
|
byte byIDFieldLength; // must be 0
|
|
byte byColourmapType; // 0 = truecolour, 1 = paletted, else bad
|
|
byte byImageType; // 1 = colour mapped (palette), uncompressed, 2 = truecolour, uncompressed, else bad
|
|
word w1stColourMapEntry; // must be 0
|
|
word wColourMapLength; // 256 for 8-bit palettes, else 0 for true-colour
|
|
byte byColourMapEntrySize; // 24 for 8-bit palettes, else 0 for true-colour
|
|
word wImageXOrigin; // ignored
|
|
word wImageYOrigin; // ignored
|
|
word wImageWidth; // in pixels
|
|
word wImageHeight; // in pixels
|
|
byte byImagePlanes; // bits per pixel (8 for paletted, else 24 for true-colour)
|
|
byte byScanLineOrder; // Image descriptor bytes
|
|
// bits 0-3 = # attr bits (alpha chan)
|
|
// bits 4-5 = pixel order/dir
|
|
// bits 6-7 scan line interleave (00b=none,01b=2way interleave,10b=4way)
|
|
} TGAHeader_t;
|
|
#pragma pack(pop)
|
|
|
|
|
|
// *pic == pic, else NULL for failed.
|
|
//
|
|
// returns false if found but had a format error, else true for either OK or not-found (there's a reason for this)
|
|
//
|
|
|
|
void LoadTGA ( const char *name, byte **pic, int *width, int *height)
|
|
{
|
|
char sErrorString[1024];
|
|
bool bFormatErrors = false;
|
|
|
|
// these don't need to be declared or initialised until later, but the compiler whines that 'goto' skips them.
|
|
//
|
|
byte *pRGBA = NULL;
|
|
byte *pOut = NULL;
|
|
byte *pIn = NULL;
|
|
|
|
|
|
*pic = NULL;
|
|
|
|
#define TGA_FORMAT_ERROR(blah) {sprintf(sErrorString,blah); bFormatErrors = true; goto TGADone;}
|
|
//#define TGA_FORMAT_ERROR(blah) Com_Error( ERR_DROP, blah );
|
|
|
|
//
|
|
// load the file
|
|
//
|
|
byte *pTempLoadedBuffer = 0;
|
|
FS_ReadFile ( ( char * ) name, (void **)&pTempLoadedBuffer);
|
|
if (!pTempLoadedBuffer) {
|
|
return;
|
|
}
|
|
|
|
TGAHeader_t *pHeader = (TGAHeader_t *) pTempLoadedBuffer;
|
|
|
|
if (pHeader->byColourmapType!=0)
|
|
{
|
|
TGA_FORMAT_ERROR("LoadTGA: colourmaps not supported\n" );
|
|
}
|
|
|
|
if (pHeader->byImageType != 2 && pHeader->byImageType != 3 && pHeader->byImageType != 10)
|
|
{
|
|
TGA_FORMAT_ERROR("LoadTGA: Only type 2 (RGB), 3 (gray), and 10 (RLE-RGB) images supported\n");
|
|
}
|
|
|
|
if (pHeader->w1stColourMapEntry != 0)
|
|
{
|
|
TGA_FORMAT_ERROR("LoadTGA: colourmaps not supported\n" );
|
|
}
|
|
|
|
if (pHeader->wColourMapLength !=0 && pHeader->wColourMapLength != 256)
|
|
{
|
|
TGA_FORMAT_ERROR("LoadTGA: ColourMapLength must be either 0 or 256\n" );
|
|
}
|
|
|
|
if (pHeader->byColourMapEntrySize != 0 && pHeader->byColourMapEntrySize != 24)
|
|
{
|
|
TGA_FORMAT_ERROR("LoadTGA: ColourMapEntrySize must be either 0 or 24\n" );
|
|
}
|
|
|
|
if ( ( pHeader->byImagePlanes != 24 && pHeader->byImagePlanes != 32) && (pHeader->byImagePlanes != 8 && pHeader->byImageType != 3))
|
|
{
|
|
TGA_FORMAT_ERROR("LoadTGA: Only type 2 (RGB), 3 (gray), and 10 (RGB) TGA images supported\n");
|
|
}
|
|
|
|
if ((pHeader->byScanLineOrder&0x30)!=0x00 &&
|
|
(pHeader->byScanLineOrder&0x30)!=0x10 &&
|
|
(pHeader->byScanLineOrder&0x30)!=0x20 &&
|
|
(pHeader->byScanLineOrder&0x30)!=0x30
|
|
)
|
|
{
|
|
TGA_FORMAT_ERROR("LoadTGA: ScanLineOrder must be either 0x00,0x10,0x20, or 0x30\n");
|
|
}
|
|
|
|
|
|
|
|
// these last checks are so i can use ID's RLE-code. I don't dare fiddle with it or it'll probably break...
|
|
//
|
|
if ( pHeader->byImageType == 10)
|
|
{
|
|
if ((pHeader->byScanLineOrder & 0x30) != 0x00)
|
|
{
|
|
TGA_FORMAT_ERROR("LoadTGA: RLE-RGB Images (type 10) must be in bottom-to-top format\n");
|
|
}
|
|
if (pHeader->byImagePlanes != 24 && pHeader->byImagePlanes != 32) // probably won't happen, but avoids compressed greyscales?
|
|
{
|
|
TGA_FORMAT_ERROR("LoadTGA: RLE-RGB Images (type 10) must be 24 or 32 bit\n");
|
|
}
|
|
}
|
|
|
|
// now read the actual bitmap in...
|
|
//
|
|
// Image descriptor bytes
|
|
// bits 0-3 = # attr bits (alpha chan)
|
|
// bits 4-5 = pixel order/dir
|
|
// bits 6-7 scan line interleave (00b=none,01b=2way interleave,10b=4way)
|
|
//
|
|
int iYStart,iXStart,iYStep,iXStep;
|
|
|
|
switch(pHeader->byScanLineOrder & 0x30)
|
|
{
|
|
default: // default case stops the compiler complaining about using uninitialised vars
|
|
case 0x00: // left to right, bottom to top
|
|
|
|
iXStart = 0;
|
|
iXStep = 1;
|
|
|
|
iYStart = pHeader->wImageHeight-1;
|
|
iYStep = -1;
|
|
|
|
break;
|
|
|
|
case 0x10: // right to left, bottom to top
|
|
|
|
iXStart = pHeader->wImageWidth-1;
|
|
iXStep = -1;
|
|
|
|
iYStart = pHeader->wImageHeight-1;
|
|
iYStep = -1;
|
|
|
|
break;
|
|
|
|
case 0x20: // left to right, top to bottom
|
|
|
|
iXStart = 0;
|
|
iXStep = 1;
|
|
|
|
iYStart = 0;
|
|
iYStep = 1;
|
|
|
|
break;
|
|
|
|
case 0x30: // right to left, top to bottom
|
|
|
|
iXStart = pHeader->wImageWidth-1;
|
|
iXStep = -1;
|
|
|
|
iYStart = 0;
|
|
iYStep = 1;
|
|
|
|
break;
|
|
}
|
|
|
|
// feed back the results...
|
|
//
|
|
if (width)
|
|
*width = pHeader->wImageWidth;
|
|
if (height)
|
|
*height = pHeader->wImageHeight;
|
|
|
|
pRGBA = (byte *) Z_Malloc (pHeader->wImageWidth * pHeader->wImageHeight * 4, TAG_TEMP_WORKSPACE, qfalse);
|
|
*pic = pRGBA;
|
|
pOut = pRGBA;
|
|
pIn = pTempLoadedBuffer + sizeof(*pHeader);
|
|
|
|
// I don't know if this ID-thing here is right, since comments that I've seen are at the end of the file,
|
|
// with a zero in this field. However, may as well...
|
|
//
|
|
if (pHeader->byIDFieldLength != 0)
|
|
pIn += pHeader->byIDFieldLength; // skip TARGA image comment
|
|
|
|
byte red,green,blue,alpha;
|
|
|
|
if ( pHeader->byImageType == 2 || pHeader->byImageType == 3 ) // RGB or greyscale
|
|
{
|
|
for (int y=iYStart, iYCount=0; iYCount<pHeader->wImageHeight; y+=iYStep, iYCount++)
|
|
{
|
|
pOut = pRGBA + y * pHeader->wImageWidth *4;
|
|
for (int x=iXStart, iXCount=0; iXCount<pHeader->wImageWidth; x+=iXStep, iXCount++)
|
|
{
|
|
switch (pHeader->byImagePlanes)
|
|
{
|
|
case 8:
|
|
blue = *pIn++;
|
|
green = blue;
|
|
red = blue;
|
|
*pOut++ = red;
|
|
*pOut++ = green;
|
|
*pOut++ = blue;
|
|
*pOut++ = 255;
|
|
break;
|
|
|
|
case 24:
|
|
blue = *pIn++;
|
|
green = *pIn++;
|
|
red = *pIn++;
|
|
*pOut++ = red;
|
|
*pOut++ = green;
|
|
*pOut++ = blue;
|
|
*pOut++ = 255;
|
|
break;
|
|
|
|
case 32:
|
|
blue = *pIn++;
|
|
green = *pIn++;
|
|
red = *pIn++;
|
|
alpha = *pIn++;
|
|
*pOut++ = red;
|
|
*pOut++ = green;
|
|
*pOut++ = blue;
|
|
*pOut++ = alpha;
|
|
break;
|
|
|
|
default:
|
|
assert(0); // if we ever hit this, someone deleted a header check higher up
|
|
TGA_FORMAT_ERROR("LoadTGA: Image can only have 8, 24 or 32 planes for RGB/greyscale\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
if (pHeader->byImageType == 10) // RLE-RGB
|
|
{
|
|
// I've no idea if this stuff works, I normally reject RLE targas, but this is from ID's code
|
|
// so maybe I should try and support it...
