//////////////////////////////////////////////////////////////////////////////////////// // RAVEN STANDARD TEMPLATE LIBRARY // (c) 2002 Activision // // // Graph // ----- // A Graph object is one of the most generic data structures. Theoretically, a graph // could be used to make a tree, list, or any other standard structure. A graph has // two data types: NODE and EDGE, and maintains connection information how edges can // link two nodes. // // One of the most intuitive uses of a graph class is a navigation bouy system. In such // a use, the nodes would probably be vector based objects with positional information // and the edges might contain portal information (door is open / closed / locked). // // Another example might be a web page, or decision tree, or any other problem space // which requires object connection data. // // // // // Implimentation // -------------- // This template allocates a pool for NODES, a pool for EDGES, and a grid2_vs to serve // as an Adjacency Matrix (called Links). The Adj. Matrix stores indicies to EDGE objects // in the EDGE pool. // // // // // What If You Do Not Need Any Edge Objects? // ----------------------------------------- // It's fairly common to have a graph with no connection information other than the // existance of the link. For this case, you should be able to create a graph with a // MAXEDGES of 1. You will want to call the version of connect_node() which does not // take an edge object, and uses 1 as the "index" in the Adj. Matrix. // // // // // How Do You Search? // ------------------- // This graph supports 3 search methods: // Breadth First - Exausts as many links close to start as possible // Depth First - Gets as far from start as quickly as possible // A* - Uses a distance heuristic toward end point // // First, create a (graph_vs::search) object with the start and end points that you want // to search for. Then, call either bfs(), dfs(), or astar(). When you get the // object back, it will have a vector of all the nodes that were visited and methods // for iterating over that vector to get the path. // // for (TestSearch.path_begin(); !TestSearch.path_end(); TestSearch.path_inc()) // { // sprintf(Buf, "(%d)", TestSearch.path_at()); // OutputDebugString(Buf); // } // // // // // Complexity Analisis // ------------------- // All data operations except remove_node() are O(1) constant time. // remove_node() can be O(n) where n is the number of NODES in the graph. // // Search routines: // BFS - // DFS - // A* - // // // // //////////////////////////////////////////////////////////////////////////////////////// #if !defined(RAGL_GRAPH_VS_INC) #define RAGL_GRAPH_VS_INC //////////////////////////////////////////////////////////////////////////////////////// // Includes //////////////////////////////////////////////////////////////////////////////////////// #if defined(RA_DEBUG_LINKING) #pragma message("...including graph_vs.h") #endif #if !defined(RAGL_COMMON_INC) #include "ragl_common.h" #endif #if !defined(RATL_ARRAY_VS_INC) #include "../Ratl/array_vs.h" #endif #if !defined(RATL_VECTOR_VS_INC) #include "../Ratl/vector_vs.h" #endif #if !defined(RATL_BITS_INC) #include "../Ratl/bits_vs.h" #endif #if !defined(RATL_QUEUE_VS_INC) #include "../Ratl/queue_vs.h" #endif #if !defined(RATL_STACK_VS_INC) #include "../Ratl/stack_vs.h" #endif #if !defined(RBTREE_MAP_VS_INC) #include "../Ratl/map_vs.h" #endif #if !defined(RATL_POOL_VS_INC) #include "../Ratl/pool_vs.h" #endif #if !defined(RATL_GRID_VS_INC) #include "../Ratl/grid_vs.h" #endif namespace ragl { //////////////////////////////////////////////////////////////////////////////////////// // The Graph Class //////////////////////////////////////////////////////////////////////////////////////// template class graph_vs : public ratl::ratl_base { public: //////////////////////////////////////////////////////////////////////////////////// // The Graph User Class // // When executing a search (in particular an A* search), you may want to derive your // own user class so that you can provide specific functionality