// tr_image.c // leave this as first line for PCH reasons... // #include "../server/exe_headers.h" #include "tr_local.h" #include "../qcommon/sstring.h" #include "../zlib/zlib.h" #include "../png/png.h" #include "../qcommon/sstring.h" static byte s_intensitytable[256]; static unsigned char s_gammatable[256]; int gl_filter_min = GL_LINEAR_MIPMAP_NEAREST; int gl_filter_max = GL_LINEAR; #define FILE_HASH_SIZE 1024 // actually, the shader code needs this (from another module, great). //static image_t* hashTable[FILE_HASH_SIZE]; /* ** R_GammaCorrect */ void R_GammaCorrect( byte *buffer, int bufSize ) { int i; for ( i = 0; i < bufSize; i++ ) { buffer[i] = s_gammatable[buffer[i]]; } } typedef struct { char *name; int minimize, maximize; } textureMode_t; textureMode_t modes[] = { {"GL_NEAREST", GL_NEAREST, GL_NEAREST}, {"GL_LINEAR", GL_LINEAR, GL_LINEAR}, {"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST}, {"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR}, {"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST}, {"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR} }; /* ================ return a hash value for the filename ================ */ long generateHashValue( const char *fname ) { int i; long hash; char letter; hash = 0; i = 0; while (fname[i] != '\0') { letter = tolower(fname[i]); if (letter =='.') break; // don't include extension if (letter =='\\') letter = '/'; // damn path names hash+=(long)(letter)*(i+119); i++; } hash &= (FILE_HASH_SIZE-1); return hash; } // makeup a nice clean, consistant name to query for and file under, for map<> usage... // char *GenerateImageMappingName( const char *name ) { static char sName[MAX_QPATH]; int i=0; char letter; while (name[i] != '\0' && imipcount ) { GL_Bind (glt); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max); if(glConfig.maxTextureFilterAnisotropy) { if(r_ext_texture_filter_anisotropic->integer>1) { qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, r_ext_texture_filter_anisotropic->value); // 2.0f } else { qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.0f); } } } } } static float R_BytesPerTex (int format) { switch ( format ) { case 1: //"I " return 1; break; case 2: //"IA " return 2; break; case 3: //"RGB " return glConfig.colorBits/8.0f; break; case 4: //"RGBA " return glConfig.colorBits/8.0f; break; case GL_RGBA4: //"RGBA4" return 2; break; case GL_RGB5: //"RGB5 " return 2; break; case GL_RGBA8: //"RGBA8" return 4; break; case GL_RGB8: //"RGB8" return 4; break; case GL_RGB4_S3TC: //"S3TC " return 0.33333f; break; case GL_COMPRESSED_RGB_S3TC_DXT1_EXT: //"DXT1 " return 0.33333f; break; case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT: //"DXT5 " return 1; break; case GL_DDS1_EXT: //"DDS1 " return 0.5f; break; case GL_DDS5_EXT: //"DDS5 " return 1; break; case GL_DDS_RGB16_EXT: //"DDS16" return 2; break; case GL_DDS_RGBA32_EXT: //"DDS32" return 4; break; default: //"???? " return 4; } } /* =============== R_ImageList_f =============== */ void R_ImageList_f( void ) { int i=0; image_t *image; int texels = 0; float texBytes = 0.0f; const char *yesno[] = {"no ", "yes"}; Com_Printf ( "\n -w-- -h-- -mm- -if- wrap --name-------\n"); int iNumImages = R_Images_StartIteration(); while ( (image = R_Images_GetNextIteration()) != NULL) { texels += image->width*image->height; texBytes += image->width*image->height * R_BytesPerTex (image->internalFormat); Com_Printf ( "%4i: %4i %4i %s ", i, image->width, image->height, yesno[image->mipcount] ); switch ( image->internalFormat ) { case 1: Com_Printf( "I " ); break; case 2: Com_Printf( "IA " ); break; case 3: Com_Printf( "RGB " ); break; case 4: Com_Printf( "RGBA " ); break; case GL_RGBA8: Com_Printf( "RGBA8" ); break; case GL_RGB8: Com_Printf( "RGB8 " ); break; case GL_RGB4_S3TC: Com_Printf( "S3TC " ); break; case GL_COMPRESSED_RGB_S3TC_DXT1_EXT: Com_Printf( "DXT1 " ); break; case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT: Com_Printf( "DXT5 " ); break; case GL_RGBA4: Com_Printf( "RGBA4" ); break; case GL_RGB5: Com_Printf( "RGB5 " ); break; case GL_DDS1_EXT: Com_Printf( "DDS1 " ); break; case GL_DDS5_EXT: Com_Printf( "DDS5 " ); break; case GL_DDS_RGB16_EXT: Com_Printf( "DDS16" ); break; case GL_DDS_RGBA32_EXT: Com_Printf( "DDS32" ); break; default: Com_Printf( "???? " ); } switch ( image->wrapClampMode ) { case GL_REPEAT: Com_Printf( "rept " ); break; case GL_CLAMP: Com_Printf( "clmp " ); break; case GL_CLAMP_TO_EDGE: Com_Printf( "clpE " ); break; default: Com_Printf( "%4i ", image->wrapClampMode ); break; } i++; } Com_Printf (" ---------\n"); Com_Printf (" -w-- -h-- -mm- -if- wrap --name-------\n"); Com_Printf (" %i total texels (not including mipmaps)\n", texels ); Com_Printf (" %.2fMB total texture mem (not including mipmaps)\n", texBytes/1048576.0f ); Com_Printf (" %i total images\n\n", iNumImages ); } //======================================================================= /* ================ R_LightScaleTexture Scale up the pixel values in a texture to increase the lighting range ================ */ static void R_LightScaleTexture (unsigned *in, int inwidth, int inheight, qboolean only_gamma ) { if ( only_gamma ) { if ( !glConfig.deviceSupportsGamma ) { int i, c; byte *p; p = (byte *)in; c = inwidth*inheight; for (i=0 ; i> 1; outHeight = inHeight >> 1; temp = (unsigned int *) Z_Malloc( outWidth * outHeight * 4, TAG_TEMP_WORKSPACE, qfalse ); inWidthMask = inWidth - 1; inHeightMask = inHeight - 1; for ( i = 0 ; i < outHeight ; i++ ) { for ( j = 0 ; j < outWidth ; j++ ) { outpix = (byte *) ( temp + i * outWidth + j ); for ( k = 0 ; k < 4 ; k++ ) { total = 1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] + 1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] + 4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] + 4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] + 4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] + 4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] + 1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] + 2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] + 1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k]; outpix[k] = total / 36; } } } memcpy( in, temp, outWidth * outHeight * 4 ); Z_Free( temp ); } /* ================ R_MipMap Operates in place, quartering the size of the texture ================ */ static void R_MipMap (byte *in, int width, int height) { int i, j; byte *out; int row; if ( width == 1 && height == 1 ) { return; } if ( !r_simpleMipMaps->integer ) { R_MipMap2( (unsigned *)in, width, height ); return; } row = width * 4; out = in; width >>= 1; height >>= 1; if ( width == 0 || height == 0 ) { width += height; // get largest for (i=0 ; i>1; out[1] = ( in[1] + in[5] )>>1; out[2] = ( in[2] + in[6] )>>1; out[3] = ( in[3] + in[7] )>>1; } return; } for (i=0 ; i>2; out[1] = (in[1] + in[5] + in[row+1] + in[row+5])>>2; out[2] = (in[2] + in[6] + in[row+2] + in[row+6])>>2; out[3] = (in[3] + in[7] + in[row+3] + in[row+7])>>2; } } } /* ================== R_BlendOverTexture