|
|
//
|
|
byte packetHeader, packetSize, j;
|
|
|
|
for (int y = pHeader->wImageHeight-1; y >= 0; y--)
|
|
{
|
|
pOut = pRGBA + y * pHeader->wImageWidth *4;
|
|
for (int x=0; x<pHeader->wImageWidth;)
|
|
{
|
|
packetHeader = *pIn++;
|
|
packetSize = 1 + (packetHeader & 0x7f);
|
|
if (packetHeader & 0x80) // run-length packet
|
|
{
|
|
switch (pHeader->byImagePlanes)
|
|
{
|
|
case 24:
|
|
|
|
blue = *pIn++;
|
|
green = *pIn++;
|
|
red = *pIn++;
|
|
alpha = 255;
|
|
break;
|
|
|
|
case 32:
|
|
|
|
blue = *pIn++;
|
|
green = *pIn++;
|
|
red = *pIn++;
|
|
alpha = *pIn++;
|
|
break;
|
|
|
|
default:
|
|
assert(0); // if we ever hit this, someone deleted a header check higher up
|
|
TGA_FORMAT_ERROR("LoadTGA: RLE-RGB can only have 24 or 32 planes\n");
|
|
break;
|
|
}
|
|
|
|
for (j=0; j<packetSize; j++)
|
|
{
|
|
*pOut++ = red;
|
|
*pOut++ = green;
|
|
*pOut++ = blue;
|
|
*pOut++ = alpha;
|
|
x++;
|
|
if (x == pHeader->wImageWidth) // run spans across rows
|
|
{
|
|
x = 0;
|
|
if (y > 0)
|
|
y--;
|
|
else
|
|
goto breakOut;
|
|
pOut = pRGBA + y * pHeader->wImageWidth * 4;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{ // non run-length packet
|
|
|
|
for (j=0; j<packetSize; j++)
|
|
{
|
|
switch (pHeader->byImagePlanes)
|
|
{
|
|
case 24:
|
|
|
|
blue = *pIn++;
|
|
green = *pIn++;
|
|
red = *pIn++;
|
|
*pOut++ = red;
|
|
*pOut++ = green;
|
|
*pOut++ = blue;
|
|
*pOut++ = 255;
|
|
break;
|
|
|
|
case 32:
|
|
blue = *pIn++;
|
|
green = *pIn++;
|
|
red = *pIn++;
|
|
alpha = *pIn++;
|
|
*pOut++ = red;
|
|
*pOut++ = green;
|
|
*pOut++ = blue;
|
|
*pOut++ = alpha;
|
|
break;
|
|
|
|
default:
|
|
assert(0); // if we ever hit this, someone deleted a header check higher up
|
|
TGA_FORMAT_ERROR("LoadTGA: RLE-RGB can only have 24 or 32 planes\n");
|
|
break;
|
|
}
|
|
x++;
|
|
if (x == pHeader->wImageWidth) // pixel packet run spans across rows
|
|
{
|
|
x = 0;
|
|
if (y > 0)
|
|
y--;
|
|
else
|
|
goto breakOut;
|
|
pOut = pRGBA + y * pHeader->wImageWidth * 4;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
breakOut:;
|
|
}
|
|
}
|
|
|
|
TGADone:
|
|
|
|
FS_FreeFile (pTempLoadedBuffer);
|
|
|
|
if (bFormatErrors)
|
|
{
|
|
Com_Error( ERR_DROP, "%s( File: \"%s\" )\n",sErrorString,name);
|
|
}
|
|
}
|
|
|
|
#ifndef DEDICATED
|
|
static void LoadJPG( const char *filename, unsigned char **pic, int *width, int *height ) {
|
|
/* This struct contains the JPEG decompression parameters and pointers to
|
|
* working space (which is allocated as needed by the JPEG library).
|
|
*/
|
|
struct jpeg_decompress_struct cinfo;
|
|
/* We use our private extension JPEG error handler.
|
|
* Note that this struct must live as long as the main JPEG parameter
|
|
* struct, to avoid dangling-pointer problems.
|
|
*/
|
|
/* This struct represents a JPEG error handler. It is declared separately
|
|
* because applications often want to supply a specialized error handler
|
|
* (see the second half of this file for an example). But here we just
|
|
* take the easy way out and use the standard error handler, which will
|
|
* print a message on stderr and call exit() if compression fails.
|
|
* Note that this struct must live as long as the main JPEG parameter
|
|
* struct, to avoid dangling-pointer problems.
|
|
*/
|
|
struct jpeg_error_mgr jerr;
|
|
/* More stuff */
|
|
JSAMPARRAY buffer; /* Output row buffer */
|
|
int row_stride; /* physical row width in output buffer */
|
|
unsigned char *out;
|
|
byte *fbuffer;
|
|
byte *bbuf;
|
|
|
|
/* In this example we want to open the input file before doing anything else,
|
|
* so that the setjmp() error recovery below can assume the file is open.
|
|
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
|
|
* requires it in order to read binary files.
|
|
*/
|
|
|
|
fileHandle_t h;
|
|
const int len = FS_FOpenFileRead(filename, &h, qfalse);
|
|
if (!h)
|
|
{
|
|
return;
|
|
}
|
|
|
|
fbuffer = (byte *)Z_Malloc(len + 4096, TAG_TEMP_WORKSPACE);
|
|
FS_Read(fbuffer, len, h);
|
|
FS_FCloseFile(h);
|
|
|
|
/* Step 1: allocate and initialize JPEG decompression object */
|
|
|
|
/* We have to set up the error handler first, in case the initialization
|
|
* step fails. (Unlikely, but it could happen if you are out of memory.)
|
|
* This routine fills in the contents of struct jerr, and returns jerr's
|
|
* address which we place into the link field in cinfo.
|
|
*/
|
|
cinfo.err = jpeg_std_error(&jerr);
|
|
|
|
/* Now we can initialize the JPEG decompression object. */
|
|
jpeg_create_decompress(&cinfo);
|
|
|
|
/* Step 2: specify data source (eg, a file) */
|
|
|
|
jpeg_stdio_src(&cinfo, fbuffer);
|
|
|
|
/* Step 3: read file parameters with jpeg_read_header() */
|
|
|
|
(void) jpeg_read_header(&cinfo, TRUE);
|
|
/* We can ignore the return value from jpeg_read_header since
|
|
* (a) suspension is not possible with the stdio data source, and
|
|
* (b) we passed TRUE to reject a tables-only JPEG file as an error.
|
|
* See libjpeg.doc for more info.
|
|
*/
|
|
|
|
/* Step 4: set parameters for decompression */
|
|
|
|
/* In this example, we don't need to change any of the defaults set by
|
|
* jpeg_read_header(), so we do nothing here.
|
|
*/
|
|
|
|
/* Step 5: Start decompressor */
|
|
|
|
(void) jpeg_start_decompress(&cinfo);
|
|
/* We can ignore the return value since suspension is not possible
|
|
* with the stdio data source.
|
|
*/
|
|
|
|
/* We may need to do some setup of our own at this point before reading
|
|
* the data. After jpeg_start_decompress() we have the correct scaled
|
|
* output image dimensions available, as well as the output colormap
|
|
* if we asked for color quantization.
|
|
* In this example, we need to make an output work buffer of the right size.
|
|
*/
|
|
/* JSAMPLEs per row in output buffer */
|
|
row_stride = cinfo.output_width * cinfo.output_components;
|
|
|
|
// rww - 9-13-01 [1-26-01-sof2]
|
|
if (cinfo.output_components != 4 && cinfo.output_components != 1) {
|
|
Com_Printf("JPG %s is unsupported color depth (%d)\n",filename,cinfo.output_components);
|
|
}
|
|
|
|
out = (unsigned char *)Z_Malloc(cinfo.output_width*cinfo.output_height*4, TAG_TEMP_WORKSPACE, qfalse );
|
|
|
|
*pic = out;
|
|
*width = cinfo.output_width;
|
|
*height = cinfo.output_height;
|
|
|
|
/* Step 6: while (scan lines remain to be read) */
|
|
/* jpeg_read_scanlines(...); */
|
|
|
|
/* Here we use the library's state variable cinfo.output_scanline as the
|
|
* loop counter, so that we don't have to keep track ourselves.