to the search. For // example, you might want characters on one team to bias the cost of going to nodes // which are occupied by the other team. Or you might want to allow specific // characters to access some edges where others cannot. Perhaps one can fly or has // a special key to a door... // //////////////////////////////////////////////////////////////////////////////////// class user { public: //////////////////////////////////////////////////////////////////////////////////// // can be invalid edge (For Region) //////////////////////////////////////////////////////////////////////////////////// virtual bool can_be_invalid(const TEDGE& Edge) const = 0; //////////////////////////////////////////////////////////////////////////////////// // valid edge (For A* and Region) //////////////////////////////////////////////////////////////////////////////////// virtual bool is_valid(TEDGE& Edge, int EndPoint=0) const = 0; //////////////////////////////////////////////////////////////////////////////////// // cost estimate from A to B (For A*) //////////////////////////////////////////////////////////////////////////////////// virtual float cost(const TNODE& A, const TNODE& B) const = 0; //////////////////////////////////////////////////////////////////////////////////// // cost estimate of Edge (For A*) //////////////////////////////////////////////////////////////////////////////////// virtual float cost(const TEDGE& Edge, const TNODE& B) const = 0; //////////////////////////////////////////////////////////////////////////////////// // same floor check (For Triangulation) //////////////////////////////////////////////////////////////////////////////////// virtual bool on_same_floor(const TNODE& A, const TNODE& B) const = 0; //////////////////////////////////////////////////////////////////////////////////// // setup the edge (For Triangulation) //////////////////////////////////////////////////////////////////////////////////// virtual void setup_edge(TEDGE& Edge, int A, int B, bool OnHull, const TNODE& NodeA, const TNODE& NodeB, bool CanBeInvalid=false) = 0; }; //////////////////////////////////////////////////////////////////////////////////// // Capacity Enum //////////////////////////////////////////////////////////////////////////////////// enum { CAPACITY = MAXNODES, NULLEDGE = -1, }; typedef typename ratl::pool_vs TNodes; typedef typename ratl::pool_vs TEdges; struct SNodeNeighbor { short mEdge; short mNode; }; typedef typename ratl::vector_vs TNodeNeighbors; typedef typename ratl::array_vs< TNodeNeighbors, MAXNODES> TLinks; typedef typename ragl::graph_vs TGraph; //////////////////////////////////////////////////////////////////////////////////// // cells class //////////////////////////////////////////////////////////////////////////////////// template class cells : public ratl::ratl_base { public: enum { SIZEX = CELLSX, SIZEY = CELLSY, SIZENODES = NODESPERCELL }; struct SSortNode { float mCost; short mHandle; bool operator<(const SSortNode& t) const { return (mCost TSortNodes; typedef typename ratl::vector_vs TCellNodes; struct SCell { TCellNodes mNodes; TCellNodes mEdges; }; typedef typename ratl::grid2_vs TCells; //////////////////////////////////////////////////////////////////////////////// // //////////////////////////////////////////////////////////////////////////////// cells(TGraph& g) : mGraph(g) { } void clear() { mCells.clear(); SCell EmptyCell; mCells.init(EmptyCell); } void get_cell_upperleft(int x, int y, float& xReal, float& yReal) { mCells.get_cell_upperleft(x,y,xReal,yReal); } void get_cell_lowerright(int x, int y, float& xReal, float& yReal) { mCells.get_cell_lowerright(x,y,xReal,yReal); } //////////////////////////////////////////////////////////////////////////////// // //////////////////////////////////////////////////////////////////////////////// void expand_bounds(int nodeHandle) { TNODE& node = mGraph.get_node(nodeHandle); mCells.expand_bounds(node[0], node[1]); } //////////////////////////////////////////////////////////////////////////////// // //////////////////////////////////////////////////////////////////////////////// SCell& get_cell(float