//Anything above this #include will be ignored by the compiler #include "../qcommon/exe_headers.h" // tr_image.c #include "tr_local.h" #ifndef DEDICATED #include "glext.h" #endif #include "../qcommon/platform.h" #pragma warning (push, 3) //go back down to 3 for the stl include #include #pragma warning (pop) using namespace std; /* * Include file for users of JPEG library. * You will need to have included system headers that define at least * the typedefs FILE and size_t before you can include jpeglib.h. * (stdio.h is sufficient on ANSI-conforming systems.) * You may also wish to include "jerror.h". */ #define JPEG_INTERNALS #include "../jpeg-6/jpeglib.h" #include "../png/png.h" #ifndef DEDICATED static void LoadTGA( const char *name, byte **pic, int *width, int *height ); static void LoadJPG( const char *name, byte **pic, int *width, int *height ); static byte s_intensitytable[256]; static unsigned char s_gammatable[256]; int gl_filter_min = GL_LINEAR_MIPMAP_NEAREST; int gl_filter_max = GL_LINEAR; //#define FILE_HASH_SIZE 1024 // actually the shader code still needs this (from another module, great), //static image_t* hashTable[FILE_HASH_SIZE]; /* ** R_GammaCorrect */ void R_GammaCorrect( byte *buffer, int bufSize ) { int i; for ( i = 0; i < bufSize; i++ ) { buffer[i] = s_gammatable[buffer[i]]; } } typedef struct { char *name; int minimize, maximize; } textureMode_t; textureMode_t modes[] = { {"GL_NEAREST", GL_NEAREST, GL_NEAREST}, {"GL_LINEAR", GL_LINEAR, GL_LINEAR}, {"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST}, {"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR}, {"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST}, {"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR} }; // makeup a nice clean, consistant name to query for and file under, for map<> usage... // static char *GenerateImageMappingName( const char *name ) { static char sName[MAX_QPATH]; int i=0; char letter; while (name[i] != '\0' && ivalue > glConfig.maxTextureFilterAnisotropy ) { Cvar_Set( "r_ext_texture_filter_anisotropic", va("%f",glConfig.maxTextureFilterAnisotropy) ); } // change all the existing mipmap texture objects R_Images_StartIteration(); while ( (glt = R_Images_GetNextIteration()) != NULL) { if ( glt->mipmap ) { GL_Bind (glt); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max); if(glConfig.maxTextureFilterAnisotropy>0) { if(r_ext_texture_filter_anisotropic->integer>1) { qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, r_ext_texture_filter_anisotropic->value); } else { qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.0f); } } } } } static float R_BytesPerTex (int format) { switch ( format ) { case 1: //"I " return 1; break; case 2: //"IA " return 2; break; case 3: //"RGB " return glConfig.colorBits/8.0f; break; case 4: //"RGBA " return glConfig.colorBits/8.0f; break; case GL_RGBA4: //"RGBA4" return 2; break; case GL_RGB5: //"RGB5 " return 2; break; case GL_RGBA8: //"RGBA8" return 4; break; case GL_RGB8: //"RGB8" return 4; break; case GL_RGB4_S3TC: //"S3TC " return 0.33333f; break; case GL_COMPRESSED_RGB_S3TC_DXT1_EXT: //"DXT1 " return 0.33333f; break; case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT: //"DXT5 " return 1; break; default: //"???? " return 4; } } /* =============== R_SumOfUsedImages =============== */ float R_SumOfUsedImages( qboolean bUseFormat ) { int total = 0; image_t *pImage; R_Images_StartIteration(); while ( (pImage = R_Images_GetNextIteration()) != NULL) { if ( pImage->frameUsed == tr.frameCount- 1 ) {//it has already been advanced for the next frame, so... if (bUseFormat) { float bytePerTex = R_BytesPerTex (pImage->internalFormat); total += bytePerTex * (pImage->width * pImage->height); } else { total += pImage->width * pImage->height; } } } return total; } /* =============== R_ImageList_f =============== */ void R_ImageList_f( void ) { int i=0; image_t *image; int texels=0; float texBytes = 0.0f; const char *yesno[] = {"no ", "yes"}; Com_Printf ( "\n -w-- -h-- -mm- -if-- wrap --name-------\n"); int iNumImages = R_Images_StartIteration(); while ( (image = R_Images_GetNextIteration()) != NULL) { texels += image->width*image->height; texBytes += image->width*image->height * R_BytesPerTex (image->internalFormat); Com_Printf ( "%4i: %4i %4i %s ", i, image->width, image->height, yesno[image->mipmap] ); switch ( image->internalFormat ) { case 1: Com_Printf ("I " ); break; case 2: Com_Printf ("IA " ); break; case 3: Com_Printf ("RGB " ); break; case 4: Com_Printf ("RGBA " ); break; case GL_RGBA8: Com_Printf ("RGBA8" ); break; case GL_RGB8: Com_Printf ("RGB8" ); break; case GL_RGB4_S3TC: Com_Printf ("S3TC " ); break; case GL_COMPRESSED_RGB_S3TC_DXT1_EXT: Com_Printf ("DXT1 " ); break; case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT: Com_Printf ("DXT5 " ); break; case GL_RGBA4: Com_Printf ("RGBA4" ); break; case GL_RGB5: Com_Printf ("RGB5 " ); break; default: Com_Printf ("???? " ); } switch ( image->wrapClampMode ) { case GL_REPEAT: Com_Printf ("rept " ); break; case GL_CLAMP: Com_Printf ("clmp " ); break; case GL_CLAMP_TO_EDGE: Com_Printf ("clpE " ); break; default: Com_Printf ("%4i ", image->wrapClampMode ); break; } Com_Printf ("%s\n", image->imgName ); i++; } Com_Printf ( " ---------\n"); Com_Printf ( " -w-- -h-- -mm- -if- wrap --name-------\n"); Com_Printf ( " %i total texels (not including mipmaps)\n", texels ); Com_Printf ( " %.2fMB total texture mem (not including mipmaps)\n", texBytes/1048576.0f ); Com_Printf ( " %i total images\n\n", iNumImages ); } //======================================================================= /* ================ R_LightScaleTexture Scale up the pixel values in a texture to increase the lighting range ================ */ void R_LightScaleTexture (unsigned *in, int inwidth, int inheight, qboolean only_gamma ) { if ( only_gamma ) { if ( !glConfig.deviceSupportsGamma ) { int i, c; byte *p; p = (byte *)in; c = inwidth*inheight; for (i=0 ; i> 1; outHeight = inHeight >> 1; temp = (unsigned int *)Hunk_AllocateTempMemory( outWidth * outHeight * 4 ); inWidthMask = inWidth - 1; inHeightMask = inHeight - 1; for ( i = 0 ; i < outHeight ; i++ ) { for ( j = 0 ; j < outWidth ; j++ ) { outpix = (byte *) ( temp + i * outWidth + j ); for ( k = 0 ; k < 4 ; k++ ) { total = 1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] + 1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] + 4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] + 4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] + 4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] + 4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] + 1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] + 1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k]; outpix[k] = total / 36; } } } Com_Memcpy( in, temp, outWidth * outHeight * 4 ); Hunk_FreeTempMemory( temp ); } /* ================ R_MipMap Operates in place, quartering the size of the texture ================ */ static void R_MipMap (byte *in, int width, int height) { int i, j; byte *out; int row; if ( !r_simpleMipMaps->integer ) { R_MipMap2( (unsigned *)in, width, height ); return; } if ( width == 1 && height == 1 ) { return; } row = width * 4; out = in; width >>= 1; height >>= 1; if ( width == 0 || height == 0 ) { width += height; // get largest for (i=0 ; i>1; out[1] = ( in[1] + in[5] )>>1; out[2] = ( in[2] + in[6] )>>1; out[3] = ( in[3] + in[7] )>>1; } return; } for (i=0 ; i>2; out[1] = (in[1] + in[5] + in[row+1] + in[row+5])>>2; out[2] = (in[2] + in[6] + in[row+2] + in[row+6])>>2; out[3] = (in[3] + in[7] + in[row+3] + in[row+7])>>2; } } } /* ================== R_BlendOverTexture Apply a color blend over a set of pixels ================== */ static void R_BlendOverTexture( byte *data, int pixelCount, byte blend[4] ) { int i; int inverseAlpha; int premult[3]; inverseAlpha = 255 - blend[3]; premult[0] = blend[0] * blend[3]; premult[1] = blend[1] * blend[3]; premult[2] = blend[2] * blend[3]; for ( i = 0 ; i < pixelCount ; i++, data+=4 ) { data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9; data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9; data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9; } } byte mipBlendColors[16][4] = { {0,0,0,0}, {255,0,0,128}, {0,255,0,128}, {0,0,255,128}, {255,0,0,128}, {0,255,0,128}, {0,0,255,128}, {255,0,0,128}, {0,255,0,128}, {0,0,255,128}, {255,0,0,128}, {0,255,0,128}, {0,0,255,128}, {255,0,0,128}, {0,255,0,128}, {0,0,255,128}, }; class CStringComparator { public: bool operator()(const char *s1, const char *s2) const { return(strcmp(s1, s2) < 0); } }; typedef map AllocatedImages_t; AllocatedImages_t AllocatedImages; AllocatedImages_t::iterator itAllocatedImages; int