Apply a color blend over a set of pixels ================== */ static void R_BlendOverTexture( byte *data, int pixelCount, byte blend[4] ) { int i; int inverseAlpha; int premult[3]; inverseAlpha = 255 - blend[3]; premult[0] = blend[0] * blend[3]; premult[1] = blend[1] * blend[3]; premult[2] = blend[2] * blend[3]; for ( i = 0 ; i < pixelCount ; i++, data+=4 ) { data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9; data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9; data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9; } } byte mipBlendColors[16][4] = { {0,0,0,0}, {255,0,0,128}, {0,255,0,128}, {0,0,255,128}, {255,0,0,128}, {0,255,0,128}, {0,0,255,128}, {255,0,0,128}, {0,255,0,128}, {0,0,255,128}, {255,0,0,128}, {0,255,0,128}, {0,0,255,128}, {255,0,0,128}, {0,255,0,128}, {0,0,255,128}, }; /* =============== Upload32 =============== */ static void Upload32( unsigned *data, int img_width, int img_height, GLenum format, int mipcount, qboolean picmip, qboolean isLightmap, int *pformat ) { if (format == GL_RGBA) { int samples; int i, c; byte *scan; int width = img_width; int height = img_height; // // perform optional picmip operation // if ( picmip ) { for(i = 0; i < r_picmip->integer; i++) { R_MipMap( (byte *)data, width, height ); width >>= 1; height >>= 1; if (width < 1) { width = 1; } if (height < 1) { height = 1; } } } // // clamp to the current upper OpenGL limit // scale both axis down equally so we don't have to // deal with a half mip resampling // while ( width > glConfig.maxTextureSize || height > glConfig.maxTextureSize ) { R_MipMap( (byte *)data, width, height ); width >>= 1; height >>= 1; } // // scan the texture for each channel's max values // and verify if the alpha channel is being used or not // c = width*height; scan = ((byte *)data); samples = 3; for ( i = 0; i < c; i++ ) { if ( scan[i*4 + 3] != 255 ) { samples = 4; break; } } // select proper internal format if ( samples == 3 ) { if ( isLightmap && r_texturebitslm->integer > 0 ) { // Allow different bit depth when we are a lightmap if ( r_texturebitslm->integer == 16 ) { *pformat = GL_RGB5; } else if ( r_texturebitslm->integer == 32 ) { *pformat = GL_RGB8; } } else if ( r_texturebits->integer == 16 ) { *pformat = GL_RGB5; } else if ( r_texturebits->integer == 32 ) { *pformat = GL_RGB8; } else { *pformat = 3; } } else if ( samples == 4 ) { if ( r_texturebits->integer == 16 ) { *pformat = GL_RGBA4; } else if ( r_texturebits->integer == 32 ) { *pformat = GL_RGBA8; } else { *pformat = 4; } } // copy or resample data as appropriate for first MIP level if (!mipcount) { qglTexImage2D (GL_TEXTURE_2D, 0, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); } else { if (mipcount) { int miplevel = 0; int total = 1; int n = width; if (height > n) n = height; while (n > 1) { n >>= 1; ++total; } qglTexImage2DEXT (GL_TEXTURE_2D, 0, total, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data ); } } } else { *pformat = format; qglTexImage2DEXT (GL_TEXTURE_2D, 0, mipcount, format, img_width, img_height, 0, format, GL_UNSIGNED_BYTE, data); } if (mipcount) { qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max); if(r_ext_texture_filter_anisotropic->integer>1 && glConfig.maxTextureFilterAnisotropy>0) { qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, r_ext_texture_filter_anisotropic->value); // 2.0f } } else { qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR ); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); } GL_CheckErrors(); } typedef tmap (int, image_t *) AllocatedImages_t; AllocatedImages_t* AllocatedImages = NULL; AllocatedImages_t::iterator itAllocatedImages; int giTextureBindNum = 1024; // will be set to this anyway at runtime, but wtf? // return = number of images in the list, for those interested // int R_Images_StartIteration(void) { if(!AllocatedImages) return 0; itAllocatedImages = AllocatedImages->begin(); return AllocatedImages->size(); } image_t *R_Images_GetNextIteration(void) { if(!AllocatedImages) return NULL; if (itAllocatedImages == AllocatedImages->end()) return NULL; image_t *pImage = (*itAllocatedImages).second; ++itAllocatedImages; return pImage; } // clean up anything to do with an image_t struct, but caller will have to clear the internal to an image_t struct ready for either struct free() or overwrite... // static void R_Images_DeleteImageContents( image_t *pImage ) { assert(pImage); // should never be called with NULL if (pImage) { qglDeleteTextures( 1, &pImage->texnum ); Z_Free(pImage); } } static void GL_ResetBinds(void) { memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) ); if ( qglBindTexture ) { if ( qglActiveTextureARB ) { GL_SelectTexture( 1 ); qglBindTexture( GL_TEXTURE_2D, 0 ); GL_SelectTexture( 0 ); qglBindTexture( GL_TEXTURE_2D, 0 ); } else { qglBindTexture( GL_TEXTURE_2D, 0 ); } } } // special function used in conjunction with "devmapbsp"... // void R_Images_DeleteLightMaps(void) { qboolean bEraseOccured = qfalse; for (AllocatedImages_t::iterator itImage = AllocatedImages->begin(); itImage != AllocatedImages->end(); bEraseOccured?itImage:++itImage) { bEraseOccured = qfalse; image_t *pImage = (*itImage).second; if (pImage->isLightmap) { R_Images_DeleteImageContents(pImage); AllocatedImages->erase(itImage++); bEraseOccured = qtrue; } } GL_ResetBinds(); } // special function currently only called by Dissolve code... // void R_Images_DeleteImage(image_t *pImage) { // Even though we supply the image handle, we need to get the corresponding iterator entry... // AllocatedImages_t::iterator itImage = AllocatedImages->find(pImage->imgCode); if (itImage != AllocatedImages->end()) { R_Images_DeleteImageContents(pImage); AllocatedImages->erase(itImage); } else { assert(0); } } // called only at app startup, vid_restart, app-exit // void R_Images_Clear(void) { image_t *pImage; // int iNumImages = R_Images_StartIteration(); while ( (pImage = R_Images_GetNextIteration()) != NULL) { R_Images_DeleteImageContents(pImage); } AllocatedImages->clear(); giTextureBindNum = 1024; } void RE_RegisterImages_Info_f( void ) { } // implement this if you need to, do a find for the caller. I don't need it though, so far. // //void RE_RegisterImages_LevelLoadBegin(const char *psMapName); // currently, this just goes through all the images and dumps any not referenced on this level... // qboolean RE_RegisterImages_LevelLoadEnd(void) { qboolean bEraseOccured = qfalse; for (AllocatedImages_t::iterator itImage = AllocatedImages->begin(); itImage != AllocatedImages->end(); bEraseOccured?itImage:++itImage) { bEraseOccured = qfalse; image_t *pImage = (*itImage).second; // don't un-register system shaders (*fog, *dlight, *white, *default), but DO de-register lightmaps ("$/lightmap%d") if (!pImage->isSystem) { // image used on this level? // if ( pImage->iLastLevelUsedOn != RE_RegisterMedia_GetLevel() ) { // nope, so dump it... //Com_Printf( PRINT_DEVELOPER, "Dumping