x, float y) { return mCells.get(x,y); } SCell& get_cell(int x, int y) { return mCells.get(x,y); } void convert_to_cell_coords(float x, float y, int& xint, int& yint) { mCells.get_cell_coords(x, y, xint, yint); } //////////////////////////////////////////////////////////////////////////////// // //////////////////////////////////////////////////////////////////////////////// void fill_cells_nodes(float range) { // I. Fill All The Cells With The Points Contained By Those Cells //---------------------------------------------------------------- bool full = false; for (typename TNodes::iterator it=mGraph.nodes_begin(); it!=mGraph.nodes_end() && !full; it++) { TNODE& node = (*it); SCell& cell = mCells.get(node[0], node[1]); cell.mNodes.push_back(it.index()); full = cell.mNodes.full(); assert(!full || "Cell Filled On Inital Containment"==0); } mCells.scale_by_largest_axis(range); // II. Go To All Neighboring Cells And Get Them //============================================== int iRange = (int)(range) + 1; typename TCells::riterator rcell; typename TCells::riterator rcellend; CVec3 cellCenter(0,0,0); CVec3 nodeCenter(0,0,0); TSortNodes *sortnodes = new TSortNodes; SSortNode sortnode; TCells *sortcells = new TCells; sortcells->copy_bounds(mCells); // For Every Cell //---------------- for (int x=0; xclear(); mCells.get_cell_position(x,y, cellCenter.v[0], cellCenter.v[1]); for (rcell = mCells.rangeBegin(iRange,x,y); !rcell.at_end(); rcell++) { SCell& cell = (*rcell); // Add The Nodes To The Sort List //-------------------------------- for (int i=0; ifull(); i++) { int nodeHandle = cell.mNodes[i]; TNODE& node = mGraph.get_node(nodeHandle); nodeCenter[0] = node[0]; nodeCenter[1] = node[1]; sortnode.mHandle = nodeHandle; sortnode.mCost = cellCenter.Dist2(nodeCenter); sortnodes->push_back(sortnode); } } // Sort The Results //------------------ sortnodes->sort(); // Copy The Sorted Nodes Vector Into The Sorted Cell (Of The Sorted Cell Grid) //---------------------------------------------------------------------------- SCell& cell = sortcells->get(x,y); cell.mNodes.clear(); for (int i=0; isize() && iget(xb,yb); SCell& mcell = mCells.get(xb,yb); mcell.mNodes = scell.mNodes; } } delete sortnodes; delete sortcells; } //////////////////////////////////////////////////////////////////////////////// // //////////////////////////////////////////////////////////////////////////////// void fill_cells_edges(float range) { // I. Fill All The Cells With The Points Contained By Those Cells //---------------------------------------------------------------- bool full = false; for (typename TEdges::iterator eit=mGraph.edges_begin(); eit!=mGraph.edges_end() && !full; eit++) { TEDGE& edge = (*eit); SCell& cell = mCells.get(edge[0], edge[1]); cell.mEdges.push_back(eit.index()); full = cell.mEdges.full(); assert(!full || "Cell Filled On Inital Containment"==0); } mCells.scale_by_largest_axis(range); // II. Go To All Neighboring Cells And Get Them //============================================== int iRange = (int)(range) + 1; typename TCells::riterator rcell; typename TCells::riterator rcellend; CVec3 cellCenter(0,0,0); CVec3 nodeCenter(0,0,0); TSortNodes *sortedges = new TSortNodes; SSortNode sortnode; TCells *sortcells = new TCells; sortcells->copy_bounds(mCells); // For Every Cell //---------------- for (int x=0; xclear(); mCells.get_cell_position(x,y, cellCenter.v[0], cellCenter.v[1]); for (rcell = mCells.rangeBegin(iRange,x,y); !rcell.at_end(); rcell++) { SCell& cell = (*rcell); // Add The Edges To The Sort List //-------------------------------- for (int e=0; efull(); e++) { int edgeHandle = cell.mEdges[e]; TEDGE& edge = mGraph.get_edge(edgeHandle); nodeCenter[0] = edge[0]; nodeCenter[1] = edge[1]; sortnode.mHandle = edgeHandle; sortnode.mCost = cellCenter.Dist2(nodeCenter); sortedges->push_back(sortnode); } } // Sort The Results //------------------ sortedges->sort(); // Copy The Sorted Nodes Vector Into The Sorted Cell (Of The Sorted Cell