giTextureBindNum = 1024; // will be set to this anyway at runtime, but wtf? // return = number of images in the list, for those interested // int R_Images_StartIteration(void) { itAllocatedImages = AllocatedImages.begin(); return AllocatedImages.size(); } image_t *R_Images_GetNextIteration(void) { if (itAllocatedImages == AllocatedImages.end()) return NULL; image_t *pImage = (*itAllocatedImages).second; ++itAllocatedImages; return pImage; } // clean up anything to do with an image_t struct, but caller will have to clear the internal to an image_t struct ready for either struct free() or overwrite... // // (avoid using ri.xxxx stuff here in case running on dedicated) // static void R_Images_DeleteImageContents( image_t *pImage ) { assert(pImage); // should never be called with NULL if (pImage) { if (qglDeleteTextures) { //won't have one if we switched to dedicated. qglDeleteTextures( 1, &pImage->texnum ); } Z_Free(pImage); } } /* =============== Upload32 =============== */ extern qboolean charSet; static void Upload32( unsigned *data, GLenum format, qboolean mipmap, qboolean picmip, qboolean isLightmap, qboolean allowTC, int *pformat, unsigned short *pUploadWidth, unsigned short *pUploadHeight, bool bRectangle = false ) { GLuint uiTarget = GL_TEXTURE_2D; if ( bRectangle ) { uiTarget = GL_TEXTURE_RECTANGLE_EXT; } if (format == GL_RGBA) { int samples; int i, c; byte *scan; float rMax = 0, gMax = 0, bMax = 0; int width = *pUploadWidth; int height = *pUploadHeight; // // perform optional picmip operation // if ( picmip ) { for(i = 0; i < r_picmip->integer; i++) { R_MipMap( (byte *)data, width, height ); width >>= 1; height >>= 1; if (width < 1) { width = 1; } if (height < 1) { height = 1; } } } // // clamp to the current upper OpenGL limit // scale both axis down equally so we don't have to // deal with a half mip resampling // while ( width > glConfig.maxTextureSize || height > glConfig.maxTextureSize ) { R_MipMap( (byte *)data, width, height ); width >>= 1; height >>= 1; } // // scan the texture for each channel's max values // and verify if the alpha channel is being used or not // c = width*height; scan = ((byte *)data); samples = 3; for ( i = 0; i < c; i++ ) { if ( scan[i*4+0] > rMax ) { rMax = scan[i*4+0]; } if ( scan[i*4+1] > gMax ) { gMax = scan[i*4+1]; } if ( scan[i*4+2] > bMax ) { bMax = scan[i*4+2]; } if ( scan[i*4 + 3] != 255 ) { samples = 4; break; } } // select proper internal format if ( samples == 3 ) { if ( glConfig.textureCompression == TC_S3TC && allowTC ) { *pformat = GL_RGB4_S3TC; } else if ( glConfig.textureCompression == TC_S3TC_DXT && allowTC ) { // Compress purely color - no alpha if ( r_texturebits->integer == 16 ) { *pformat = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; //this format cuts to 16 bit } else {//if we aren't using 16 bit then, use 32 bit compression *pformat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; } } else if ( isLightmap && r_texturebitslm->integer > 0 ) { // Allow different bit depth when we are a lightmap if ( r_texturebitslm->integer == 16 ) { *pformat = GL_RGB5; } else if ( r_texturebitslm->integer == 32 ) { *pformat = GL_RGB8; } } else if ( r_texturebits->integer == 16 ) { *pformat = GL_RGB5; } else if ( r_texturebits->integer == 32 ) { *pformat = GL_RGB8; } else { *pformat = 3; } } else if ( samples == 4 ) { if ( glConfig.textureCompression == TC_S3TC_DXT && allowTC) { // Compress both alpha and color *pformat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; } else if ( r_texturebits->integer == 16 ) { *pformat = GL_RGBA4; } else if ( r_texturebits->integer == 32 ) { *pformat = GL_RGBA8; } else { *pformat = 4; } } *pUploadWidth = width; *pUploadHeight = height; // copy or resample data as appropriate for first MIP level if (!mipmap) { qglTexImage2D( uiTarget, 0, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data ); goto done; } R_LightScaleTexture (data, width, height, (qboolean)!mipmap ); qglTexImage2D( uiTarget, 0, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data ); if (mipmap) { int miplevel; miplevel = 0; while (width > 1 || height > 1) { R_MipMap( (byte *)data, width, height ); width >>= 1; height >>= 1; if (width < 1) width = 1; if (height < 1) height = 1; miplevel++; if ( r_colorMipLevels->integer ) { R_BlendOverTexture( (byte *)data, width * height, mipBlendColors[miplevel] ); } qglTexImage2D( uiTarget, miplevel, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data ); } } } else { } done: if (mipmap) { qglTexParameterf(uiTarget, GL_TEXTURE_MIN_FILTER, gl_filter_min); qglTexParameterf(uiTarget, GL_TEXTURE_MAG_FILTER, gl_filter_max); if(r_ext_texture_filter_anisotropic->integer>1 && glConfig.maxTextureFilterAnisotropy>0) { qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, r_ext_texture_filter_anisotropic->value ); } } else { qglTexParameterf(uiTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR ); qglTexParameterf(uiTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); } GL_CheckErrors(); } #if 0 //3d tex version -rww static void Upload32_3D( unsigned *data, int img_depth, qboolean mipmap, qboolean picmip, qboolean isLightmap, qboolean allowTC, int *pformat, unsigned short *pUploadWidth, unsigned short *pUploadHeight ) { int samples; int i, c; byte *scan; float rMax = 0, gMax = 0, bMax = 0; int width = *pUploadWidth; int height = *pUploadHeight; int depth = img_depth; // // perform optional picmip operation // if ( picmip ) { for(i = 0; i < r_picmip->integer; i++) { R_MipMap( (byte *)data, width, height ); width >>= 1; height >>= 1; if (width < 1) { width = 1; } if (height < 1) { height = 1; } } } // // clamp to the current upper OpenGL limit // scale both axis down equally so we don't have to // deal with a half mip resampling // while ( width > glConfig.maxTextureSize || height > glConfig.maxTextureSize ) { R_MipMap( (byte *)data, width, height ); width >>= 1; height >>= 1; } // // scan the texture for each channel's max values // and verify if the alpha channel is being used or not // c = width*height; scan = ((byte *)data); samples = 3; for ( i = 0; i < c; i++ ) { if ( scan[i*4+0] > rMax ) { rMax = scan[i*4+0]; } if ( scan[i*4+1] > gMax ) { gMax = scan[i*4+1]; } if ( scan[i*4+2] > bMax ) { bMax = scan[i*4+2]; } if ( scan[i*4 + 3] != 255 ) { samples = 4; break; } } // select proper internal format if ( samples == 3 ) { if ( glConfig.textureCompression == TC_S3TC && allowTC ) { *pformat = GL_RGB4_S3TC; } else if ( glConfig.textureCompression == TC_S3TC_DXT && allowTC ) { // Compress purely color - no alpha if ( r_texturebits->integer == 16 ) { *pformat = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; //this format cuts to 16 bit } else {//if we aren't using 16 bit then, use 32 bit compression *pformat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; } } else if ( isLightmap && r_texturebitslm->integer > 0 ) { // Allow different bit depth when we are a lightmap if ( r_texturebitslm->integer == 16 ) { *pformat = GL_RGB5; } else if ( r_texturebitslm->integer == 32 ) { *pformat = GL_RGB8; } } else if ( r_texturebits->integer == 16 ) { *pformat = GL_RGB5; } else if ( r_texturebits->integer == 32 ) { *pformat = GL_RGB8; } else { *pformat = 3; } } else if ( samples == 4 ) { if ( glConfig.textureCompression == TC_S3TC_DXT && allowTC) { // Compress both alpha and color *pformat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; } else if ( r_texturebits->integer == 16 ) { *pformat = GL_RGBA4; } else if ( r_texturebits->integer == 32 ) { *pformat = GL_RGBA8; } else { *pformat = 4; } } *pUploadWidth = width; *pUploadHeight = height; // copy or resample data as appropriate for first MIP level if (!mipmap) { qglTexImage3DEXT (GL_TEXTURE_3D, 0, *pformat, width, height, depth, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); goto done; } R_LightScaleTexture (data, width, height, (qboolean)!mipmap ); qglTexImage3DEXT (GL_TEXTURE_3D, 0, *pformat, width, height, depth, 0, GL_RGBA, GL_UNSIGNED_BYTE, data ); if (mipmap) { int miplevel; miplevel = 0; while (width > 1 || height > 1) { R_MipMap( (byte *)data, width, height ); width >>= 1; height >>= 1; if (width < 1) width = 1; if (height < 1) height = 1; miplevel++; if ( r_colorMipLevels->integer ) { R_BlendOverTexture( (byte *)data, width * height, mipBlendColors[miplevel] ); } qglTexImage2D (GL_TEXTURE_2D, miplevel, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data ); } } done: if (mipmap) { qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max); if(r_ext_texture_filter_anisotropic->integer>1 && glConfig.maxTextureFilterAnisotropy>0) { qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 2.0f); } } else { qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR ); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); } GL_CheckErrors(); } #endif static void GL_ResetBinds(void) { memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) ); if ( qglBindTexture ) { if ( qglActiveTextureARB ) { GL_SelectTexture( 1 ); qglBindTexture( GL_TEXTURE_2D, 0 ); GL_SelectTexture( 0 ); qglBindTexture( GL_TEXTURE_2D, 0 ); } else { qglBindTexture( GL_TEXTURE_2D, 0 ); } } } // special function used in conjunction with "devmapbsp"... // // (avoid using ri.xxxx stuff here in case running on dedicated) // void R_Images_DeleteLightMaps(void) { qboolean bEraseOccured = qfalse; for (AllocatedImages_t::iterator itImage = AllocatedImages.begin(); itImage != AllocatedImages.end(); bEraseOccured?itImage:++itImage) { bEraseOccured = qfalse; image_t *pImage = (*itImage).second; if (pImage->imgName[0] == '*' && strstr(pImage->imgName,"lightmap")) // loose check, but should be ok { R_Images_DeleteImageContents(pImage); AllocatedImages.erase(itImage++); bEraseOccured = qtrue; } } GL_ResetBinds(); } // special function currently only called by Dissolve code... // void R_Images_DeleteImage(image_t *pImage) { // Even though we supply the image handle, we need to get the corresponding iterator entry... // AllocatedImages_t::iterator itImage = AllocatedImages.find(pImage->imgName); if (itImage != AllocatedImages.end()) { R_Images_DeleteImageContents(pImage); AllocatedImages.erase(itImage); } else { assert(0); } } // called only at app startup, vid_restart, app-exit // void R_Images_Clear(void) { image_t *pImage; // int iNumImages = R_Images_StartIteration(); while ( (pImage = R_Images_GetNextIteration()) != NULL) { R_Images_DeleteImageContents(pImage); } AllocatedImages.clear(); giTextureBindNum = 1024; } void RE_RegisterImages_Info_f( void ) { image_t *pImage = NULL; int iImage = 0; int iTexels = 0; int iNumImages = R_Images_StartIteration(); while ( (pImage = R_Images_GetNextIteration()) != NULL) { Com_Printf ("%d: (%4dx%4dy) \"%s\"",iImage, pImage->width, pImage->height, pImage->imgName); Com_DPrintf (S_COLOR_RED ", levused %d",pImage->iLastLevelUsedOn); Com_Printf ("\n"); iTexels += pImage->width * pImage->height; iImage++; } Com_Printf ("%d Images. %d (%.2fMB) texels total, (not including mipmaps)\n",iNumImages, iTexels, (float)iTexels / 1024.0f / 1024.0f); Com_DPrintf (S_COLOR_RED "RE_RegisterMedia_GetLevel(): %d",RE_RegisterMedia_GetLevel()); } // implement this if you need to, do a find for the caller. I don't need it though, so far. // //void RE_RegisterImages_LevelLoadBegin(const char *psMapName); // currently, this just goes through all the images and dumps any not referenced on this level... // qboolean RE_RegisterImages_LevelLoadEnd(void) { Com_DPrintf (S_COLOR_RED "RE_RegisterImages_LevelLoadEnd():\n"); // int iNumImages = AllocatedImages.size(); // more for curiosity, really. qboolean bEraseOccured = qfalse; for (AllocatedImages_t::iterator itImage = AllocatedImages.begin(); itImage != AllocatedImages.end(); bEraseOccured?itImage:++itImage) { bEraseOccured = qfalse; image_t *pImage = (*itImage).second; // don't un-register system shaders (*fog, *dlight, *white, *default), but DO de-register lightmaps ("*/lightmap%d") if (pImage->imgName[0] != '*' || strchr(pImage->imgName,'/')) { // image used on this level? // if ( pImage->iLastLevelUsedOn != RE_RegisterMedia_GetLevel() ) { // nope, so dump it... // Com_DPrintf (S_COLOR_RED "Dumping image \"%s\"\n",pImage->imgName); R_Images_DeleteImageContents(pImage); AllocatedImages.erase(itImage++); bEraseOccured = qtrue; } } } // this check can be deleted AFAIC, it seems to be just a quake thing... // // iNumImages = R_Images_StartIteration(); // if (iNumImages > MAX_DRAWIMAGES) // { // Com_Printf (S_COLOR_YELLOW "Level uses %d images, old limit was MAX_DRAWIMAGES (%d)\n", iNumImages, MAX_DRAWIMAGES); // } Com_DPrintf (S_COLOR_RED "RE_RegisterImages_LevelLoadEnd(): Ok\n"); GL_ResetBinds(); return bEraseOccured; } // returns image_t struct if we already have this, else NULL. No disk-open performed // (important for creating default images). // // This is called by both R_FindImageFile and anything that creates default images... // static image_t *R_FindImageFile_NoLoad(const char *name, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode ) { if (!name) { return NULL; } char *pName = GenerateImageMappingName(name); // // see if the image is already loaded // AllocatedImages_t::iterator itAllocatedImage = AllocatedImages.find(pName); if (itAllocatedImage != AllocatedImages.end()) { image_t *pImage = (*itAllocatedImage).second; // the white image can be used with any set of parms, but other mismatches are errors... // if ( strcmp( pName, "*white" ) ) { if ( pImage->mipmap != !!mipmap ) { Com_Printf (S_COLOR_YELLOW "WARNING: reused image %s with mixed mipmap parm\n", pName ); } if ( pImage->allowPicmip != !!allowPicmip ) { Com_Printf (S_COLOR_YELLOW "WARNING: reused image %s with mixed allowPicmip parm\n", pName ); } if ( pImage->wrapClampMode != glWrapClampMode ) { Com_Printf (S_COLOR_YELLOW "WARNING: reused image %s with mixed glWrapClampMode parm\n", pName ); } } pImage->iLastLevelUsedOn = RE_RegisterMedia_GetLevel(); return pImage; } return NULL; } /* ================ R_CreateImage This is the only way any image_t are created ================ */ image_t *R_CreateImage( const char *name, const byte *pic, int width, int height, GLenum format, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode, bool bRectangle ) { image_t *image; qboolean isLightmap = qfalse; if (strlen(name) >= MAX_QPATH ) { Com_Error (ERR_DROP, "R_CreateImage: \"%s\" is too long\n", name); } if(glConfig.clampToEdgeAvailable && glWrapClampMode == GL_CLAMP) { glWrapClampMode = GL_CLAMP_TO_EDGE; } if (name[0] == '*') { const char *psLightMapNameSearchPos = strrchr(name,'/'); if ( psLightMapNameSearchPos && !strncmp( psLightMapNameSearchPos+1, "lightmap", 8 ) ) { isLightmap = qtrue; } } if ( (width&(width-1)) || (height&(height-1)) ) { Com_Error( ERR_FATAL, "R_CreateImage: %s dimensions (%i x %i) not power of 2!\n",name,width,height); } image = R_FindImageFile_NoLoad(name, mipmap, allowPicmip, allowTC, glWrapClampMode ); if (image) { return image; } image = (image_t*) Z_Malloc( sizeof( image_t ), TAG_IMAGE_T, qtrue ); // memset(image,0,sizeof(*image)); // qtrue above does this image->texnum = 1024 + giTextureBindNum++; // ++ is of course staggeringly important... // record which map it was used on... // image->iLastLevelUsedOn = RE_RegisterMedia_GetLevel(); image->mipmap = !!mipmap; image->allowPicmip = !!allowPicmip; Q_strncpyz(image->imgName, name, sizeof(image->imgName)); image->width = width; image->height = height; image->wrapClampMode = glWrapClampMode; if ( qglActiveTextureARB ) { GL_SelectTexture( 0 ); } GLuint uiTarget = GL_TEXTURE_2D; if ( bRectangle ) { qglDisable( uiTarget ); uiTarget = GL_TEXTURE_RECTANGLE_EXT; qglEnable( uiTarget ); glWrapClampMode = GL_CLAMP_TO_EDGE; // default mode supported by rectangle. qglBindTexture( uiTarget, image->texnum ); } else { GL_Bind(image); } Upload32( (unsigned *)pic, format, (qboolean)image->mipmap, allowPicmip, isLightmap, allowTC, &image->internalFormat, &image->width, &image->height, bRectangle ); qglTexParameterf( uiTarget, GL_TEXTURE_WRAP_S, glWrapClampMode ); qglTexParameterf( uiTarget, GL_TEXTURE_WRAP_T, glWrapClampMode ); qglBindTexture( uiTarget, 0 ); //jfm: i don't know why this is here, but it breaks lightmaps when there's only 1 glState.currenttextures[glState.currenttmu] = 0; //mark it not bound LPCSTR psNewName = GenerateImageMappingName(name); Q_strncpyz(image->imgName, psNewName, sizeof(image->imgName)); AllocatedImages[ image->imgName ] = image; if ( bRectangle ) { qglDisable( uiTarget ); qglEnable( GL_TEXTURE_2D ); } return image; } //rwwRMG - added void R_CreateAutomapImage( const char *name, const byte *pic, int width, int height, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode ) { R_CreateImage(name, pic, width, height, GL_RGBA, mipmap, allowPicmip, allowTC, glWrapClampMode); } /* ========================================================= TARGA LOADING ========================================================= */ /* Ghoul2 Insert Start */ bool LoadTGAPalletteImage ( const char *name, byte **pic, int *width, int *height) { int columns, rows, numPixels; byte *buf_p; byte *buffer; TargaHeader targa_header; byte *dataStart; *pic = NULL; // // load the file // FS_ReadFile ( ( char * ) name, (void **)&buffer); if (!buffer) { return false; } buf_p = buffer; targa_header.id_length = *buf_p++; targa_header.colormap_type = *buf_p++; targa_header.image_type = *buf_p++; targa_header.colormap_index = LittleShort ( *(short *)buf_p ); buf_p += 2; targa_header.colormap_length = LittleShort ( *(short *)buf_p ); buf_p += 2; targa_header.colormap_size = *buf_p++; targa_header.x_origin = LittleShort ( *(short *)buf_p ); buf_p += 2; targa_header.y_origin = LittleShort ( *(short *)buf_p ); buf_p += 2; targa_header.width = LittleShort ( *(short *)buf_p ); buf_p += 2; targa_header.height = LittleShort ( *(short *)buf_p ); buf_p += 2; targa_header.pixel_size = *buf_p++; targa_header.attributes = *buf_p++; if (targa_header.image_type!