|
|
*/
|
|
while (cinfo.output_scanline < cinfo.output_height) {
|
|
/* jpeg_read_scanlines expects an array of pointers to scanlines.
|
|
* Here the array is only one element long, but you could ask for
|
|
* more than one scanline at a time if that's more convenient.
|
|
*/
|
|
bbuf = ((out+(row_stride*cinfo.output_scanline)));
|
|
buffer = &bbuf;
|
|
(void) jpeg_read_scanlines(&cinfo, buffer, 1);
|
|
}
|
|
|
|
if (cinfo.output_components == 1)
|
|
{
|
|
byte *pbDest = (*pic + (cinfo.output_width * cinfo.output_height * 4))-1;
|
|
byte *pbSrc = (*pic + (cinfo.output_width * cinfo.output_height ))-1;
|
|
int iPixels = cinfo.output_width * cinfo.output_height;
|
|
|
|
for (int i=0; i<iPixels; i++)
|
|
{
|
|
byte b = *pbSrc--;
|
|
*pbDest-- = 255;
|
|
*pbDest-- = b;
|
|
*pbDest-- = b;
|
|
*pbDest-- = b;
|
|
}
|
|
}
|
|
else
|
|
// clear all the alphas to 255
|
|
{
|
|
int i, j;
|
|
byte *buf;
|
|
|
|
buf = *pic;
|
|
|
|
j = cinfo.output_width * cinfo.output_height * 4;
|
|
for ( i = 3 ; i < j ; i+=4 )
|
|
{
|
|
buf[i] = 255;
|
|
}
|
|
}
|
|
|
|
/* Step 7: Finish decompression */
|
|
|
|
(void) jpeg_finish_decompress(&cinfo);
|
|
/* We can ignore the return value since suspension is not possible
|
|
* with the stdio data source.
|
|
*/
|
|
|
|
/* Step 8: Release JPEG decompression object */
|
|
|
|
/* This is an important step since it will release a good deal of memory. */
|
|
jpeg_destroy_decompress(&cinfo);
|
|
|
|
/* After finish_decompress, we can close the input file.
|
|
* Here we postpone it until after no more JPEG errors are possible,
|
|
* so as to simplify the setjmp error logic above. (Actually, I don't
|
|
* think that jpeg_destroy can do an error exit, but why assume anything...)
|
|
*/
|
|
Z_Free(fbuffer);
|
|
/* At this point you may want to check to see whether any corrupt-data
|
|
* warnings occurred (test whether jerr.pub.num_warnings is nonzero).
|
|
*/
|
|
|
|
/* And we're done! */
|
|
}
|
|
|
|
|
|
/* Expanded data destination object for stdio output */
|
|
|
|
typedef struct {
|
|
struct jpeg_destination_mgr pub; /* public fields */
|
|
|
|
byte* outfile; /* target stream */
|
|
int size;
|
|
} my_destination_mgr;
|
|
|
|
typedef my_destination_mgr * my_dest_ptr;
|
|
|
|
|
|
/*
|
|
* Initialize destination --- called by jpeg_start_compress
|
|
* before any data is actually written.
|
|
*/
|
|
|
|
void init_destination (j_compress_ptr cinfo)
|
|
{
|
|
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
|
|
|
dest->pub.next_output_byte = dest->outfile;
|
|
dest->pub.free_in_buffer = dest->size;
|
|
}
|
|
|
|
|
|
/*
|
|
* Empty the output buffer --- called whenever buffer fills up.
|
|
*
|
|
* In typical applications, this should write the entire output buffer
|
|
* (ignoring the current state of next_output_byte & free_in_buffer),
|
|
* reset the pointer & count to the start of the buffer, and return TRUE
|
|
* indicating that the buffer has been dumped.
|
|
*
|
|
* In applications that need to be able to suspend compression due to output
|
|
* overrun, a FALSE return indicates that the buffer cannot be emptied now.
|
|
* In this situation, the compressor will return to its caller (possibly with
|
|
* an indication that it has not accepted all the supplied scanlines). The
|
|
* application should resume compression after it has made more room in the
|
|
* output buffer. Note that there are substantial restrictions on the use of
|
|
* suspension --- see the documentation.
|
|
*
|
|
* When suspending, the compressor will back up to a convenient restart point
|
|
* (typically the start of the current MCU). next_output_byte & free_in_buffer
|
|
* indicate where the restart point will be if the current call returns FALSE.
|
|
* Data beyond this point will be regenerated after resumption, so do not
|
|
* write it out when emptying the buffer externally.
|
|
*/
|
|
|
|
boolean empty_output_buffer (j_compress_ptr cinfo)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Compression initialization.
|
|
* Before calling this, all parameters and a data destination must be set up.
|
|
*
|
|
* We require a write_all_tables parameter as a failsafe check when writing
|
|
* multiple datastreams from the same compression object. Since prior runs
|
|
* will have left all the tables marked sent_table=TRUE, a subsequent run
|
|
* would emit an abbreviated stream (no tables) by default. This may be what
|
|
* is wanted, but for safety's sake it should not be the default behavior:
|
|
* programmers should have to make a deliberate choice to emit abbreviated
|
|
* images. Therefore the documentation and examples should encourage people
|
|
* to pass write_all_tables=TRUE; then it will take active thought to do the
|
|
* wrong thing.
|
|
*/
|
|
|
|
GLOBAL void
|
|
jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
|
|
{
|
|
if (cinfo->global_state != CSTATE_START)
|
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
|
|
|
if (write_all_tables)
|
|
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
|
|
|
|
/* (Re)initialize error mgr and destination modules */
|
|
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
|
(*cinfo->dest->init_destination) (cinfo);
|
|
/* Perform master selection of active modules */
|
|
jinit_compress_master(cinfo);
|
|
/* Set up for the first pass */
|
|
(*cinfo->master->prepare_for_pass) (cinfo);
|
|
/* Ready for application to drive first pass through jpeg_write_scanlines
|
|
* or jpeg_write_raw_data.
|
|
*/
|
|
cinfo->next_scanline = 0;
|
|
cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
|
|
}
|
|
|
|
|
|
/*
|
|
* Write some scanlines of data to the JPEG compressor.
|
|
*
|
|
* The return value will be the number of lines actually written.
|
|
* This should be less than the supplied num_lines only in case that
|
|
* the data destination module has requested suspension of the compressor,
|
|
* or if more than image_height scanlines are passed in.
|
|
*
|
|
* Note: we warn about excess calls to jpeg_write_scanlines() since
|
|
* this likely signals an application programmer error. However,
|
|
* excess scanlines passed in the last valid call are *silently* ignored,
|
|
* so that the application need not adjust num_lines for end-of-image
|
|
* when using a multiple-scanline buffer.
|
|
*/
|
|
|
|
GLOBAL JDIMENSION
|
|
jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
|
|
JDIMENSION num_lines)
|
|
{
|
|
JDIMENSION row_ctr, rows_left;
|
|
|
|
if (cinfo->global_state != CSTATE_SCANNING)
|
|
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
|
if (cinfo->next_scanline >= cinfo->image_height)
|
|
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
|
|
|
/* Call progress monitor hook if present */
|
|
if (cinfo->progress != NULL) {
|
|
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
|
|
cinfo->progress->pass_limit = (long) cinfo->image_height;
|
|
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
|
}
|
|
|
|
/* Give master control module another chance if this is first call to
|
|
* jpeg_write_scanlines. This lets output of the frame/scan headers be
|
|
* delayed so that application can write COM, etc, markers between
|
|
* jpeg_start_compress and jpeg_write_scanlines.
|
|
*/
|
|
if (cinfo->master->call_pass_startup)
|
|
(*cinfo->master->pass_startup) (cinfo);
|
|
|
|
/* Ignore any extra scanlines at bottom of image. */
|
|
rows_left = cinfo->image_height - cinfo->next_scanline;
|
|
if (num_lines > rows_left)
|
|
num_lines = rows_left;
|
|
|
|
row_ctr = 0;
|
|
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
|
|
cinfo->next_scanline += row_ctr;
|
|
return row_ctr;
|
|
}
|
|
|
|
/*
|
|
* Terminate destination --- called by jpeg_finish_compress
|
|
* after all data has been written. Usually needs to flush buffer.
|
|
*
|
|
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
|
|
* application must deal with any cleanup that should happen even
|
|
* for error exit.
|
|
*/
|
|
|
|
static int hackSize;
|
|
|
|
void term_destination (j_compress_ptr cinfo)
|
|
{
|
|
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
|
size_t datacount = dest->size - dest->pub.free_in_buffer;
|
|
hackSize = datacount;
|
|
}
|
|
|
|
|
|
/*
|
|
* Prepare for output to a stdio stream.
|
|
* The caller must have already opened the stream, and is responsible
|
|
* for closing it after finishing compression.
|
|
*/
|
|
|
|
void jpegDest (j_compress_ptr cinfo, byte* outfile, int size)
|
|
{
|
|
my_dest_ptr dest;
|
|
|
|
/* The destination object is made permanent so that multiple JPEG images
|
|
* can be written to the same file without re-executing jpeg_stdio_dest.