Grid) //---------------------------------------------------------------------------- SCell& cell = sortcells->get(x,y); cell.mEdges.clear(); for (int j=0; jsize() && jget(xb,yb); SCell& mcell = mCells.get(xb,yb); mcell.mEdges = scell.mEdges; } } delete sortedges; delete sortcells; } private: TGraph& mGraph; TCells mCells; }; //////////////////////////////////////////////////////////////////////////////////// // Remove All Edges //////////////////////////////////////////////////////////////////////////////////// void clear_edges() { mEdges.clear(); mEdges.alloc(); // Alloc a dummy edge at location 0 for (int i=0; iB) if reflexive, also (B->A) //////////////////////////////////////////////////////////////////////////////////// int connect_node(const TEDGE& t, int nodeA, int nodeB, bool reflexive=true) { if (nodeA==nodeB || !nodeA || !nodeB || !mNodes.is_used(nodeA) || !mNodes.is_used(nodeB)) { assert("ERROR: Cannot Connect A and B!"==0); return 0; } if (mLinks[nodeA].full() || (reflexive && mLinks[nodeB].full())) { assert("ERROR: Max edges per node exceeded!"==0); return 0; } if (mEdges.full()) { assert("ERROR: Max edges exceeded!"==0); return 0; } SNodeNeighbor nNbr; nNbr.mNode = nodeB; nNbr.mEdge = mEdges.alloc(); mEdges[nNbr.mEdge] = t; mLinks[nodeA].push_back(nNbr); if (reflexive) { nNbr.mNode = nodeA; mLinks[nodeB].push_back(nNbr); } return nNbr.mEdge; } //////////////////////////////////////////////////////////////////////////////////// // Connect Node Without Allocating An Edge Object (A->B) if reflexive, also (B->A) //////////////////////////////////////////////////////////////////////////////////// void connect_node(int nodeA, int nodeB, bool reflexive=true) { if (nodeA==nodeB || !nodeA || !nodeB || !mNodes.is_used(nodeA) || !mNodes.is_used(nodeB)) { assert("ERROR: Cannot Connect A and B!"==0); return 0; } if (mLinks[nodeA].full() || (reflexive && mLinks[nodeB].full())) { assert("ERROR: Max edges per node exceeded!"==0); return 0; } SNodeNeighbor nNbr; nNbr.mNode = nodeB; nNbr.mEdge = 0; mLinks[nodeA].push_back(nNbr); if (reflexive) { nNbr.mNode = nodeA; mLinks[nodeB].push_back(nNbr); } return nNbr.mEdge; } //////////////////////////////////////////////////////////////////////////////////// // Remove Edge //////////////////////////////////////////////////////////////////////////////////// void remove_edge(int nodeA, int nodeB, bool reflexive=true) { if (!mNodes.is_used(nodeA) || !mNodes.is_used(nodeB) && nodeA==nodeB) { assert("Unable To Remove Edge"==0); return; } int linkNum=0; for (linkNum=0; linkNumindex. // // The handle heap is used by A* to sort the open list by cost. // //////////////////////////////////////////////////////////////////////////////////////// template class handle_heap { public: //////////////////////////////////////////////////////////////////////////////////// // Constructor //////////////////////////////////////////////////////////////////////////////////// handle_heap(TNodes& Nodes) : mNodes(Nodes) { clear(); } //////////////////////////////////////////////////////////////////////////////////// // Get The Size (The Difference Between The Push And Pop "Pointers") //////////////////////////////////////////////////////////////////////////////////// int size() const { return (mPush); } //////////////////////////////////////////////////////////////////////////////////// // Check To See If The Size Is Zero //////////////////////////////////////////////////////////////////////////////////// bool empty() const { return (!size()); } //////////////////////////////////////////////////////////////////////////////////// // Check To See If The Size Is Full //////////////////////////////////////////////////////////////////////////////////// bool full() const { return (size()==MAXNODES); } //////////////////////////////////////////////////////////////////////////////////// // Empty Out The Entire Heap //////////////////////////////////////////////////////////////////////////////////// void clear() { mPush = 0; for (int i=0; i0); // Don't Try To Look At This If There Is Nothing In Here return (mData[0]); } //////////////////////////////////////////////////////////////////////////////////// // Accessor //////////////////////////////////////////////////////////////////////////////////// T& operator[](int handle) { // If You Hit This Assert, Then You Are Asking For Unallocated Data //------------------------------------------------------------------ assert(used(handle)); return mData[mHandleToPos[handle]]; } //////////////////////////////////////////////////////////////////////////////////// // Add A Value To The Queue //////////////////////////////////////////////////////////////////////////////////// void push(const T& nValue) { assert(size()0); mPush--; assert(mHandleToPos[mData[0].handle()]==0); // Swap The Lowest Element Up To The Spot We Just "Erased" //--------------------------------------------------------- swap(0, mPush); mHandleToPos[mData[mPush].handle()] = -1; // Erase This Handles Marker // Fix Possible Heap Inconsistancies //----------------------------------- reheapify_downward(0); } //////////////////////////////////////////////////////////////////////////////////// // Call This Func If The Value At The Given Handle Has Changed & Needs Adjustment //////////////////////////////////////////////////////////////////////////////////// void reheapify(int handle) { assert(used(handle)); int Pos = mHandleToPos[handle]; reheapify_upward(Pos); reheapify_downward(Pos); } private: //////////////////////////////////////////////////////////////////////////////////// // Returns The Location Of Node (i)'s Parent Node (The Parent Node Of Zero Is Zero) //////////////////////////////////////////////////////////////////////////////////// int parent(int i) { return ((i-1)/2); } //////////////////////////////////////////////////////////////////////////////////// // Returns The Location Of Node (i)'s Left Child (The Child Of A Leaf Is The Leaf) //////////////////////////////////////////////////////////////////////////////////// int left(int i) { return (2*i)+1; } //////////////////////////////////////////////////////////////////////////////////// // Returns The Location Of Node (i)'s Right Child (The Child Of A Leaf Is The Leaf) //////////////////////////////////////////////////////////////////////////////////// int right(int i) { return (2*i)+2; } //////////////////////////////////////////////////////////////////////////////////// // Returns The Location Of Largest Child Of Node (i) //////////////////////////////////////////////////////////////////////////////////// int largest_child(int i) { if (left(i)=0 && b>=0 && aTEMP mData[a] = mData[b]; // b->a mData[b] = mData[MAXNODES]; // TEMP->B assert(mHandleToPos[mData[a].handle()]==a); assert(mHandleToPos[mData[b].handle()]==b); } //////////////////////////////////////////////////////////////////////////////////// // Swaps The Data Up The Heap Until It Reaches A Valid Location //////////////////////////////////////////////////////////////////////////////////// void reheapify_upward(int Pos) { while (Pos && mData[parent(Pos)] mData; // The Memory (Plus One For Temp Sort) ratl::array_vs mHandleToPos; // int mPush; // Address Of Next Add Location TNodes& mNodes; }; //////////////////////////////////////////////////////////////////////////////////// // A Search Node //////////////////////////////////////////////////////////////////////////////////// class search_node { public: //////////////////////////////////////////////////////////////////////////////// // Constructors //////////////////////////////////////////////////////////////////////////////// search_node(int Node=-1, int Parent=-1) : mNode(Node), mParentVisit(Parent), mCostToGoal(-1), mCostFromStart(0) {} search_node(const search_node& t) : mNode(t.mNode), mParentVisit(t.mParentVisit), mCostToGoal(t.mCostToGoal), mCostFromStart(t.mCostFromStart) {} //////////////////////////////////////////////////////////////////////////////// // Assignment Operator //////////////////////////////////////////////////////////////////////////////// void operator=(const search_node& t) { mNode = (t.mNode); mParentVisit = (t.mParentVisit); mCostToGoal = (t.mCostToGoal); mCostFromStart = (t.mCostFromStart); } //////////////////////////////////////////////////////////////////////////////// // //////////////////////////////////////////////////////////////////////////////// int handle() const { return mNode; } //////////////////////////////////////////////////////////////////////////////// // //////////////////////////////////////////////////////////////////////////////// float cost_estimate() const { return mCostFromStart+mCostToGoal; } //////////////////////////////////////////////////////////////////////////////// // //////////////////////////////////////////////////////////////////////////////// bool operator< (const search_node& t) const { return (cost_estimate() > t.cost_estimate()); } //////////////////////////////////////////////////////////////////////////////// // Data //////////////////////////////////////////////////////////////////////////////// int mNode; // Which Node Is This (Index To Pool mNodes) int mParentVisit; // Which Search Node (In Visited) float mCostToGoal; // How Far From The Start Of The Search Are We? float mCostFromStart; // How Far From The End Of The Search Are We? }; public: typedef ratl::vector_vs TVisited; typedef ratl::array_vs TVisitedHandles; typedef ratl::bits_vs TNodeState; //////////////////////////////////////////////////////////////////////////////////// // The Search Data Object //////////////////////////////////////////////////////////////////////////////////// class search { public: //////////////////////////////////////////////////////////////////////////////// // Constructor //////////////////////////////////////////////////////////////////////////////// search(int nodeStart=0, int nodeEnd=0) : mStart(nodeStart), mEnd(nodeEnd) { clear(true, false); } enum { NULL_NODE = 0, NULL_NODE_INDEX = -1, NULL_VISIT_INDEX = -1, NULL_COST = -1, }; //////////////////////////////////////////////////////////////////////////////// // Reset All The Search Parameters //////////////////////////////////////////////////////////////////////////////// void clear(bool clearNodesPtr=true, bool clearStartAndEnd=true) { // Reset All Data //---------------- mClosed.clear(); mVisited.clear(); mNodeIndexToVisited.fill(NULL_VISIT_INDEX); mNext.mNode = NULL_NODE; mNext.mParentVisit = NULL_VISIT_INDEX; mNext.mCostToGoal = NULL_COST; mNext.mCostFromStart= NULL_COST; mPrevIndex = NULL_NODE_INDEX; mNextIndex = NULL_NODE_INDEX; mPathVisit = NULL_VISIT_INDEX; if (clearNodesPtr) { mNodesPtr = 0; } // Clear Out The Start And End Handles //------------------------------------- if (clearStartAndEnd) { mStart = NULL_NODE; mEnd = NULL_NODE; } // Otherwise, We Can Start The Next Index //---------------------------------------- else if (mNodesPtr && mStart!=NULL_NODE && mEnd!=NULL_NODE) { mNextIndex = mStart; } } //////////////////////////////////////////////////////////////////////////////// // Call This Function To Clear Out Everything EXCEPT Start And End Points //////////////////////////////////////////////////////////////////////////////// void reset() { clear(false, false); } //////////////////////////////////////////////////////////////////////////////// // Mark This Node As Closed //////////////////////////////////////////////////////////////////////////////// void close(int node) { mClosed.set_bit(node); } //////////////////////////////////////////////////////////////////////////////// // Mark This Node As Closed //////////////////////////////////////////////////////////////////////////////// void close(const TNodeState& AllNodesToClose) { mClosed |= AllNodesToClose; } //////////////////////////////////////////////////////////////////////////////// // Return True If We Have Found The Node We Were Searching For //////////////////////////////////////////////////////////////////////////////// bool success() { if (mEnd && mPrevIndex!