=1 ) { Com_Error (ERR_DROP, "LoadTGAPalletteImage: Only type 1 (uncompressed pallettised) TGA images supported\n"); } if ( targa_header.colormap_type == 0 ) { Com_Error( ERR_DROP, "LoadTGAPalletteImage: colormaps ONLY supported\n" ); } columns = targa_header.width; rows = targa_header.height; numPixels = columns * rows; if (width) *width = columns; if (height) *height = rows; *pic = (unsigned char *) Z_Malloc (numPixels, TAG_TEMP_WORKSPACE, qfalse ); if (targa_header.id_length != 0) { buf_p += targa_header.id_length; // skip TARGA image comment } dataStart = buf_p + (targa_header.colormap_length * (targa_header.colormap_size / 4)); memcpy(*pic, dataStart, numPixels); FS_FreeFile (buffer); return true; } #endif // #ifndef DEDICATED // My TGA loader... // //--------------------------------------------------- #pragma pack(push,1) typedef struct { byte byIDFieldLength; // must be 0 byte byColourmapType; // 0 = truecolour, 1 = paletted, else bad byte byImageType; // 1 = colour mapped (palette), uncompressed, 2 = truecolour, uncompressed, else bad word w1stColourMapEntry; // must be 0 word wColourMapLength; // 256 for 8-bit palettes, else 0 for true-colour byte byColourMapEntrySize; // 24 for 8-bit palettes, else 0 for true-colour word wImageXOrigin; // ignored word wImageYOrigin; // ignored word wImageWidth; // in pixels word wImageHeight; // in pixels byte byImagePlanes; // bits per pixel (8 for paletted, else 24 for true-colour) byte byScanLineOrder; // Image descriptor bytes // bits 0-3 = # attr bits (alpha chan) // bits 4-5 = pixel order/dir // bits 6-7 scan line interleave (00b=none,01b=2way interleave,10b=4way) } TGAHeader_t; #pragma pack(pop) // *pic == pic, else NULL for failed. // // returns false if found but had a format error, else true for either OK or not-found (there's a reason for this) // void LoadTGA ( const char *name, byte **pic, int *width, int *height) { char sErrorString[1024]; bool bFormatErrors = false; // these don't need to be declared or initialised until later, but the compiler whines that 'goto' skips them. // byte *pRGBA = NULL; byte *pOut = NULL; byte *pIn = NULL; *pic = NULL; #define TGA_FORMAT_ERROR(blah) {sprintf(sErrorString,blah); bFormatErrors = true; goto TGADone;} //#define TGA_FORMAT_ERROR(blah) Com_Error( ERR_DROP, blah ); // // load the file // byte *pTempLoadedBuffer = 0; FS_ReadFile ( ( char * ) name, (void **)&pTempLoadedBuffer); if (!pTempLoadedBuffer) { return; } TGAHeader_t *pHeader = (TGAHeader_t *) pTempLoadedBuffer; if (pHeader->byColourmapType!=0) { TGA_FORMAT_ERROR("LoadTGA: colourmaps not supported\n" ); } if (pHeader->byImageType != 2 && pHeader->byImageType != 3 && pHeader->byImageType != 10) { TGA_FORMAT_ERROR("LoadTGA: Only type 2 (RGB), 3 (gray), and 10 (RLE-RGB) images supported\n"); } if (pHeader->w1stColourMapEntry != 0) { TGA_FORMAT_ERROR("LoadTGA: colourmaps not supported\n" ); } if (pHeader->wColourMapLength !=0 && pHeader->wColourMapLength != 256) { TGA_FORMAT_ERROR("LoadTGA: ColourMapLength must be either 0 or 256\n" ); } if (pHeader->byColourMapEntrySize != 0 && pHeader->byColourMapEntrySize != 24) { TGA_FORMAT_ERROR("LoadTGA: ColourMapEntrySize must be either 0 or 24\n" ); } if ( ( pHeader->byImagePlanes != 24 && pHeader->byImagePlanes != 32) && (pHeader->byImagePlanes != 8 && pHeader->byImageType != 3)) { TGA_FORMAT_ERROR("LoadTGA: Only type 2 (RGB), 3 (gray), and 10 (RGB) TGA images supported\n"); } if ((pHeader->byScanLineOrder&0x30)!=0x00 && (pHeader->byScanLineOrder&0x30)!=0x10 && (pHeader->byScanLineOrder&0x30)!=0x20 && (pHeader->byScanLineOrder&0x30)!=0x30 ) { TGA_FORMAT_ERROR("LoadTGA: ScanLineOrder must be either 0x00,0x10,0x20, or 0x30\n"); } // these last checks are so i can use ID's RLE-code. I don't dare fiddle with it or it'll probably break... // if ( pHeader->byImageType == 10) { if ((pHeader->byScanLineOrder & 0x30) != 0x00) { TGA_FORMAT_ERROR("LoadTGA: RLE-RGB Images (type 10) must be in bottom-to-top format\n"); } if (pHeader->byImagePlanes != 24 && pHeader->byImagePlanes != 32) // probably won't happen, but avoids compressed greyscales? { TGA_FORMAT_ERROR("LoadTGA: RLE-RGB Images (type 10) must be 24 or 32 bit\n"); } } // now read the actual bitmap in... // // Image descriptor bytes // bits 0-3 = # attr bits (alpha chan) // bits 4-5 = pixel order/dir // bits 6-7 scan line interleave (00b=none,01b=2way interleave,10b=4way) // int iYStart,iXStart,iYStep,iXStep; switch(pHeader->byScanLineOrder & 0x30) { default: // default case stops the compiler complaining about using uninitialised vars case 0x00: // left to right, bottom to top iXStart = 0; iXStep = 1; iYStart = pHeader->wImageHeight-1; iYStep = -1; break; case 0x10: // right to left, bottom to top iXStart = pHeader->wImageWidth-1; iXStep = -1; iYStart = pHeader->wImageHeight-1; iYStep = -1; break; case 0x20: // left to right, top to bottom iXStart = 0; iXStep = 1; iYStart = 0; iYStep = 1; break; case 0x30: // right to left, top to bottom iXStart = pHeader->wImageWidth-1; iXStep = -1; iYStart = 0; iYStep = 1; break; } // feed back the results... // if (width) *width = pHeader->wImageWidth; if (height) *height = pHeader->wImageHeight; pRGBA = (byte *) Z_Malloc (pHeader->wImageWidth * pHeader->wImageHeight * 4, TAG_TEMP_WORKSPACE, qfalse); *pic = pRGBA; pOut = pRGBA; pIn = pTempLoadedBuffer + sizeof(*pHeader); // I don't know if this ID-thing here is right, since comments that I've seen are at the end of the file, // with a zero in this field. However, may as well... // if (pHeader->byIDFieldLength != 0) pIn += pHeader->byIDFieldLength; // skip TARGA image comment byte red,green,blue,alpha; if ( pHeader->byImageType == 2 || pHeader->byImageType == 3 ) // RGB or greyscale { for (int y=iYStart, iYCount=0; iYCountwImageHeight; y+=iYStep, iYCount++) { pOut = pRGBA + y * pHeader->wImageWidth *4; for (int x=iXStart, iXCount=0; iXCountwImageWidth; x+=iXStep, iXCount++) { switch (pHeader->byImagePlanes) { case 8: blue = *pIn++; green = blue; red = blue; *pOut++ = red; *pOut++ = green; *pOut++ = blue; *pOut++ = 255; break; case 24: blue = *pIn++; green = *pIn++; red = *pIn++; *pOut++ = red; *pOut++ = green; *pOut++ = blue; *pOut++ = 255; break; case 32: blue = *pIn++; green = *pIn++; red = *pIn++; alpha = *pIn++; *pOut++ = red; *pOut++ = green; *pOut++ = blue; *pOut++ = alpha; break; default: assert(0); // if we ever hit this, someone deleted a header check higher up TGA_FORMAT_ERROR("LoadTGA: Image can only have 8, 24 or 32 planes for RGB/greyscale\n"); break; } } } } else if (pHeader->byImageType == 10) // RLE-RGB { // I've no idea if this stuff works, I normally reject RLE targas, but this is from ID's code // so maybe I should try and support it... // byte packetHeader, packetSize, j; for (int y = pHeader->wImageHeight-1; y >= 0; y--) { pOut = pRGBA + y * pHeader->wImageWidth *4; for (int x=0; xwImageWidth;) { packetHeader = *pIn++; packetSize = 1 + (packetHeader & 0x7f); if (packetHeader & 0x80) // run-length packet { switch (pHeader->byImagePlanes) { case 24: blue = *pIn++; green = *pIn++; red = *pIn++; alpha = 255; break; case 32: blue = *pIn++; green = *pIn++; red = *pIn++; alpha = *pIn++; break; default: assert(0); // if we ever hit this, someone deleted a header check higher up TGA_FORMAT_ERROR("LoadTGA: RLE-RGB can only have 24 or 32 planes\n"); break; } for (j=0; jwImageWidth) // run spans across rows { x = 0; if (y > 0) y--; else goto breakOut; pOut = pRGBA + y * pHeader->wImageWidth * 4; } } } else { // non run-length packet for (j=0; jbyImagePlanes) { case 24: blue = *pIn++; green = *pIn++; red = *pIn++; *pOut++ = red; *pOut++ = green; *pOut++ = blue; *pOut++ = 255; break; case 32: blue = *pIn++; green = *pIn++; red = *pIn++; alpha = *pIn++; *pOut++ = red; *pOut++ = green; *pOut++ = blue; *pOut++ = alpha; break; default: assert(0); // if we ever hit this, someone deleted a header check higher up TGA_FORMAT_ERROR("LoadTGA: RLE-RGB can only have 24 or 32 planes\n"); break; } x++; if (x == pHeader->wImageWidth) // pixel packet run spans across rows { x = 0; if (y > 0) y--; else goto breakOut; pOut = pRGBA + y * pHeader->wImageWidth * 4; } } } } breakOut:; } } TGADone: FS_FreeFile (pTempLoadedBuffer); if (bFormatErrors) { Com_Error( ERR_DROP, "%s( File: \"%s\" )\n",sErrorString,name); } } #ifndef DEDICATED static void LoadJPG( const char *filename, unsigned char **pic, int *width, int *height ) { /* This struct contains the JPEG decompression parameters and pointers to * working space (which is allocated as needed by the JPEG library). */ struct jpeg_decompress_struct cinfo; /* We use our private extension JPEG error handler. * Note that this struct must live as long as the main JPEG parameter * struct, to avoid dangling-pointer problems. */ /* This struct represents a JPEG error handler. It is declared separately * because applications often want to supply a specialized error handler * (see the second half of this file for an example). But here we just * take the easy way out and use the standard error handler, which will * print a message on stderr and call exit() if compression fails. * Note that this struct must live as long as the main JPEG parameter * struct, to avoid dangling-pointer problems. */ struct jpeg_error_mgr jerr; /* More stuff */ JSAMPARRAY buffer; /* Output row buffer */ int row_stride; /* physical row width in output buffer */ unsigned char *out; byte *fbuffer; byte *bbuf; /* In this example we want to open the input file before doing anything else, * so that the setjmp() error recovery below can assume the file is open. * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that * requires it in order to read binary files. */ fileHandle_t h; const int len = FS_FOpenFileRead(filename, &h, qfalse); if (!h) { return; } fbuffer = (byte *)Z_Malloc(len + 4096, TAG_TEMP_WORKSPACE); FS_Read(fbuffer, len, h); FS_FCloseFile(h); /* Step 1: allocate and initialize JPEG decompression object */ /* We have to set up the error handler first, in case the initialization * step fails. (Unlikely, but it could happen if you are out of memory.) * This routine fills in the contents of struct jerr, and returns jerr's * address which we place into the link field in cinfo. */ cinfo.err = jpeg_std_error(&jerr); /* Now we can initialize the JPEG decompression object. */ jpeg_create_decompress(&cinfo); /* Step 2: specify data source (eg, a file) */ jpeg_stdio_src(&cinfo, fbuffer); /* Step 3: read file parameters with jpeg_read_header() */ (void) jpeg_read_header(&cinfo, TRUE); /* We can ignore the return value from jpeg_read_header since * (a) suspension is not possible with the stdio data source, and * (b) we passed TRUE to reject a tables-only JPEG file as an error. * See libjpeg.doc for more info. */ /* Step 4: set parameters for decompression */ /* In this example, we don't need to change any of the defaults set by * jpeg_read_header(), so we do nothing here. */ /* Step 5: Start decompressor */ (void) jpeg_start_decompress(&cinfo); /* We can ignore the return value since suspension is not possible * with the stdio data source. */ /* We may need to do some setup of our own at this point before reading * the data. After jpeg_start_decompress() we have the correct scaled * output image dimensions available, as well as the output colormap * if we asked for color quantization. * In this example, we need to make an output work buffer of the right size. */ /* JSAMPLEs per row in output buffer */ row_stride = cinfo.output_width * cinfo.output_components; // rww - 9-13-01 [1-26-01-sof2] if (cinfo.output_components != 4 && cinfo.output_components != 1) { Com_Printf("JPG %s is unsupported color depth (%d)\n",filename,cinfo.output_components); } out = (unsigned char *)Z_Malloc(cinfo.output_width*cinfo.output_height*4, TAG_TEMP_WORKSPACE, qfalse ); *pic = out; *width = cinfo.output_width; *height = cinfo.output_height; /* Step 6: while (scan lines remain to be read) */ /* jpeg_read_scanlines(...); */ /* Here we use the library's state variable cinfo.output_scanline as the * loop counter, so that we don't have to keep track ourselves. */ while (cinfo.output_scanline < cinfo.output_height) { /* jpeg_read_scanlines expects an array of pointers to scanlines. * Here the array is only one element long, but you could ask for * more than one scanline at a time if that's more convenient. */ bbuf = ((out+(row_stride*cinfo.output_scanline))); buffer = &bbuf; (void) jpeg_read_scanlines(&cinfo, buffer, 1); } if (cinfo.output_components == 1) { byte *pbDest = (*pic + (cinfo.output_width * cinfo.output_height * 4))-1; byte *pbSrc = (*pic + (cinfo.output_width * cinfo.output_height ))-1; int iPixels = cinfo.output_width * cinfo.output_height; for (int i=0; idest; dest->pub.next_output_byte = dest->outfile; dest->pub.free_in_buffer = dest->size; } /* * Empty the output buffer --- called whenever buffer fills up. * * In typical applications, this should write the entire output buffer * (ignoring the current state of next_output_byte & free_in_buffer), * reset the pointer & count to the start of the buffer, and return TRUE * indicating that the buffer has been dumped. * * In applications that need to be able to suspend compression due to output * overrun, a FALSE return indicates that the buffer cannot be emptied now. * In this situation, the compressor will return to its caller (possibly with * an indication that it has not accepted all the supplied scanlines). The * application should resume compression after it has made more room in the * output buffer. Note that there are substantial restrictions on the use of * suspension --- see the documentation. * * When suspending, the compressor will back up to a convenient restart point * (typically the start of the current MCU). next_output_byte & free_in_buffer * indicate where the restart point will be if the current call returns FALSE. * Data beyond this point will be regenerated after resumption, so do not * write it out when emptying the buffer externally. */ boolean empty_output_buffer (j_compress_ptr cinfo) { return TRUE; } /* * Compression initialization. * Before calling this, all parameters and a data destination must be set up. * * We require a write_all_tables parameter as a failsafe check when writing * multiple datastreams from the same compression object. Since prior runs * will have left all the tables marked sent_table=TRUE, a subsequent run * would emit an abbreviated stream (no tables) by default. This may be what * is wanted, but for safety's sake it should not be the default behavior: * programmers should have to make a deliberate choice to emit abbreviated * images. Therefore the documentation and examples should encourage people * to pass write_all_tables=TRUE; then it will take active thought to do the * wrong thing. */ GLOBAL void jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables) { if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (write_all_tables) jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */ /* (Re)initialize error mgr and destination modules */ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); (*cinfo->dest->init_destination) (cinfo); /* Perform master selection of active modules */ jinit_compress_master(cinfo); /* Set up for the first pass */ (*cinfo->master->prepare_for_pass) (cinfo); /* Ready for application to drive first pass through jpeg_write_scanlines * or jpeg_write_raw_data. */ cinfo->next_scanline = 0; cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING); } /* * Write some scanlines of data to the JPEG compressor. * * The return value will be the number of lines actually written. * This should be less than the supplied num_lines only in case that * the data destination module has requested suspension of the compressor, * or if more than image_height scanlines are passed in. * * Note: we warn about excess calls to jpeg_write_scanlines() since * this likely signals an application programmer error. However, * excess scanlines passed in the last valid call are *silently* ignored, * so that the application need not adjust num_lines for end-of-image * when using a multiple-scanline buffer. */ GLOBAL JDIMENSION jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines, JDIMENSION num_lines) { JDIMENSION row_ctr, rows_left; if (cinfo->global_state != CSTATE_SCANNING) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (cinfo->next_scanline >= cinfo->image_height) WARNMS(cinfo, JWRN_TOO_MUCH_DATA); /* Call progress monitor hook if present */ if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long) cinfo->next_scanline; cinfo->progress->pass_limit = (long) cinfo->image_height; (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); } /* Give master control module another chance if this is first call to * jpeg_write_scanlines. This lets output of the frame/scan headers be * delayed