|
|
* This makes it dangerous to use this manager and a different destination
|
|
* manager serially with the same JPEG object, because their private object
|
|
* sizes may be different. Caveat programmer.
|
|
*/
|
|
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
|
|
cinfo->dest = (struct jpeg_destination_mgr *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
|
sizeof(my_destination_mgr));
|
|
}
|
|
|
|
dest = (my_dest_ptr) cinfo->dest;
|
|
dest->pub.init_destination = init_destination;
|
|
dest->pub.empty_output_buffer = empty_output_buffer;
|
|
dest->pub.term_destination = term_destination;
|
|
dest->outfile = outfile;
|
|
dest->size = size;
|
|
}
|
|
|
|
void SaveJPG(char * filename, int quality, int image_width, int image_height, unsigned char *image_buffer) {
|
|
/* This struct contains the JPEG compression parameters and pointers to
|
|
* working space (which is allocated as needed by the JPEG library).
|
|
* It is possible to have several such structures, representing multiple
|
|
* compression/decompression processes, in existence at once. We refer
|
|
* to any one struct (and its associated working data) as a "JPEG object".
|
|
*/
|
|
struct jpeg_compress_struct cinfo;
|
|
/* This struct represents a JPEG error handler. It is declared separately
|
|
* because applications often want to supply a specialized error handler
|
|
* (see the second half of this file for an example). But here we just
|
|
* take the easy way out and use the standard error handler, which will
|
|
* print a message on stderr and call exit() if compression fails.
|
|
* Note that this struct must live as long as the main JPEG parameter
|
|
* struct, to avoid dangling-pointer problems.
|
|
*/
|
|
struct jpeg_error_mgr jerr;
|
|
/* More stuff */
|
|
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
|
|
int row_stride; /* physical row width in image buffer */
|
|
unsigned char *out;
|
|
|
|
/* Step 1: allocate and initialize JPEG compression object */
|
|
|
|
/* We have to set up the error handler first, in case the initialization
|
|
* step fails. (Unlikely, but it could happen if you are out of memory.)
|
|
* This routine fills in the contents of struct jerr, and returns jerr's
|
|
* address which we place into the link field in cinfo.
|
|
*/
|
|
cinfo.err = jpeg_std_error(&jerr);
|
|
/* Now we can initialize the JPEG compression object. */
|
|
jpeg_create_compress(&cinfo);
|
|
|
|
/* Step 2: specify data destination (eg, a file) */
|
|
/* Note: steps 2 and 3 can be done in either order. */
|
|
|
|
/* Here we use the library-supplied code to send compressed data to a
|
|
* stdio stream. You can also write your own code to do something else.
|
|
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
|
|
* requires it in order to write binary files.
|
|
*/
|
|
out = (unsigned char *)Hunk_AllocateTempMemory(image_width*image_height*4);
|
|
jpegDest(&cinfo, out, image_width*image_height*4);
|
|
|
|
/* Step 3: set parameters for compression */
|
|
|
|
/* First we supply a description of the input image.
|
|
* Four fields of the cinfo struct must be filled in:
|
|
*/
|
|
cinfo.image_width = image_width; /* image width and height, in pixels */
|
|
cinfo.image_height = image_height;
|
|
cinfo.input_components = 4; /* # of color components per pixel */
|
|
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
|
|
/* Now use the library's routine to set default compression parameters.
|
|
* (You must set at least cinfo.in_color_space before calling this,
|
|
* since the defaults depend on the source color space.)
|
|
*/
|
|
jpeg_set_defaults(&cinfo);
|
|
/* Now you can set any non-default parameters you wish to.
|
|
* Here we just illustrate the use of quality (quantization table) scaling:
|
|
*/
|
|
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
|
|
|
|
/* Step 4: Start compressor */
|
|
|
|
/* TRUE ensures that we will write a complete interchange-JPEG file.
|
|
* Pass TRUE unless you are very sure of what you're doing.
|
|
*/
|
|
jpeg_start_compress(&cinfo, TRUE);
|
|
|
|
/* Step 5: while (scan lines remain to be written) */
|
|
/* jpeg_write_scanlines(...); */
|
|
|
|
/* Here we use the library's state variable cinfo.next_scanline as the
|
|
* loop counter, so that we don't have to keep track ourselves.
|
|
* To keep things simple, we pass one scanline per call; you can pass
|
|
* more if you wish, though.
|
|
*/
|
|
row_stride = image_width * 4; /* JSAMPLEs per row in image_buffer */
|
|
|
|
while (cinfo.next_scanline < cinfo.image_height) {
|
|
/* jpeg_write_scanlines expects an array of pointers to scanlines.
|
|
* Here the array is only one element long, but you could pass
|
|
* more than one scanline at a time if that's more convenient.
|
|
*/
|
|
row_pointer[0] = & image_buffer[((cinfo.image_height-1)*row_stride)-cinfo.next_scanline * row_stride];
|
|
(void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
|
|
}
|
|
|
|
/* Step 6: Finish compression */
|
|
|
|
jpeg_finish_compress(&cinfo);
|
|
/* After finish_compress, we can close the output file. */
|
|
FS_WriteFile( filename, out, hackSize );
|
|
|
|
Hunk_FreeTempMemory(out);
|
|
|
|
/* Step 7: release JPEG compression object */
|
|
|
|
/* This is an important step since it will release a good deal of memory. */
|
|
jpeg_destroy_compress(&cinfo);
|
|
|
|
/* And we're done! */
|
|
}
|
|
|
|
//===================================================================
|
|
|
|
/*
|
|
=================
|
|
R_LoadImage
|
|
|
|
Loads any of the supported image types into a cannonical
|
|
32 bit format.
|
|
=================
|
|
*/
|
|
void R_LoadImage( const char *shortname, byte **pic, int *width, int *height, GLenum *format ) {
|
|
int bytedepth;
|
|
char name[MAX_QPATH];
|
|
|
|
*pic = NULL;
|
|
*width = 0;
|
|
*height = 0;
|
|
*format = GL_RGBA;
|
|
COM_StripExtension(shortname,name,sizeof(name));
|
|
COM_DefaultExtension(name, sizeof(name), ".jpg");
|
|
LoadJPG( name, pic, width, height );
|
|
if (*pic) {
|
|
return;
|
|
}
|
|
|
|
COM_StripExtension(shortname,name,sizeof(name));
|
|
COM_DefaultExtension(name, sizeof(name), ".png");
|
|
LoadPNG32( name, pic, width, height, &bytedepth ); // try png first
|
|
if (*pic){
|
|
return;
|
|
}
|
|
|
|
COM_StripExtension(shortname,name,sizeof(name));
|
|
COM_DefaultExtension(name, sizeof(name), ".tga");
|
|
LoadTGA( name, pic, width, height ); // try tga first
|
|
if (*pic){
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
void R_LoadDataImage( const char *name, byte **pic, int *width, int *height)
|
|
{
|
|
int len;
|
|
char work[MAX_QPATH];
|
|
|
|
*pic = NULL;
|
|
*width = 0;
|
|
*height = 0;
|
|
|
|
len = strlen(name);
|
|
if(len >= MAX_QPATH)
|
|
{
|
|
return;
|
|
}
|
|
if (len < 5)
|
|
{
|
|
return;
|
|
}
|
|
// MD_PushTag(TAG_DATA_IMAGE_LOAD);
|
|
|
|
strcpy(work, name);
|
|
|
|
COM_DefaultExtension( work, sizeof( work ), ".png" );