=NULL_NODE_INDEX) { return (mPrevIndex==mEnd); } return false; } //////////////////////////////////////////////////////////////////////////////// // Get An Index To The Beginning Of The Path //////////////////////////////////////////////////////////////////////////////// void path_begin() { if (success()) { mPathVisit = (mVisited.size()-1); } else { mPathVisit = NULL_VISIT_INDEX; } } //////////////////////////////////////////////////////////////////////////////// // Check ForThe End Of The Path (Use In A for() Loop) //////////////////////////////////////////////////////////////////////////////// bool path_end() { return (mPathVisit==NULL_VISIT_INDEX); } //////////////////////////////////////////////////////////////////////////////// // Index Path Inc (Get The Old Path Node's Parent) //////////////////////////////////////////////////////////////////////////////// void path_inc() { assert(mPathVisit!=NULL_VISIT_INDEX); mPathVisit = mVisited[mPathVisit].mParentVisit; } //////////////////////////////////////////////////////////////////////////////// // Get the node handle of the current node //////////////////////////////////////////////////////////////////////////////// int path_at() { assert(mPathVisit!=NULL_VISIT_INDEX); return mVisited[mPathVisit].mNode; } //////////////////////////////////////////////////////////////////////////////// // The Total Cost Of The Path //////////////////////////////////////////////////////////////////////////////// float path_cost() { if (success()) { return (mVisited[(mVisited.size()-1)].mCostFromStart); } return NULL_COST; } //////////////////////////////////////////////////////////////////////////////// // How Many Nodes Were Looked At In This Search //////////////////////////////////////////////////////////////////////////////// int num_visited() { return mVisited.size(); } //////////////////////////////////////////////////////////////////////////////// // Get An Iterator To The Beginning Of The Visited Pool //////////////////////////////////////////////////////////////////////////////// typename TVisited::iterator visited_begin() { return mVisited.begin(); } //////////////////////////////////////////////////////////////////////////////// // Get An Iterator To The End Of The Visited Pool //////////////////////////////////////////////////////////////////////////////// typename TVisited::iterator visited_end() { return mVisited.end(); } private: //////////////////////////////////////////////////////////////////////////////// // Start At The First NON Closed Node //////////////////////////////////////////////////////////////////////////////// void setup(TNodes* nodesPtr) { mNodesPtr = nodesPtr; clear(false, false); } //////////////////////////////////////////////////////////////////////////////// // Pretend the next index is open, probably because we found a shorter route // than the first time it was closed, and want it back on the open list //////////////////////////////////////////////////////////////////////////////// void reopen_next_index() { assert(mNextIndex!=NULL_NODE_INDEX); mNodeIndexToVisited[mNextIndex] = NULL_VISIT_INDEX; mClosed.clear_bit(mNextIndex); } //////////////////////////////////////////////////////////////////////////////// // The current estimated cost of reaching a give node, if the node was never // visited, but IS closed, it returns NULL cost //////////////////////////////////////////////////////////////////////////////// float visited_cost(int NodeIndex) { int VisitedIndex = mNodeIndexToVisited[NodeIndex]; if (VisitedIndex!=NULL_VISIT_INDEX) { return mVisited[VisitedIndex].cost_estimate(); } return NULL_COST; } //////////////////////////////////////////////////////////////////////////////// // Add This Search Node To The Visited List And Keep Track Of It For Later //////////////////////////////////////////////////////////////////////////////// void visit(search_node& t) { assert(mNodesPtr!