so that application can write COM, etc, markers between * jpeg_start_compress and jpeg_write_scanlines. */ if (cinfo->master->call_pass_startup) (*cinfo->master->pass_startup) (cinfo); /* Ignore any extra scanlines at bottom of image. */ rows_left = cinfo->image_height - cinfo->next_scanline; if (num_lines > rows_left) num_lines = rows_left; row_ctr = 0; (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines); cinfo->next_scanline += row_ctr; return row_ctr; } /* * Terminate destination --- called by jpeg_finish_compress * after all data has been written. Usually needs to flush buffer. * * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding * application must deal with any cleanup that should happen even * for error exit. */ static int hackSize; void term_destination (j_compress_ptr cinfo) { my_dest_ptr dest = (my_dest_ptr) cinfo->dest; size_t datacount = dest->size - dest->pub.free_in_buffer; hackSize = datacount; } /* * Prepare for output to a stdio stream. * The caller must have already opened the stream, and is responsible * for closing it after finishing compression. */ void jpegDest (j_compress_ptr cinfo, byte* outfile, int size) { my_dest_ptr dest; /* The destination object is made permanent so that multiple JPEG images * can be written to the same file without re-executing jpeg_stdio_dest. * This makes it dangerous to use this manager and a different destination * manager serially with the same JPEG object, because their private object * sizes may be different. Caveat programmer. */ if (cinfo->dest == NULL) { /* first time for this JPEG object? */ cinfo->dest = (struct jpeg_destination_mgr *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, sizeof(my_destination_mgr)); } dest = (my_dest_ptr) cinfo->dest; dest->pub.init_destination = init_destination; dest->pub.empty_output_buffer = empty_output_buffer; dest->pub.term_destination = term_destination; dest->outfile = outfile; dest->size = size; } void SaveJPG(char * filename, int quality, int image_width, int image_height, unsigned char *image_buffer) { /* This struct contains the JPEG compression parameters and pointers to * working space (which is allocated as needed by the JPEG library). * It is possible to have several such structures, representing multiple * compression/decompression processes, in existence at once. We refer * to any one struct (and its associated working data) as a "JPEG object". */ struct jpeg_compress_struct cinfo; /* This struct represents a JPEG error handler. It is declared separately * because applications often want to supply a specialized error handler * (see the second half of this file for an example). But here we just * take the easy way out and use the standard error handler, which will * print a message on stderr and call exit() if compression fails. * Note that this struct must live as long as the main JPEG parameter * struct, to avoid dangling-pointer problems. */ struct jpeg_error_mgr jerr; /* More stuff */ JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */ int row_stride; /* physical row width in image buffer */ unsigned char *out; /* Step 1: allocate and initialize JPEG compression object */ /* We have to set up the error handler first, in case the initialization * step fails. (Unlikely, but it could happen if you are out of memory.) * This routine fills in the contents of struct jerr, and returns jerr's * address which we place into the link field in cinfo. */ cinfo.err = jpeg_std_error(&jerr); /* Now we can initialize the JPEG compression object. */ jpeg_create_compress(&cinfo); /* Step 2: specify data destination (eg, a file) */ /* Note: steps 2 and 3 can be done in either order. */ /* Here we use the library-supplied code to send compressed data to a * stdio stream. You can also write your own code to do something else. * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that * requires it in order to write binary files. */ out = (unsigned char *)Hunk_AllocateTempMemory(image_width*image_height*4); jpegDest(&cinfo, out, image_width*image_height*4); /* Step 3: set parameters for compression */ /* First we supply a description of the input image. * Four fields of the cinfo struct must be filled in: */ cinfo.image_width = image_width; /* image width and height, in pixels */ cinfo.image_height = image_height; cinfo.input_components = 4; /* # of color components per pixel */ cinfo.in_color_space = JCS_RGB; /* colorspace of input image */ /* Now use the library's routine to set default compression parameters. * (You must set at least cinfo.in_color_space before calling this, * since the defaults depend on the source color space.) */ jpeg_set_defaults(&cinfo); /* Now you can set any non-default parameters you wish to. * Here we just illustrate the use of quality (quantization table) scaling: */ jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */); /* Step 4: Start compressor */ /* TRUE ensures that we will write a complete interchange-JPEG file. * Pass TRUE unless you are very sure of what you're doing. */ jpeg_start_compress(&cinfo, TRUE); /* Step 5: while (scan lines remain to be written) */ /* jpeg_write_scanlines(...); */ /* Here we use the library's state variable cinfo.next_scanline as the * loop counter, so that we don't have to keep track ourselves. * To keep things simple, we pass one scanline per call; you can pass * more if you wish, though. */ row_stride = image_width * 4; /* JSAMPLEs per row in image_buffer */ while (cinfo.next_scanline < cinfo.image_height) { /* jpeg_write_scanlines expects an array of pointers to scanlines. * Here the array is only one element long, but you could pass * more than one scanline at a time if that's more convenient. */ row_pointer[0] = & image_buffer[((cinfo.image_height-1)*row_stride)-cinfo.next_scanline * row_stride]; (void) jpeg_write_scanlines(&cinfo, row_pointer, 1); } /* Step 6: Finish compression */ jpeg_finish_compress(&cinfo); /* After finish_compress, we can close the output file. */ FS_WriteFile( filename, out, hackSize ); Hunk_FreeTempMemory(out); /* Step 7: release JPEG compression object */ /* This is an important step since it will release a good deal of memory. */ jpeg_destroy_compress(&cinfo); /* And we're done! */ } //=================================================================== /* ================= R_LoadImage Loads any of the supported image types into a cannonical 32 bit format. ================= */ void R_LoadImage( const char *shortname, byte **pic, int *width, int *height, GLenum *format ) { int bytedepth; char name[MAX_QPATH]; *pic = NULL; *width = 0; *height = 0; *format = GL_RGBA; COM_StripExtension(shortname,name,sizeof(name)); COM_DefaultExtension(name, sizeof(name), ".jpg"); LoadJPG( name, pic, width, height ); if (*pic) { return; } COM_StripExtension(shortname,name,sizeof(name)); COM_DefaultExtension(name, sizeof(name), ".png"); LoadPNG32( name, pic, width, height, &bytedepth ); // try png first if (*pic){ return; } COM_StripExtension(shortname,name,sizeof(name)); COM_DefaultExtension(name, sizeof(name), ".tga"); LoadTGA( name, pic, width, height ); // try tga first if (*pic){ return; } } void R_LoadDataImage( const char *name, byte **pic, int *width, int *height) { int len; char work[MAX_QPATH]; *pic = NULL; *width = 0; *height = 0; len = strlen(name); if(len >= MAX_QPATH) { return; } if (len < 5) { return; } // MD_PushTag(TAG_DATA_IMAGE_LOAD); strcpy(work, name); COM_DefaultExtension( work, sizeof( work ), ".png" ); LoadPNG8( work, pic, width, height ); if (!pic || !*pic) { //png load failed, try jpeg strcpy(work, name); COM_DefaultExtension( work, sizeof( work ), ".jpg" ); LoadJPG( work, pic, width, height ); } if (!pic || !