|
|
LoadPNG8( work, pic, width, height );
|
|
|
|
if (!pic || !*pic)
|
|
{ //png load failed, try jpeg
|
|
strcpy(work, name);
|
|
COM_DefaultExtension( work, sizeof( work ), ".jpg" );
|
|
LoadJPG( work, pic, width, height );
|
|
}
|
|
|
|
if (!pic || !*pic)
|
|
{ //both png and jpeg failed, try targa
|
|
strcpy(work, name);
|
|
COM_DefaultExtension( work, sizeof( work ), ".tga" );
|
|
LoadTGA( work, pic, width, height );
|
|
}
|
|
|
|
if(*pic)
|
|
{
|
|
// MD_PopTag();
|
|
return;
|
|
}
|
|
// Dataimage loading failed
|
|
Com_Printf("Couldn't read %s -- dataimage load failed\n", name);
|
|
// MD_PopTag();
|
|
}
|
|
|
|
#endif // !DEDICATED
|
|
|
|
void R_InvertImage(byte *data, int width, int height, int depth)
|
|
{
|
|
byte *newData;
|
|
byte *oldData;
|
|
byte *saveData;
|
|
int y, stride;
|
|
|
|
stride = width * depth;
|
|
|
|
oldData = data + ((height - 1) * stride);
|
|
newData = (byte *)Z_Malloc(height * stride, TAG_TEMP_IMAGE, qfalse );
|
|
saveData = newData;
|
|
|
|
for(y = 0; y < height; y++)
|
|
{
|
|
memcpy(newData, oldData, stride);
|
|
newData += stride;
|
|
oldData -= stride;
|
|
}
|
|
memcpy(data, saveData, height * stride);
|
|
Z_Free(saveData);
|
|
}
|
|
|
|
// Lanczos3 image resampling. Better than bicubic, based on sin(x)/x algorithm
|
|
|
|
#define LANCZOS3 (3.0f)
|
|
#define M_PI_OVER_3 (M_PI / 3.0f)
|
|
|
|
typedef struct
|
|
{
|
|
int pixel;
|
|
float weight;
|
|
} contrib_t;
|
|
|
|
typedef struct
|
|
{
|
|
int n; // number of contributors
|
|
contrib_t *p; // pointer to list of contributions
|
|
} contrib_list_t;
|
|
|
|
// sin(x)/x * sin(x/3)/(x/3)
|
|
|
|
float Lanczos3(float t)
|
|
{
|
|
if(!t)
|
|
{
|
|
return(1.0f);
|
|
}
|
|
t = (float)fabs(t);
|
|
if(t < 3.0f)
|
|
{
|
|
return(sinf(t * M_PI) * sinf(t * M_PI_OVER_3) / (t * M_PI * t * M_PI_OVER_3));
|
|
}
|
|
return(0.0f);
|
|
}
|
|
|
|
void R_Resample(byte *source, int swidth, int sheight, byte *dest, int dwidth, int dheight, int components)
|
|
{
|
|
int i, j, k, l, count, left, right, num;
|
|
int pixel;
|
|
byte *raster;
|
|
float center, weight, scale, width, height;
|
|
contrib_list_t *contributors;
|
|
|
|
// MD_PushTag(TAG_RESAMPLE);
|
|
|
|
byte *work = (byte *)Z_Malloc(dwidth * sheight * components, TAG_RESAMPLE);
|
|
|
|
// Pre calculate filter contributions for rows
|
|
contributors = (contrib_list_t *)Z_Malloc(sizeof(contrib_list_t) * dwidth, TAG_RESAMPLE);
|
|
|
|
float xscale = (float)dwidth / (float)swidth;
|
|
|
|
if(xscale < 1.0f)
|
|
{
|
|
width = ceilf(LANCZOS3 / xscale);
|
|
scale = xscale;
|
|
}
|
|
else
|
|
{
|
|
width = LANCZOS3;
|
|
scale = 1.0f;
|
|
}
|
|
num = ((int)width * 2) + 1;
|
|
|
|
for(i = 0; i < dwidth; i++)
|
|
{
|
|
contributors[i].n = 0;
|
|
contributors[i].p = (contrib_t *)Z_Malloc(num * sizeof(contrib_t), TAG_RESAMPLE);
|
|
|
|
center = (float)i / xscale;
|
|
left = (int)ceilf(center - width);
|
|
right = (int)floorf(center + width);
|
|
|
|
for(j = left; j <= right; j++)
|
|
{
|
|
weight = Lanczos3((center - (float)j) * scale) * scale;
|
|
if(j < 0)
|
|
{
|
|
pixel = -j;
|
|
}
|
|
else if(j >= swidth)
|
|
{
|
|
pixel = (swidth - j) + swidth - 1;
|
|
}
|
|
else
|
|
{
|
|
pixel = j;
|
|
}
|
|
count = contributors[i].n++;
|
|
contributors[i].p[count].pixel = pixel;
|
|
contributors[i].p[count].weight = weight;
|
|
}
|
|
}
|
|
// Apply filters to zoom horizontally from source to work
|
|
for(k = 0; k < sheight; k++)
|
|
{
|
|
raster = source + (k * swidth * components);
|
|
for(i = 0; i < dwidth; i++)
|
|
{
|
|
for(l = 0; l < components; l++)
|
|
{
|
|
weight = 0.0f;
|
|
for(j = 0; j < contributors[i].n; j++)
|
|
{
|
|
weight += raster[(contributors[i].p[j].pixel * components) + l] * contributors[i].p[j].weight;
|
|
}
|
|
pixel = (byte)Com_Clamp(0.0f, 255.0f, weight);
|
|
work[(k * dwidth * components) + (i * components) + l] = pixel;
|
|
}
|
|
}
|
|
}
|
|
// Clean up
|
|
for(i = 0; i < dwidth; i++)
|
|
{
|
|
Z_Free(contributors[i].p);
|
|
}
|
|
Z_Free(contributors);
|
|
|
|
// Columns
|
|
contributors = (contrib_list_t *)Z_Malloc(sizeof(contrib_list_t) * dheight, TAG_RESAMPLE);
|
|
|
|
float yscale = (float)dheight / (float)sheight;
|
|
if(yscale < 1.0f)
|
|
{
|
|
height = ceilf(LANCZOS3 / yscale);
|
|
scale = yscale;
|
|
}
|
|
else
|
|
{
|
|
height = LANCZOS3;
|
|
scale = 1.0f;
|
|
}
|
|
num = ((int)height * 2) + 1;
|
|
|
|
for(i = 0; i < dheight; i++)
|
|
{
|
|
contributors[i].n = 0;
|
|
contributors[i].p = (contrib_t *)Z_Malloc(num * sizeof(contrib_t), TAG_RESAMPLE);
|
|
|
|
center = (float)i / yscale;
|
|
left = (int)ceilf(center - height);
|
|
right = (int)floorf(center + height);
|
|
|
|
for(j = left; j <= right; j++)
|
|
{
|
|
weight = Lanczos3((center - (float)j) * scale) * scale;
|
|
if(j < 0)
|
|
{
|
|
pixel = -j;
|
|
}
|
|
else if(j >= sheight)
|
|
{
|
|
pixel = (sheight - j) + sheight - 1;
|
|
}
|
|
else
|
|
{
|
|
pixel = j;
|
|
}
|
|
count = contributors[i].n++;
|
|
contributors[i].p[count].pixel = pixel;
|
|
contributors[i].p[count].weight = weight;
|
|
}
|
|
}
|
|
// Apply filter to columns
|
|
for(k = 0; k < dwidth; k++)
|
|
{
|
|
for(l = 0; l < components; l++)
|
|
{
|
|
for(i = 0; i < dheight; i++)
|
|
{
|
|
weight = 0.0f;
|
|
for(j = 0; j < contributors[i].n; j++)
|
|
{
|
|
weight += work[(contributors[i].p[j].pixel * dwidth * components) + (k * components) + l] * contributors[i].p[j].weight;
|
|
}
|
|
pixel = (byte)Com_Clamp(0.0f, 255.0f, weight);
|
|
dest[(i * dwidth * components) + (k * components) + l] = pixel;
|
|
}
|
|
}
|
|
}
|
|
// Clean up
|
|
for(i = 0; i < dheight; i++)
|
|
{
|
|
Z_Free(contributors[i].p);
|
|
}
|
|
Z_Free(contributors);
|
|
Z_Free(work);
|
|
|
|
// MD_PopTag();
|
|
}
|
|
|
|
#ifndef DEDICATED
|
|
|
|
/*
|
|
===============
|
|
R_FindImageFile
|
|
|
|
Finds or loads the given image.
|
|
Returns NULL if it fails, not a default image.
|
|
==============
|
|
*/
|
|
image_t *R_FindImageFile( const char *name, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode ) {
|
|
image_t *image;
|
|
int width, height;
|
|
byte *pic;
|
|
GLenum format;
|
|
|
|
if (!name
|
|
|| com_dedicated->integer // stop ghoul2 horribleness as regards image loading from server
|
|
)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
// need to do this here as well as in R_CreateImage, or R_FindImageFile_NoLoad() may complain about
|
|
// different clamp parms used...
|
|
//
|
|
if(glConfig.clampToEdgeAvailable && glWrapClampMode == GL_CLAMP) {
|
|
glWrapClampMode = GL_CLAMP_TO_EDGE;
|
|
}
|
|
|
|
image = R_FindImageFile_NoLoad(name, mipmap, allowPicmip, allowTC, glWrapClampMode );
|
|
if (image) {
|
|
return image;
|
|
}
|
|
|
|
//
|
|
// load the pic from disk
|
|
//
|
|
R_LoadImage( name, &pic, &width, &height, &format );
|
|
if ( pic == NULL ) { // if we dont get a successful load
|
|
return NULL; // bail
|
|
}
|
|
|
|
|
|
// refuse to find any files not power of 2 dims...