image \"%s\"\n",pImage->imgName); R_Images_DeleteImageContents(pImage); itImage = AllocatedImages->erase(itImage); bEraseOccured = qtrue; } } } GL_ResetBinds(); return bEraseOccured; } // returns image_t struct if we already have this, else NULL. No disk-open performed // (important for creating default images). // // This is called by both R_FindImageFile and anything that creates default images... // static image_t *R_FindImageFile_NoLoad(const char *name, int mipcount, qboolean allowPicmip, int glWrapClampMode ) { if (!name) { return NULL; } char *pName = GenerateImageMappingName(name); // // see if the image is already loaded // int code = crc32(0, (const Bytef *)pName, strlen(pName)); AllocatedImages_t::iterator itAllocatedImage = AllocatedImages->find(code); if (itAllocatedImage != AllocatedImages->end()) { image_t *pImage = (*itAllocatedImage).second; // the white image can be used with any set of parms, but other mismatches are errors... // if ( strcmp( pName, "*white" ) ) { if ( !pImage->mipcount != !mipcount ) { // Test is more lax, but also prevents tons of false positives Com_Printf( "WARNING: reused image %s with mixed mipmap parm\n", pName ); } if ( pImage->allowPicmip != !!allowPicmip ) { Com_Printf( "WARNING: reused image %s with mixed allowPicmip parm\n", pName ); } } pImage->iLastLevelUsedOn = RE_RegisterMedia_GetLevel(); return pImage; } return NULL; } /* ================ R_CreateImage This is the only way any image_t are created ================ */ image_t *R_CreateImage( const char *name, const byte *pic, int width, int height, GLenum format, int mipcount, qboolean allowPicmip, int glWrapClampMode ) { image_t *image; qboolean isLightmap = qfalse; if (strlen(name) >= MAX_QPATH ) { Com_Error (ERR_DROP, "R_CreateImage: \"%s\" is too long\n", name); } if(glConfig.clampToEdgeAvailable && glWrapClampMode == GL_CLAMP) { glWrapClampMode = GL_CLAMP_TO_EDGE; } if (name[0] == '$') { isLightmap = qtrue; } if ( (width&(width-1)) || (height&(height-1)) ) { Com_Error( ERR_FATAL, "R_CreateImage: %s dimensions (%i x %i) not power of 2!\n",name,width,height); } image = R_FindImageFile_NoLoad(name, mipcount, allowPicmip, glWrapClampMode ); if (image) { return image; } image = (image_t*) Z_Malloc( sizeof( image_t ), TAG_IMAGE_T, qtrue ); qglGenTextures(1, (GLuint*)&image->texnum); image->iLastLevelUsedOn = RE_RegisterMedia_GetLevel(); image->mipcount = mipcount; image->allowPicmip = allowPicmip; image->imgCode = crc32(0, (const Bytef *)name, strlen(name)); image->width = width; image->height = height; image->isSystem = (name[0] == '*'); image->isLightmap = isLightmap; GL_SelectTexture( 0 ); GL_Bind(image); Upload32( (unsigned *)pic, image->width, image->height, format, image->mipcount, allowPicmip, isLightmap, &image->internalFormat ); qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, glWrapClampMode ); qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, glWrapClampMode ); qglBindTexture( GL_TEXTURE_2D, 0 ); //jfm: i don't know why this is here, but it breaks lightmaps when there's only 1 glState.currenttextures[glState.currenttmu] = 0; //mark it not bound const char* psNewName = GenerateImageMappingName(name); image->imgCode = crc32(0, (const Bytef *)psNewName, strlen(psNewName)); (*AllocatedImages)[ image->imgCode ] = image; return image; } void R_CreateAutomapImage( const char *name, const byte *pic, int width, int height, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode ) { R_CreateImage(name, pic, width, height, GL_RGBA, mipmap, allowPicmip, glWrapClampMode); } /* ========================================================= TARGA LOADING ========================================================= */ /* Ghoul2 Insert Start */ bool LoadTGAPalletteImage ( const char *name, byte **pic, int *width, int *height) { int columns, rows, numPixels; byte *buf_p; byte *buffer; TargaHeader targa_header; byte *dataStart; *pic = NULL; // // load the file // FS_ReadFile ( ( char * ) name, (void **)&buffer); if (!buffer) { return false; } buf_p = buffer; targa_header.id_length = *buf_p++; targa_header.colormap_type = *buf_p++; targa_header.image_type = *buf_p++; targa_header.colormap_index = LittleShort ( *(short *)buf_p ); buf_p += 2; targa_header.colormap_length = LittleShort ( *(short *)buf_p ); buf_p += 2; targa_header.colormap_size = *buf_p++; targa_header.x_origin = LittleShort ( *(short *)buf_p ); buf_p += 2; targa_header.y_origin = LittleShort ( *(short *)buf_p ); buf_p += 2; targa_header.width = LittleShort ( *(short *)buf_p ); buf_p += 2; targa_header.height = LittleShort ( *(short *)buf_p ); buf_p += 2; targa_header.pixel_size = *buf_p++; targa_header.attributes = *buf_p++; if (targa_header.image_type!=1 ) { Com_Error (ERR_DROP, "LoadTGAPalletteImage: Only type 1 (uncompressed pallettised) TGA images supported\n"); } if ( targa_header.colormap_type == 0 ) { Com_Error( ERR_DROP, "LoadTGAPalletteImage: colormaps ONLY supported\n" ); } columns = targa_header.width; rows = targa_header.height; numPixels = columns * rows; if (width) *width = columns; if (height) *height = rows; *pic = (unsigned char *) Z_Malloc (numPixels, TAG_TEMP_WORKSPACE, qfalse); if (targa_header.id_length != 0) { buf_p += targa_header.id_length; // skip TARGA image comment } dataStart = buf_p + (targa_header.colormap_length * (targa_header.colormap_size / 4)); memcpy(*pic, dataStart, numPixels); FS_FreeFile (buffer); return true; } /* Ghoul2 Insert End */ // My TGA loader... // //--------------------------------------------------- #pragma pack(push,1) typedef struct { byte byIDFieldLength; // must be 0 byte byColourmapType; // 0 = truecolour, 1 = paletted, else bad byte byImageType; // 1 = colour mapped (palette), uncompressed, 2 = truecolour, uncompressed, else bad word w1stColourMapEntry; // must be 0 word wColourMapLength; // 256 for 8-bit palettes, else 0 for true-colour byte byColourMapEntrySize; // 24 for 8-bit palettes, else 0 for true-colour word wImageXOrigin; // ignored word wImageYOrigin; // ignored word wImageWidth; // in pixels word wImageHeight; // in pixels byte byImagePlanes; // bits per pixel (8 for paletted, else 24 for true-colour) byte byScanLineOrder; // Image descriptor bytes // bits 0-3 = # attr bits (alpha chan) // bits 4-5 = pixel order/dir // bits 6-7 scan line interleave (00b=none,01b=2way interleave,10b=4way) } TGAHeader_t; #pragma pack(pop) // *pic == pic, else NULL for failed. // // returns false if found but had a format error, else true for either OK or not-found (there's a reason for this) // void LoadTGA ( const char *name, byte **pic, int *width, int *height) { char sErrorString[1024]; bool bFormatErrors = false; // these don't need to be declared or initialised until later, but the compiler whines that 'goto' skips them. // byte *pRGBA = NULL; byte *pOut = NULL; byte *pIn = NULL; *pic = NULL; #define TGA_FORMAT_ERROR(blah) {sprintf(sErrorString,blah); bFormatErrors = true; goto TGADone;} //#define TGA_FORMAT_ERROR(blah) Com_Error( ERR_DROP, blah ); // // load the file // byte *pTempLoadedBuffer = 0; FS_ReadFile ( ( char * ) name, (void **)&pTempLoadedBuffer); if (!pTempLoadedBuffer) { return; } TGAHeader_t *pHeader = (TGAHeader_t *) pTempLoadedBuffer; if (pHeader->byColourmapType!