*pic) { //both png and jpeg failed, try targa strcpy(work, name); COM_DefaultExtension( work, sizeof( work ), ".tga" ); LoadTGA( work, pic, width, height ); } if(*pic) { // MD_PopTag(); return; } // Dataimage loading failed Com_Printf("Couldn't read %s -- dataimage load failed\n", name); // MD_PopTag(); } #endif // !DEDICATED void R_InvertImage(byte *data, int width, int height, int depth) { byte *newData; byte *oldData; byte *saveData; int y, stride; stride = width * depth; oldData = data + ((height - 1) * stride); newData = (byte *)Z_Malloc(height * stride, TAG_TEMP_IMAGE, qfalse ); saveData = newData; for(y = 0; y < height; y++) { memcpy(newData, oldData, stride); newData += stride; oldData -= stride; } memcpy(data, saveData, height * stride); Z_Free(saveData); } // Lanczos3 image resampling. Better than bicubic, based on sin(x)/x algorithm #define LANCZOS3 (3.0f) #define M_PI_OVER_3 (M_PI / 3.0f) typedef struct { int pixel; float weight; } contrib_t; typedef struct { int n; // number of contributors contrib_t *p; // pointer to list of contributions } contrib_list_t; // sin(x)/x * sin(x/3)/(x/3) float Lanczos3(float t) { if(!t) { return(1.0f); } t = (float)fabs(t); if(t < 3.0f) { return(sinf(t * M_PI) * sinf(t * M_PI_OVER_3) / (t * M_PI * t * M_PI_OVER_3)); } return(0.0f); } void R_Resample(byte *source, int swidth, int sheight, byte *dest, int dwidth, int dheight, int components) { int i, j, k, l, count, left, right, num; int pixel; byte *raster; float center, weight, scale, width, height; contrib_list_t *contributors; // MD_PushTag(TAG_RESAMPLE); byte *work = (byte *)Z_Malloc(dwidth * sheight * components, TAG_RESAMPLE); // Pre calculate filter contributions for rows contributors = (contrib_list_t *)Z_Malloc(sizeof(contrib_list_t) * dwidth, TAG_RESAMPLE); float xscale = (float)dwidth / (float)swidth; if(xscale < 1.0f) { width = ceilf(LANCZOS3 / xscale); scale = xscale; } else { width = LANCZOS3; scale = 1.0f; } num = ((int)width * 2) + 1; for(i = 0; i < dwidth; i++) { contributors[i].n = 0; contributors[i].p = (contrib_t *)Z_Malloc(num * sizeof(contrib_t), TAG_RESAMPLE); center = (float)i / xscale; left = (int)ceilf(center - width); right = (int)floorf(center + width); for(j = left; j <= right; j++) { weight = Lanczos3((center - (float)j) * scale) * scale; if(j < 0) { pixel = -j; } else if(j >= swidth) { pixel = (swidth - j) + swidth - 1; } else { pixel = j; } count = contributors[i].n++; contributors[i].p[count].pixel = pixel; contributors[i].p[count].weight = weight; } } // Apply filters to zoom horizontally from source to work for(k = 0; k < sheight; k++) { raster = source + (k * swidth * components); for(i = 0; i < dwidth; i++) { for(l = 0; l < components; l++) { weight = 0.0f; for(j = 0; j < contributors[i].n; j++) { weight += raster[(contributors[i].p[j].pixel * components) + l] * contributors[i].p[j].weight; } pixel = (byte)Com_Clamp(0.0f, 255.0f, weight); work[(k * dwidth * components) + (i * components) + l] = pixel; } } } // Clean up for(i = 0; i < dwidth; i++) { Z_Free(contributors[i].p); } Z_Free(contributors); // Columns contributors = (contrib_list_t *)Z_Malloc(sizeof(contrib_list_t) * dheight, TAG_RESAMPLE); float yscale = (float)dheight / (float)sheight; if(yscale < 1.0f) { height = ceilf(LANCZOS3 / yscale); scale = yscale; } else { height = LANCZOS3; scale = 1.0f; } num = ((int)height * 2) + 1; for(i = 0; i < dheight; i++) { contributors[i].n = 0; contributors[i].p = (contrib_t *)Z_Malloc(num * sizeof(contrib_t), TAG_RESAMPLE); center = (float)i / yscale; left = (int)ceilf(center - height); right = (int)floorf(center + height); for(j = left; j <= right; j++) { weight = Lanczos3((center - (float)j) * scale) * scale; if(j < 0) { pixel = -j; } else if(j >= sheight) { pixel = (sheight - j) + sheight - 1; } else { pixel = j; } count = contributors[i].n++; contributors[i].p[count].pixel = pixel; contributors[i].p[count].weight = weight; } } // Apply filter to columns for(k = 0; k < dwidth; k++) { for(l = 0; l < components; l++) { for(i = 0; i < dheight; i++) { weight = 0.0f; for(j = 0; j < contributors[i].n; j++) { weight += work[(contributors[i].p[j].pixel * dwidth * components) + (k * components) + l] * contributors[i].p[j].weight; } pixel = (byte)Com_Clamp(0.0f, 255.0f, weight); dest[(i * dwidth * components) + (k * components) + l] = pixel; } } } // Clean up for(i = 0; i < dheight; i++) { Z_Free(contributors[i].p); } Z_Free(contributors); Z_Free(work); // MD_PopTag(); } #ifndef DEDICATED /* =============== R_FindImageFile Finds or loads the given image. Returns NULL if it fails, not a default image. ============== */ image_t *R_FindImageFile( const char *name, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode ) { image_t *image; int width, height; byte *pic; GLenum format; if (!name || com_dedicated->integer // stop ghoul2 horribleness as regards image loading from server ) { return NULL; } // need to do this here as well as in R_CreateImage, or R_FindImageFile_NoLoad() may complain about // different clamp parms used... // if(glConfig.clampToEdgeAvailable && glWrapClampMode == GL_CLAMP) { glWrapClampMode = GL_CLAMP_TO_EDGE; } image = R_FindImageFile_NoLoad(name, mipmap, allowPicmip, allowTC, glWrapClampMode ); if (image) { return image; } // // load the pic from disk // R_LoadImage( name, &pic, &width, &height, &format ); if ( pic == NULL ) { // if we dont get a successful load return NULL; // bail } // refuse to find any files not power of 2 dims... // if ( (width&(width-1)) || (height&(height-1)) ) { Com_Printf ("Refusing to load non-power-2-dims(%d,%d) pic \"%s\"...\n", width,height,name ); return NULL; } image = R_CreateImage( ( char * ) name, pic, width, height, format, mipmap, allowPicmip, allowTC, glWrapClampMode ); Z_Free( pic ); return image; } /* ================ R_CreateDlightImage ================ */ #define DLIGHT_SIZE 16 static void R_CreateDlightImage( void ) { int width, height; byte *pic; GLenum format; R_LoadImage("gfx/2d/dlight", &pic, &width, &height, &format); if (pic) { tr.dlightImage = R_CreateImage("*dlight", pic, width, height, GL_RGBA, qfalse, qfalse, qfalse, GL_CLAMP ); Z_Free(pic); } else { // if we dont get a successful load int x,y; byte data[DLIGHT_SIZE][DLIGHT_SIZE][4]; int b; // make a centered inverse-square falloff blob for dynamic lighting for (x=0 ; x 255) { b = 255; } else if ( b < 75 ) { b = 0; } data[y][x][0] = data[y][x][1] = data[y][x][2] = b; data[y][x][3] = 255; } } tr.dlightImage = R_CreateImage("*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, GL_RGBA, qfalse, qfalse, qfalse, GL_CLAMP ); } } /* ================= R_InitFogTable ================= */ void R_InitFogTable( void ) { int i; float d; float exp; exp = 0.5; for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) { d = pow ( (float)i/(FOG_TABLE_SIZE-1), exp ); tr.fogTable[i] = d; } } /* ================ R_FogFactor Returns a 0.0 to 1.0 fog density value This is called for each texel of the fog texture on startup and for each vertex of transparent shaders in fog dynamically ================ */ float R_FogFactor( float s, float t ) { float d; s -= 1.0/512; if ( s < 0 ) { return 0; } if ( t < 1.0/32 ) { return 0; } if ( t < 31.0/32 ) { s *= (t - 1.0f/32.0f) / (30.0f/32.0f); } // we need to leave a lot of clamp range s *= 8; if ( s > 1.0 ) { s = 1.0; } d = tr.fogTable[ (int)(s * (FOG_TABLE_SIZE-1)) ]; return d; } /* ================ R_CreateFogImage ================ */ #define FOG_S 256 #define FOG_T 32 static void R_CreateFogImage( void ) { int x,y; byte *data; float g; float d; float borderColor[4]; data = (unsigned char *)Hunk_AllocateTempMemory( FOG_S * FOG_T * 4 ); g = 2.0; // S is distance, T is depth for (x=0 ; xinteger > glConfig.vidWidth ) { r_DynamicGlowWidth->integer = glConfig.vidWidth; } if ( r_DynamicGlowHeight->integer > glConfig.vidHeight ) { r_DynamicGlowHeight->integer = glConfig.vidHeight; } tr.blurImage = 1024 + giTextureBindNum++; qglBindTexture( GL_TEXTURE_RECTANGLE_EXT, tr.blurImage ); qglTexImage2D( GL_TEXTURE_RECTANGLE_EXT, 0, GL_RGBA16, r_DynamicGlowWidth->integer, r_DynamicGlowHeight->integer, 0, GL_RGB, GL_FLOAT, 0 ); qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR ); qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP ); qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP ); qglDisable( GL_TEXTURE_RECTANGLE_EXT ); qglEnable( GL_TEXTURE_2D ); // with overbright bits active, we need an image which is some fraction of full color, // for default lightmaps, etc for (x=0 ; xinteger; if ( !glConfig.deviceSupportsGamma ) { tr.overbrightBits = 0; // need hardware gamma for overbright } // never overbright in windowed mode if ( !glConfig.isFullscreen ) { tr.overbrightBits = 0; } if ( tr.overbrightBits > 1 ) { tr.overbrightBits = 1; } if ( tr.overbrightBits < 0 ) { tr.overbrightBits = 0; } tr.identityLight = 1.0f / ( 1 << tr.overbrightBits ); tr.identityLightByte = 255 * tr.identityLight; if ( r_intensity->value < 1.0f ) { Cvar_Set( "r_intensity", "1" ); } if ( r_gamma->value < 0.5f ) { Cvar_Set( "r_gamma", "0.5" ); } else if ( r_gamma->value > 3.0f ) { Cvar_Set( "r_gamma", "3.0" ); } g = r_gamma->value; shift = tr.overbrightBits; for ( i = 0; i < 256; i++ ) { if ( g == 1 ) { inf = i; } else { inf = 255 * pow ( i/255.0f, 1.0f / g ) + 0.5f; } inf <<= shift; if (inf < 0) { inf = 0; } if (inf > 255) { inf = 255; } s_gammatable[i] = inf; } for (i=0 ; i<256 ; i++) { j = i * r_intensity->value; if (j > 255) { j = 255; } s_intensitytable[i] = j; } if ( glConfig.deviceSupportsGamma ) { GLimp_SetGamma( s_gammatable, s_gammatable, s_gammatable ); } } /* =============== R_InitImages =============== */ void R_InitImages( void ) { //memset(hashTable, 