|
|
//
|
|
if ( (width&(width-1)) || (height&(height-1)) )
|
|
{
|
|
Com_Printf ("Refusing to load non-power-2-dims(%d,%d) pic \"%s\"...\n", width,height,name );
|
|
return NULL;
|
|
}
|
|
|
|
image = R_CreateImage( ( char * ) name, pic, width, height, format, mipmap, allowPicmip, allowTC, glWrapClampMode );
|
|
Z_Free( pic );
|
|
return image;
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_CreateDlightImage
|
|
================
|
|
*/
|
|
#define DLIGHT_SIZE 16
|
|
static void R_CreateDlightImage( void )
|
|
{
|
|
int width, height;
|
|
byte *pic;
|
|
GLenum format;
|
|
|
|
R_LoadImage("gfx/2d/dlight", &pic, &width, &height, &format);
|
|
if (pic)
|
|
{
|
|
tr.dlightImage = R_CreateImage("*dlight", pic, width, height, GL_RGBA, qfalse, qfalse, qfalse, GL_CLAMP );
|
|
Z_Free(pic);
|
|
}
|
|
else
|
|
{ // if we dont get a successful load
|
|
int x,y;
|
|
byte data[DLIGHT_SIZE][DLIGHT_SIZE][4];
|
|
int b;
|
|
|
|
// make a centered inverse-square falloff blob for dynamic lighting
|
|
for (x=0 ; x<DLIGHT_SIZE ; x++) {
|
|
for (y=0 ; y<DLIGHT_SIZE ; y++) {
|
|
float d;
|
|
|
|
d = ( DLIGHT_SIZE/2 - 0.5f - x ) * ( DLIGHT_SIZE/2 - 0.5f - x ) +
|
|
( DLIGHT_SIZE/2 - 0.5f - y ) * ( DLIGHT_SIZE/2 - 0.5f - y );
|
|
b = 4000 / d;
|
|
if (b > 255) {
|
|
b = 255;
|
|
} else if ( b < 75 ) {
|
|
b = 0;
|
|
}
|
|
data[y][x][0] =
|
|
data[y][x][1] =
|
|
data[y][x][2] = b;
|
|
data[y][x][3] = 255;
|
|
}
|
|
}
|
|
tr.dlightImage = R_CreateImage("*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, GL_RGBA, qfalse, qfalse, qfalse, GL_CLAMP );
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
R_InitFogTable
|
|
=================
|
|
*/
|
|
void R_InitFogTable( void ) {
|
|
int i;
|
|
float d;
|
|
float exp;
|
|
|
|
exp = 0.5;
|
|
|
|
for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) {
|
|
d = pow ( (float)i/(FOG_TABLE_SIZE-1), exp );
|
|
|
|
tr.fogTable[i] = d;
|
|
}
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_FogFactor
|
|
|
|
Returns a 0.0 to 1.0 fog density value
|
|
This is called for each texel of the fog texture on startup
|
|
and for each vertex of transparent shaders in fog dynamically
|
|
================
|
|
*/
|
|
float R_FogFactor( float s, float t ) {
|
|
float d;
|
|
|
|
s -= 1.0/512;
|
|
if ( s < 0 ) {
|
|
return 0;
|
|
}
|
|
if ( t < 1.0/32 ) {
|
|
return 0;
|
|
}
|
|
if ( t < 31.0/32 ) {
|
|
s *= (t - 1.0f/32.0f) / (30.0f/32.0f);
|
|
}
|
|
|
|
// we need to leave a lot of clamp range
|
|
s *= 8;
|
|
|
|
if ( s > 1.0 ) {
|
|
s = 1.0;
|
|
}
|
|
|
|
d = tr.fogTable[ (int)(s * (FOG_TABLE_SIZE-1)) ];
|
|
|
|
return d;
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_CreateFogImage
|
|
================
|
|
*/
|
|
#define FOG_S 256
|
|
#define FOG_T 32
|
|
static void R_CreateFogImage( void ) {
|
|
int x,y;
|
|
byte *data;
|
|
float g;
|
|
float d;
|
|
float borderColor[4];
|
|
|
|
data = (unsigned char *)Hunk_AllocateTempMemory( FOG_S * FOG_T * 4 );
|
|
|
|
g = 2.0;
|
|
|
|
// S is distance, T is depth
|
|
for (x=0 ; x<FOG_S ; x++) {
|
|
for (y=0 ; y<FOG_T ; y++) {
|
|
d = R_FogFactor( ( x + 0.5f ) / FOG_S, ( y + 0.5f ) / FOG_T );
|
|
|
|
data[(y*FOG_S+x)*4+0] =
|
|
data[(y*FOG_S+x)*4+1] =
|
|
data[(y*FOG_S+x)*4+2] = 255;
|
|
data[(y*FOG_S+x)*4+3] = 255*d;
|
|
}
|
|
}
|
|
// standard openGL clamping doesn't really do what we want -- it includes
|
|
// the border color at the edges. OpenGL 1.2 has clamp-to-edge, which does
|
|
// what we want.
|
|
tr.fogImage = R_CreateImage("*fog", (byte *)data, FOG_S, FOG_T, GL_RGBA, qfalse, qfalse, qfalse, GL_CLAMP );
|
|
Hunk_FreeTempMemory( data );
|
|
|
|
borderColor[0] = 1.0;
|
|
borderColor[1] = 1.0;
|
|
borderColor[2] = 1.0;
|
|
borderColor[3] = 1;
|
|
|
|
qglTexParameterfv( GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor );
|
|
}
|
|
|
|
/*
|
|
==================
|
|
R_CreateDefaultImage
|
|
==================
|
|
*/
|
|
#define DEFAULT_SIZE 16
|
|
static void R_CreateDefaultImage( void ) {
|
|
int x;
|
|
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
|
|
|
|
// the default image will be a box, to allow you to see the mapping coordinates
|
|
Com_Memset( data, 32, sizeof( data ) );
|
|
for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) {
|
|
data[0][x][0] =
|
|
data[0][x][1] =
|
|
data[0][x][2] =
|
|
data[0][x][3] = 255;
|
|
|
|
data[x][0][0] =
|
|
data[x][0][1] =
|
|
data[x][0][2] =
|
|
data[x][0][3] = 255;
|
|
|
|
data[DEFAULT_SIZE-1][x][0] =
|
|
data[DEFAULT_SIZE-1][x][1] =
|
|
data[DEFAULT_SIZE-1][x][2] =
|
|
data[DEFAULT_SIZE-1][x][3] = 255;
|
|
|
|
data[x][DEFAULT_SIZE-1][0] =
|
|
data[x][DEFAULT_SIZE-1][1] =
|
|
data[x][DEFAULT_SIZE-1][2] =
|
|
data[x][DEFAULT_SIZE-1][3] = 255;
|
|
}
|
|
tr.defaultImage = R_CreateImage("*default", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, GL_RGBA, qtrue, qfalse, qfalse, GL_REPEAT );
|
|
}
|
|
|
|
/*
|
|
==================
|
|
R_CreateBuiltinImages
|
|
==================
|
|
*/
|
|
void R_CreateBuiltinImages( void ) {
|
|
int x,y;
|
|
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
|
|
|
|
R_CreateDefaultImage();
|
|
|
|
// we use a solid white image instead of disabling texturing
|
|
Com_Memset( data, 255, sizeof( data ) );
|
|
tr.whiteImage = R_CreateImage("*white", (byte *)data, 8, 8, GL_RGBA, qfalse, qfalse, qfalse, GL_REPEAT);
|
|
|
|
tr.screenImage = R_CreateImage("*screen", (byte *)data, 8, 8, GL_RGBA, qfalse, qfalse, qfalse, GL_REPEAT );
|
|
|
|
// Create the scene glow image. - AReis
|
|
tr.screenGlow = 1024 + giTextureBindNum++;
|
|
qglDisable( GL_TEXTURE_2D );
|
|
qglEnable( GL_TEXTURE_RECTANGLE_EXT );
|
|
qglBindTexture( GL_TEXTURE_RECTANGLE_EXT, tr.screenGlow );
|
|
qglTexImage2D( GL_TEXTURE_RECTANGLE_EXT, 0, GL_RGBA16, glConfig.vidWidth, glConfig.vidHeight, 0, GL_RGB, GL_FLOAT, 0 );
|
|
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
|
|
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
|
|
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP );
|
|
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP );
|
|
|
|
// Create the scene image. - AReis
|
|
tr.sceneImage = 1024 + giTextureBindNum++;
|
|
qglBindTexture( GL_TEXTURE_RECTANGLE_EXT, tr.sceneImage );
|
|
qglTexImage2D( GL_TEXTURE_RECTANGLE_EXT, 0, GL_RGBA16, glConfig.vidWidth, glConfig.vidHeight, 0, GL_RGB, GL_FLOAT, 0 );
|
|
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
|
|
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
|
|
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP );
|
|
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP );
|
|
|
|
// Create the minimized scene blur image.