=0); mPrevIndex = t.mNode; // Add It To The Visited List, And Mark The Location In The Node Index Array //--------------------------------------------------------------------------- mVisited.push_back(t); mNodeIndexToVisited[mPrevIndex] = (mVisited.size()-1); mClosed.set_bit(mPrevIndex); // Setup Our Next Node To Know It Came From The Last Location In The Visited Vector //---------------------------------------------------------------------------------- mNext.mParentVisit = (mVisited.size()-1); } //////////////////////////////////////////////////////////////////////////////// // Check To See If The Next Index Has Already Been Closed //////////////////////////////////////////////////////////////////////////////// bool next_index_closed() { assert(mNextIndex!=NULL_NODE_INDEX); return (mClosed.get_bit(mNextIndex)); } //////////////////////////////////////////////////////////////////////////////// // The Simple "Get Next" Just Converts The Next Index To A Handle In mNext //////////////////////////////////////////////////////////////////////////////// search_node& get_next() { assert(mNodesPtr); assert(mNextIndex!=NULL_NODE_INDEX); mClosed.set_bit(mNextIndex); mNext.mNode = mNextIndex; mNext.mCostToGoal = 0; mNext.mCostFromStart = 0; return mNext; } //////////////////////////////////////////////////////////////////////////////// // This "Get Next" Function Is For A* and Sets Up THe Costs Of The Search Node //////////////////////////////////////////////////////////////////////////////// search_node& get_next(const user& suser, TEDGE& edge_parent_to_next) { assert(mNodesPtr); assert(mNextIndex!=NULL_NODE_INDEX); //NOTE: we do not do a "mClosed.set_bit(mNextIndex);" here because A* only closes nodes that are visited mNext.mNode = mNextIndex; mNext.mCostToGoal = suser.cost((*mNodesPtr)[mNext.mNode], (*mNodesPtr)[mEnd]); mNext.mCostFromStart = suser.cost(edge_parent_to_next, (*mNodesPtr)[mNext.mNode]); if (mNext.mParentVisit!=NULL_VISIT_INDEX) { mNext.mCostFromStart += mVisited[mNext.mParentVisit].mCostFromStart; } return mNext; } //////////////////////////////////////////////////////////////////////////////// // Parameters (Start And End Are External Handles) //////////////////////////////////////////////////////////////////////////////// public: int mStart; int mEnd; //////////////////////////////////////////////////////////////////////////////// // Data //////////////////////////////////////////////////////////////////////////////// private: TNodes* mNodesPtr; int mPathVisit; int mPrevIndex; int mNextIndex; search_node mNext; ratl::bits_vs mClosed; TVisited mVisited; TVisitedHandles mNodeIndexToVisited; friend class graph_vs; }; //////////////////////////////////////////////////////////////////////////////////// // Setup The Search Data //////////////////////////////////////////////////////////////////////////////////// void setup_search(search& sdata) { sdata.setup(&mNodes); } //////////////////////////////////////////////////////////////////////////////////// // A* Search //////////////////////////////////////////////////////////////////////////////////// void astar(search& sdata, const user& suser) { // Make Sure The Nodes We Are Searching For Exist //------------------------------------------------ assert(MAXEDGES>1); sdata.setup(&mNodes); // Allocate Our Data Structures //------------------------------ handle_heap open(mNodes); int curNeighbor; int curEdge; float curCost; // Run Through The Open List //--------------------------- open.push(sdata.get_next()); while (!open.empty() && !sdata.success()) { sdata.visit(open.top()); open.pop(); // Search Through The Non Closed Nodes Edges //------------------------------------------- TNodeNeighbors& curNeighbors = get_node_neighbors(sdata.mPrevIndex); for (curNeighbor=0; curNeighbor open; // Run Through The Open List //--------------------------- open.push(sdata.get_next()); while (open.size()>0 && !sdata.success()) { sdata.visit(open.top()); open.pop(); // Search Through The Non Closed Nodes Edges //------------------------------------------- for (sdata.mNextIndex=0; sdata.mNextIndex open; // Run Through The Open List //--------------------------- open.push(sdata.get_next()); while (open.size()>0 && !sdata.success()) { sdata.visit(open.top()); open.pop(); // Search Through The Non Closed Nodes Edges //------------------------------------------- for (sdata.mNextIndex=0; sdata.mNextIndex