0, sizeof(hashTable)); // DO NOT DO THIS NOW (because of image cacheing) -ste. // build brightness translation tables R_SetColorMappings(); // create default texture and white texture R_CreateBuiltinImages(); } /* =============== R_DeleteTextures =============== */ // (only gets called during vid_restart now (and app exit), not during map load) // void R_DeleteTextures( void ) { R_Images_Clear(); GL_ResetBinds(); } /* ============================================================================ SKINS ============================================================================ */ /* =============== RE_RegisterSkin =============== */ #endif // !DEDICATED bool gServerSkinHack = false; static char *CommaParse( char **data_p ); //can't be dec'd here since we need it for non-dedicated builds now as well. shader_t *R_FindServerShader( const char *name, const int *lightmapIndex, const byte *styles, qboolean mipRawImage ); /* =============== RE_SplitSkins input = skinname, possibly being a macro for three skins return= true if three part skins found output= qualified names to three skins if return is true, undefined if false =============== */ bool RE_SplitSkins(const char *INname, char *skinhead, char *skintorso, char *skinlower) { //INname= "models/players/jedi_tf/|head01_skin1|torso01|lower01"; if (strchr(INname, '|')) { char name[MAX_QPATH]; strcpy(name, INname); char *p = strchr(name, '|'); *p=0; p++; //fill in the base path strcpy (skinhead, name); strcpy (skintorso, name); strcpy (skinlower, name); //now get the the individual files //advance to second char *p2 = strchr(p, '|'); assert(p2); if (!p2) { return false; } *p2=0; p2++; strcat (skinhead, p); strcat (skinhead, ".skin"); //advance to third p = strchr(p2, '|'); assert(p); if (!p) { return false; } *p=0; p++; strcat (skintorso,p2); strcat (skintorso, ".skin"); strcat (skinlower,p); strcat (skinlower, ".skin"); return true; } return false; } // given a name, go get the skin we want and return qhandle_t RE_RegisterIndividualSkin( const char *name , qhandle_t hSkin) { skin_t *skin; skinSurface_t *surf; char *text, *text_p; char *token; char surfName[MAX_QPATH]; // load and parse the skin file FS_ReadFile( name, (void **)&text ); if ( !text ) { #ifndef FINAL_BUILD Com_Printf( "WARNING: RE_RegisterSkin( '%s' ) failed to load!\n", name ); #endif return 0; } assert (tr.skins[hSkin]); //should already be setup, but might be an 3part append skin = tr.skins[hSkin]; text_p = text; while ( text_p && *text_p ) { // get surface name token = CommaParse( &text_p ); Q_strncpyz( surfName, token, sizeof( surfName ) ); if ( !token[0] ) { break; } // lowercase the surface name so skin compares are faster Q_strlwr( surfName ); if ( *text_p == ',' ) { text_p++; } if ( !strncmp( token, "tag_", 4 ) ) { //these aren't in there, but just in case you load an id style one... continue; } // parse the shader name token = CommaParse( &text_p ); if ( !strcmp( &surfName[strlen(surfName)-4], "_off") ) { if ( !strcmp( token ,"*off" ) ) { continue; //don't need these double offs } surfName[strlen(surfName)-4] = 0; //remove the "_off" } if (sizeof( skin->surfaces) / sizeof( skin->surfaces[0] ) <= skin->numSurfaces) { assert( sizeof( skin->surfaces) / sizeof( skin->surfaces[0] ) > skin->numSurfaces ); Com_Printf( "WARNING: RE_RegisterSkin( '%s' ) more than %d surfaces!\n", name, sizeof( skin->surfaces) / sizeof( skin->surfaces[0] ) ); break; } surf = skin->surfaces[ skin->numSurfaces ] = (skinSurface_t *) Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low ); Q_strncpyz( surf->name, surfName, sizeof( surf->name ) ); if (gServerSkinHack) { surf->shader = R_FindServerShader( token, lightmapsNone, stylesDefault, qtrue ); } else { surf->shader = R_FindShader( token, lightmapsNone, stylesDefault, qtrue ); } skin->numSurfaces++; } FS_FreeFile( text ); // never let a skin have 0 shaders if ( skin->numSurfaces == 0 ) { return 0; // use default skin } return hSkin; } qhandle_t RE_RegisterSkin( const char *name ) { qhandle_t hSkin; skin_t *skin; if ( !name || !name[0] ) { Com_Printf( "Empty name passed to RE_RegisterSkin\n" ); return 0; } if ( strlen( name ) >= MAX_QPATH ) { Com_Printf( "Skin name exceeds MAX_QPATH\n" ); return 0; } // see if the skin is already loaded for ( hSkin = 1; hSkin < tr.numSkins ; hSkin++ ) { skin = tr.skins[hSkin]; if ( !Q_stricmp( skin->name, name ) ) { if( skin->numSurfaces == 0 ) { return 0; // default skin } return hSkin; } } // allocate a new skin if ( tr.numSkins == MAX_SKINS ) { Com_Printf( "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name ); return 0; } tr.numSkins++; skin = (struct skin_s *)Hunk_Alloc( sizeof( skin_t ), h_low ); tr.skins[hSkin] = skin; Q_strncpyz( skin->name, name, sizeof( skin->name ) ); skin->numSurfaces = 0; // make sure the render thread is stopped R_SyncRenderThread(); // If not a .skin file, load as a single shader if ( strcmp( name + strlen( name ) - 5, ".skin" ) ) { /* skin->numSurfaces = 1; skin->surfaces[0] = (skinSurface_t *)Hunk_Alloc( sizeof(skin->surfaces[0]), h_low ); skin->surfaces[0]->shader = R_FindShader( name, lightmapsNone, stylesDefault, qtrue ); return hSkin; */ } char skinhead[MAX_QPATH]={0}; char skintorso[MAX_QPATH]={0}; char skinlower[MAX_QPATH]={0}; if ( RE_SplitSkins(name, (char*)&skinhead, (char*)&skintorso, (char*)&skinlower ) ) {//three part hSkin = RE_RegisterIndividualSkin(skinhead, hSkin); if (hSkin) { hSkin = RE_RegisterIndividualSkin(skintorso, hSkin); if (hSkin) { hSkin = RE_RegisterIndividualSkin(skinlower, hSkin); } } } else {//single skin hSkin = RE_RegisterIndividualSkin(name, hSkin); } return(hSkin); } /* ================== CommaParse This is unfortunate, but the skin files aren't compatable with our normal parsing rules. ================== */ static char *CommaParse( char **data_p ) { int c = 0, len; char *data; static char com_token[MAX_TOKEN_CHARS]; data = *data_p; len = 0; com_token[0] = 0; // make sure incoming data is valid if ( !data ) { *data_p = NULL; return com_token; } while ( 1 ) { // skip whitespace while( (c = *data) <= ' ') { if( !c ) { break; } data++; } c = *data; // skip double slash comments if ( c == '/' && data[1] == '/' ) { while (*data && *data != '\n') data++; } // skip /* */ comments else if ( c=='/' && data[1] == '*' ) { while ( *data && ( *data != '*' || data[1] != '/' ) ) { data++; } if ( *data ) { data += 2; } } else { break; } } if ( c == 0 ) { return ""; } // handle quoted strings if (c == '\"') { data++; while (1) { c = *data++; if (c=='\"' || !c) { com_token[len] = 0; *data_p = ( char * ) data; return com_token; } if (len < MAX_TOKEN_CHARS) { com_token[len] = c; len++; } } } // parse a regular word do { if (len < MAX_TOKEN_CHARS) { com_token[len] = c; len++; } data++; c = *data; } while (c>32 && c != ',' ); if (len == MAX_TOKEN_CHARS) { // Com_Printf ("Token exceeded %i chars, discarded.\n", MAX_TOKEN_CHARS); len = 0; } com_token[len] = 0; *data_p = ( char * ) data; return com_token; } /* =============== RE_RegisterServerSkin Mangled version of the above function to load .skin files on the server. =============== */ extern qboolean Com_TheHunkMarkHasBeenMade(void); extern qboolean ShaderHashTableExists(void); qhandle_t RE_RegisterServerSkin( const char *name ) { qhandle_t r; if (com_cl_running && com_cl_running->integer && Com_TheHunkMarkHasBeenMade() && ShaderHashTableExists()) { //If the client is running then we can go straight into the normal registerskin func return RE_RegisterSkin(name); } gServerSkinHack = true; r = RE_RegisterSkin(name); gServerSkinHack = false; return r; } /* =============== R_InitSkins =============== */ void R_InitSkins( void ) { skin_t *skin; tr.numSkins = 1; // make the default skin have all default shaders skin = tr.skins[0] = (struct skin_s *)/*ri.*/Hunk_Alloc( sizeof( skin_t ), h_low ); Q_strncpyz( skin->name, "", sizeof( skin->name ) ); skin->numSurfaces = 1; skin->surfaces[0] = (skinSurface_t *)/*ri.*/Hunk_Alloc( sizeof( skinSurface_t ), h_low ); skin->surfaces[0]->shader = tr.defaultShader; } /* =============== R_GetSkinByHandle =============== */ skin_t *R_GetSkinByHandle( qhandle_t hSkin ) { if ( hSkin < 1 || hSkin >= tr.numSkins ) { return tr.skins[0]; } return tr.skins[ hSkin ]; } #ifndef DEDICATED /* =============== R_SkinList_f =============== */ void R_SkinList_f( void ) { int i, j; skin_t *skin; Com_Printf ( "------------------\n"); for ( i = 0 ; i < tr.numSkins ; i++ ) { skin = tr.skins[i]; Com_Printf ("%3i:%s\n", i, skin->name ); for ( j = 0 ; j < skin->numSurfaces ; j++ ) { Com_Printf (" %s = %s\n", skin->surfaces[j]->name, skin->surfaces[j]->shader->name ); } } Com_Printf ( "------------------\n"); } #endif // !DEDICATED