|
|
if ( r_DynamicGlowWidth->integer > glConfig.vidWidth )
|
|
{
|
|
r_DynamicGlowWidth->integer = glConfig.vidWidth;
|
|
}
|
|
if ( r_DynamicGlowHeight->integer > glConfig.vidHeight )
|
|
{
|
|
r_DynamicGlowHeight->integer = glConfig.vidHeight;
|
|
}
|
|
tr.blurImage = 1024 + giTextureBindNum++;
|
|
qglBindTexture( GL_TEXTURE_RECTANGLE_EXT, tr.blurImage );
|
|
qglTexImage2D( GL_TEXTURE_RECTANGLE_EXT, 0, GL_RGBA16, r_DynamicGlowWidth->integer, r_DynamicGlowHeight->integer, 0, GL_RGB, GL_FLOAT, 0 );
|
|
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
|
|
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
|
|
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP );
|
|
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP );
|
|
qglDisable( GL_TEXTURE_RECTANGLE_EXT );
|
|
qglEnable( GL_TEXTURE_2D );
|
|
|
|
|
|
// with overbright bits active, we need an image which is some fraction of full color,
|
|
// for default lightmaps, etc
|
|
for (x=0 ; x<DEFAULT_SIZE ; x++) {
|
|
for (y=0 ; y<DEFAULT_SIZE ; y++) {
|
|
data[y][x][0] =
|
|
data[y][x][1] =
|
|
data[y][x][2] = tr.identityLightByte;
|
|
data[y][x][3] = 255;
|
|
}
|
|
}
|
|
|
|
tr.identityLightImage = R_CreateImage("*identityLight", (byte *)data, 8, 8, GL_RGBA, qfalse, qfalse, qfalse, GL_REPEAT);
|
|
|
|
for(x=0;x<NUM_SCRATCH_IMAGES;x++) {
|
|
// scratchimage is usually used for cinematic drawing
|
|
tr.scratchImage[x] = R_CreateImage(va("*scratch%d",x), (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, GL_RGBA, qfalse, qtrue, qfalse, GL_CLAMP);
|
|
}
|
|
|
|
R_CreateDlightImage();
|
|
|
|
R_CreateFogImage();
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_SetColorMappings
|
|
===============
|
|
*/
|
|
void R_SetColorMappings( void ) {
|
|
int i, j;
|
|
float g;
|
|
int inf;
|
|
int shift;
|
|
|
|
// setup the overbright lighting
|
|
tr.overbrightBits = r_overBrightBits->integer;
|
|
if ( !glConfig.deviceSupportsGamma ) {
|
|
tr.overbrightBits = 0; // need hardware gamma for overbright
|
|
}
|
|
|
|
// never overbright in windowed mode
|
|
if ( !glConfig.isFullscreen )
|
|
{
|
|
tr.overbrightBits = 0;
|
|
}
|
|
|
|
if ( tr.overbrightBits > 1 ) {
|
|
tr.overbrightBits = 1;
|
|
}
|
|
|
|
if ( tr.overbrightBits < 0 ) {
|
|
tr.overbrightBits = 0;
|
|
}
|
|
|
|
tr.identityLight = 1.0f / ( 1 << tr.overbrightBits );
|
|
tr.identityLightByte = 255 * tr.identityLight;
|
|
|
|
|
|
if ( r_intensity->value < 1.0f ) {
|
|
Cvar_Set( "r_intensity", "1" );
|
|
}
|
|
|
|
if ( r_gamma->value < 0.5f ) {
|
|
Cvar_Set( "r_gamma", "0.5" );
|
|
} else if ( r_gamma->value > 3.0f ) {
|
|
Cvar_Set( "r_gamma", "3.0" );
|
|
}
|
|
|
|
g = r_gamma->value;
|
|
|
|
shift = tr.overbrightBits;
|
|
|
|
for ( i = 0; i < 256; i++ ) {
|
|
if ( g == 1 ) {
|
|
inf = i;
|
|
} else {
|
|
inf = 255 * pow ( i/255.0f, 1.0f / g ) + 0.5f;
|
|
}
|
|
inf <<= shift;
|
|
if (inf < 0) {
|
|
inf = 0;
|
|
}
|
|
if (inf > 255) {
|
|
inf = 255;
|
|
}
|
|
s_gammatable[i] = inf;
|
|
}
|
|
|
|
for (i=0 ; i<256 ; i++) {
|
|
j = i * r_intensity->value;
|
|
if (j > 255) {
|
|
j = 255;
|
|
}
|
|
s_intensitytable[i] = j;
|
|
}
|
|
|
|
if ( glConfig.deviceSupportsGamma )
|
|
{
|
|
GLimp_SetGamma( s_gammatable, s_gammatable, s_gammatable );
|
|
}
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_InitImages
|
|
===============
|
|
*/
|
|
void R_InitImages( void ) {
|
|
//memset(hashTable, 0, sizeof(hashTable)); // DO NOT DO THIS NOW (because of image cacheing) -ste.
|
|
// build brightness translation tables
|
|
R_SetColorMappings();
|
|
|
|
// create default texture and white texture
|
|
R_CreateBuiltinImages();
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_DeleteTextures
|
|
===============
|
|
*/
|
|
// (only gets called during vid_restart now (and app exit), not during map load)
|
|
//
|
|
void R_DeleteTextures( void ) {
|
|
|
|
R_Images_Clear();
|
|
GL_ResetBinds();
|
|
}
|
|
|
|
/*
|
|
============================================================================
|
|
|
|
SKINS
|
|
|
|
============================================================================
|
|
*/
|
|
|
|
/*
|
|
===============
|
|
RE_RegisterSkin
|
|
|
|
===============
|
|
*/
|
|
|
|
#endif // !DEDICATED
|
|
bool gServerSkinHack = false;
|
|
|
|
static char *CommaParse( char **data_p );
|
|
//can't be dec'd here since we need it for non-dedicated builds now as well.
|
|
|
|
shader_t *R_FindServerShader( const char *name, const int *lightmapIndex, const byte *styles, qboolean mipRawImage );
|
|
/*
|
|
===============
|
|
RE_SplitSkins
|
|
input = skinname, possibly being a macro for three skins
|
|
return= true if three part skins found
|
|
output= qualified names to three skins if return is true, undefined if false
|
|
===============
|
|
*/
|
|
bool RE_SplitSkins(const char *INname, char *skinhead, char *skintorso, char *skinlower)
|
|
{ //INname= "models/players/jedi_tf/|head01_skin1|torso01|lower01";
|
|
if (strchr(INname, '|'))
|
|
{
|
|
char name[MAX_QPATH];
|
|
strcpy(name, INname);
|
|
char *p = strchr(name, '|');
|
|
*p=0;
|
|
p++;
|
|
//fill in the base path
|
|
strcpy (skinhead, name);
|
|
strcpy (skintorso, name);
|
|
strcpy (skinlower, name);
|
|
|
|
//now get the the individual files
|
|
|
|
//advance to second
|
|
char *p2 = strchr(p, '|');
|
|
assert(p2);
|
|
if (!p2)
|
|
{
|
|
return false;
|
|
}
|
|
*p2=0;
|
|
p2++;
|
|
strcat (skinhead, p);
|
|
strcat (skinhead, ".skin");
|
|
|
|
|
|
//advance to third
|
|
p = strchr(p2, '|');
|
|
assert(p);
|
|
if (!p)
|
|
{
|
|
return false;
|
|
}
|
|
*p=0;
|
|
p++;
|
|
strcat (skintorso,p2);
|
|
strcat (skintorso, ".skin");
|
|
|
|
strcat (skinlower,p);
|
|
strcat (skinlower, ".skin");
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// given a name, go get the skin we want and return
|
|
qhandle_t RE_RegisterIndividualSkin( const char *name , qhandle_t hSkin)
|
|
{
|
|
skin_t *skin;
|
|
skinSurface_t *surf;
|
|
char *text, *text_p;
|
|
char *token;
|
|
char surfName[MAX_QPATH];
|
|
|
|
// load and parse the skin file
|
|
FS_ReadFile( name, (void **)&text );
|
|
if ( !text ) {
|
|
#ifndef FINAL_BUILD
|
|
Com_Printf( "WARNING: RE_RegisterSkin( '%s' ) failed to load!\n", name );
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
assert (tr.skins[hSkin]); //should already be setup, but might be an 3part append
|
|
|
|
skin = tr.skins[hSkin];
|
|
|
|
text_p = text;
|
|
while ( text_p && *text_p ) {
|
|
// get surface name
|
|
token = CommaParse( &text_p );
|
|
Q_strncpyz( surfName, token, sizeof( surfName ) );
|
|
|
|
if ( !token[0] ) {
|
|
break;
|
|
}
|
|
// lowercase the surface name so skin compares are faster
|
|
Q_strlwr( surfName );
|
|
|
|
if ( *text_p == ',' ) {
|
|
text_p++;
|
|
}
|
|
|
|
if ( !strncmp( token, "tag_", 4 ) ) { //these aren't in there, but just in case you load an id style one...
|
|
continue;
|
|
}
|
|
|
|
// parse the shader name
|
|
token = CommaParse( &text_p );
|
|
|
|
if ( !strcmp( &surfName[strlen(surfName)-4], "_off") )
|
|
{
|
|
if ( !strcmp( token ,"*off" ) )
|
|
{
|
|
continue; //don't need these double offs
|
|
}
|
|
surfName[strlen(surfName)-4] = 0; //remove the "_off"
|
|
}
|
|
if (sizeof( skin->surfaces) / sizeof( skin->surfaces[0] ) <= skin->numSurfaces)
|
|
{
|
|
assert( sizeof( skin->surfaces) / sizeof( skin->surfaces[0] ) > skin->numSurfaces );
|
|
Com_Printf( "WARNING: RE_RegisterSkin( '%s' ) more than %d surfaces!\n", name, sizeof( skin->surfaces) / sizeof( skin->surfaces[0] ) );
|
|
break;
|
|
}
|
|
surf = skin->surfaces[ skin->numSurfaces ] = (skinSurface_t *) Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low );
|
|
Q_strncpyz( surf->name, surfName, sizeof( surf->name ) );
|
|
|
|
if (gServerSkinHack)
|
|
{
|
|
surf->shader = R_FindServerShader( token, lightmapsNone, stylesDefault, qtrue );
|
|
}
|
|
else
|
|
{
|
|
surf->shader = R_FindShader( token, lightmapsNone, stylesDefault, qtrue );
|
|
}
|
|
skin->numSurfaces++;
|
|
}
|
|
|
|
FS_FreeFile( text );
|
|
|
|
|
|
// never let a skin have 0 shaders
|
|
if ( skin->numSurfaces == 0 ) {
|
|
return 0; // use default skin
|
|
}
|
|
|
|
return hSkin;
|
|
}
|
|
|
|
qhandle_t RE_RegisterSkin( const char *name ) {
|
|
qhandle_t hSkin;
|
|
skin_t *skin;
|
|
|
|
if ( !name || !name[0] ) {
|
|
Com_Printf( "Empty name passed to RE_RegisterSkin\n" );
|
|
return 0;
|
|
}
|
|
|
|
if ( strlen( name ) >= MAX_QPATH ) {
|
|
Com_Printf( "Skin name exceeds MAX_QPATH\n" );
|
|
return 0;
|
|
}
|
|
|
|
// see if the skin is already loaded
|
|
for ( hSkin = 1; hSkin < tr.numSkins ; hSkin++ ) {
|
|
skin = tr.skins[hSkin];
|
|
if ( !Q_stricmp( skin->name, name ) ) {
|
|
if( skin->numSurfaces == 0 ) {
|
|
return 0; // default skin
|
|
}
|
|
return hSkin;
|
|
}
|
|
}
|
|
|
|
// allocate a new skin
|
|
if ( tr.numSkins == MAX_SKINS ) {
|
|
Com_Printf( "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name );
|
|
return 0;
|
|
}
|
|
tr.numSkins++;
|
|
skin = (struct skin_s *)Hunk_Alloc( sizeof( skin_t ), h_low );
|
|
tr.skins[hSkin] = skin;
|
|
Q_strncpyz( skin->name, name, sizeof( skin->name ) );
|
|
skin->numSurfaces = 0;
|
|
|
|
// make sure the render thread is stopped
|
|
R_SyncRenderThread();
|
|
|
|
// If not a .skin file, load as a single shader
|
|
if ( strcmp( name + strlen( name ) - 5, ".skin" ) ) {
|
|
/* skin->numSurfaces = 1;
|
|
skin->surfaces[0] = (skinSurface_t *)Hunk_Alloc( sizeof(skin->surfaces[0]), h_low );
|
|
skin->surfaces[0]->shader = R_FindShader( name, lightmapsNone, stylesDefault, qtrue );
|
|
return hSkin;
|
|
*/
|
|
}
|
|
|
|
char skinhead[MAX_QPATH]={0};
|
|
char skintorso[MAX_QPATH]={0};
|
|
char skinlower[MAX_QPATH]={0};
|
|
if ( RE_SplitSkins(name, (char*)&skinhead, (char*)&skintorso, (char*)&skinlower ) )
|
|
{//three part
|
|
hSkin = RE_RegisterIndividualSkin(skinhead, hSkin);
|
|
if (hSkin)
|
|
{
|
|
hSkin = RE_RegisterIndividualSkin(skintorso, hSkin);
|
|
if (hSkin)
|
|
{
|
|
hSkin = RE_RegisterIndividualSkin(skinlower, hSkin);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{//single skin
|
|
hSkin = RE_RegisterIndividualSkin(name, hSkin);
|
|
}
|
|
return(hSkin);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
==================
|
|
CommaParse
|
|
|
|
This is unfortunate, but the skin files aren't
|
|
compatable with our normal parsing rules.
|
|
==================
|
|
*/
|
|
static char *CommaParse( char **data_p ) {
|
|
int c = 0, len;
|
|
char *data;
|
|
static char com_token[MAX_TOKEN_CHARS];
|
|
|
|
data = *data_p;
|
|
len = 0;
|
|
com_token[0] = 0;
|
|
|
|
// make sure incoming data is valid
|
|
if ( !data ) {
|
|
*data_p = NULL;
|
|
return com_token;
|
|
}
|
|
|
|
while ( 1 ) {
|
|
// skip whitespace
|
|
while( (c = *data) <= ' ') {
|
|
if( !c ) {
|
|
break;
|
|
}
|
|
data++;
|
|
}
|
|
|
|
|
|
c = *data;
|
|
|
|
// skip double slash comments
|
|
if ( c == '/' && data[1] == '/' )
|
|
{
|
|
while (*data && *data != '\n')
|
|
data++;
|
|
}
|
|
// skip /* */ comments
|
|
else if ( c=='/' && data[1] == '*' )
|
|
{
|
|
while ( *data && ( *data != '*' || data[1] != '/' ) )
|
|
{
|
|
data++;
|
|
}
|
|
if ( *data )
|
|
{
|
|
data += 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ( c == 0 ) {
|
|
return "";
|
|
}
|
|
|
|
// handle quoted strings
|
|
if (c == '\"')
|
|
{
|
|
data++;
|
|
while (1)
|
|
{
|
|
c = *data++;
|
|
if (c=='\"' || !c)
|
|
{
|
|
com_token[len] = 0;
|
|
*data_p = ( char * ) data;
|
|
return com_token;
|
|
}
|
|
if (len < MAX_TOKEN_CHARS)
|
|
{
|
|
com_token[len] = c;
|
|
len++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// parse a regular word
|
|
do
|
|
{
|
|
if (len < MAX_TOKEN_CHARS)
|
|
{
|
|
com_token[len] = c;
|
|
len++;
|
|
}
|
|
data++;
|
|
c = *data;
|
|
} while (c>32 && c != ',' );
|
|
|
|
if (len == MAX_TOKEN_CHARS)
|
|
{
|
|
// Com_Printf ("Token exceeded %i chars, discarded.\n", MAX_TOKEN_CHARS);
|
|
len = 0;
|
|
}
|
|
com_token[len] = 0;
|
|
|
|
*data_p = ( char * ) data;
|
|
return com_token;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
RE_RegisterServerSkin
|
|
|
|
Mangled version of the above function to load .skin files on the server.
|
|
===============
|
|
*/
|
|
extern qboolean Com_TheHunkMarkHasBeenMade(void);
|
|
extern qboolean ShaderHashTableExists(void);
|
|
qhandle_t RE_RegisterServerSkin( const char *name ) {
|
|
qhandle_t r;
|
|
|
|
if (com_cl_running &&
|
|
com_cl_running->integer &&
|
|
Com_TheHunkMarkHasBeenMade() &&
|
|
ShaderHashTableExists())
|
|
{ //If the client is running then we can go straight into the normal registerskin func
|
|
return RE_RegisterSkin(name);
|
|
}
|
|
|
|
gServerSkinHack = true;
|
|
r = RE_RegisterSkin(name);
|
|
gServerSkinHack = false;
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_InitSkins
|
|
===============
|
|
*/
|
|
void R_InitSkins( void ) {
|
|
skin_t *skin;
|
|
|
|
tr.numSkins = 1;
|
|
|
|
// make the default skin have all default shaders
|
|
skin = tr.skins[0] = (struct skin_s *)/*ri.*/Hunk_Alloc( sizeof( skin_t ), h_low );
|
|
Q_strncpyz( skin->name, "<default skin>", sizeof( skin->name ) );
|
|
skin->numSurfaces = 1;
|
|
skin->surfaces[0] = (skinSurface_t *)/*ri.*/Hunk_Alloc( sizeof( skinSurface_t ), h_low );
|
|
skin->surfaces[0]->shader = tr.defaultShader;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_GetSkinByHandle
|
|
===============
|
|
*/
|
|
skin_t *R_GetSkinByHandle( qhandle_t hSkin ) {
|
|
if ( hSkin < 1 || hSkin >= tr.numSkins ) {
|
|
return tr.skins[0];
|
|
}
|
|
return tr.skins[ hSkin ];
|
|
}
|
|
|
|
#ifndef DEDICATED
|
|
/*
|
|
===============
|
|
R_SkinList_f
|
|
===============
|
|
*/
|
|
void R_SkinList_f( void ) {
|
|
int i, j;
|
|
skin_t *skin;
|
|
|
|
Com_Printf ( "------------------\n");
|
|
|
|
for ( i = 0 ; i < tr.numSkins ; i++ ) {
|
|
skin = tr.skins[i];
|
|
|
|
Com_Printf ("%3i:%s\n", i, skin->name );
|
|
for ( j = 0 ; j < skin->numSurfaces ; j++ ) {
|
|
Com_Printf (" %s = %s\n",
|
|
skin->surfaces[j]->name, skin->surfaces[j]->shader->name );
|
|
}
|
|
}
|
|
Com_Printf ( "------------------\n");
|
|
}
|
|
|
|
#endif // !DEDICATED
|