=0) { TGA_FORMAT_ERROR("LoadTGA: colourmaps not supported\n" ); } if (pHeader->byImageType != 2 && pHeader->byImageType != 3 && pHeader->byImageType != 10) { TGA_FORMAT_ERROR("LoadTGA: Only type 2 (RGB), 3 (gray), and 10 (RLE-RGB) images supported\n"); } if (pHeader->w1stColourMapEntry != 0) { TGA_FORMAT_ERROR("LoadTGA: colourmaps not supported\n" ); } if (pHeader->wColourMapLength !=0 && pHeader->wColourMapLength != 256) { TGA_FORMAT_ERROR("LoadTGA: ColourMapLength must be either 0 or 256\n" ); } if (pHeader->byColourMapEntrySize != 0 && pHeader->byColourMapEntrySize != 24) { TGA_FORMAT_ERROR("LoadTGA: ColourMapEntrySize must be either 0 or 24\n" ); } if ( ( pHeader->byImagePlanes != 24 && pHeader->byImagePlanes != 32) && (pHeader->byImagePlanes != 8 && pHeader->byImageType != 3)) { TGA_FORMAT_ERROR("LoadTGA: Only type 2 (RGB), 3 (gray), and 10 (RGB) TGA images supported\n"); } if ((pHeader->byScanLineOrder&0x30)!=0x00 && (pHeader->byScanLineOrder&0x30)!=0x10 && (pHeader->byScanLineOrder&0x30)!=0x20 && (pHeader->byScanLineOrder&0x30)!=0x30 ) { TGA_FORMAT_ERROR("LoadTGA: ScanLineOrder must be either 0x00,0x10,0x20, or 0x30\n"); } // these last checks are so i can use ID's RLE-code. I don't dare fiddle with it or it'll probably break... // if ( pHeader->byImageType == 10) { if ((pHeader->byScanLineOrder & 0x30) != 0x00) { TGA_FORMAT_ERROR("LoadTGA: RLE-RGB Images (type 10) must be in bottom-to-top format\n"); } if (pHeader->byImagePlanes != 24 && pHeader->byImagePlanes != 32) // probably won't happen, but avoids compressed greyscales? { TGA_FORMAT_ERROR("LoadTGA: RLE-RGB Images (type 10) must be 24 or 32 bit\n"); } } // now read the actual bitmap in... // // Image descriptor bytes // bits 0-3 = # attr bits (alpha chan) // bits 4-5 = pixel order/dir // bits 6-7 scan line interleave (00b=none,01b=2way interleave,10b=4way) // int iYStart,iXStart,iYStep,iXStep; switch(pHeader->byScanLineOrder & 0x30) { default: // default case stops the compiler complaining about using uninitialised vars case 0x00: // left to right, bottom to top iXStart = 0; iXStep = 1; iYStart = pHeader->wImageHeight-1; iYStep = -1; break; case 0x10: // right to left, bottom to top iXStart = pHeader->wImageWidth-1; iXStep = -1; iYStart = pHeader->wImageHeight-1; iYStep = -1; break; case 0x20: // left to right, top to bottom iXStart = 0; iXStep = 1; iYStart = 0; iYStep = 1; break; case 0x30: // right to left, top to bottom iXStart = pHeader->wImageWidth-1; iXStep = -1; iYStart = 0; iYStep = 1; break; } // feed back the results... // if (width) *width = pHeader->wImageWidth; if (height) *height = pHeader->wImageHeight; pRGBA = (byte *) Z_Malloc (pHeader->wImageWidth * pHeader->wImageHeight * 4, TAG_TEMP_WORKSPACE, qfalse); *pic = pRGBA; pOut = pRGBA; pIn = pTempLoadedBuffer + sizeof(*pHeader); // I don't know if this ID-thing here is right, since comments that I've seen are at the end of the file, // with a zero in this field. However, may as well... // if (pHeader->byIDFieldLength != 0) pIn += pHeader->byIDFieldLength; // skip TARGA image comment byte red,green,blue,alpha; if ( pHeader->byImageType == 2 || pHeader->byImageType == 3 ) // RGB or greyscale { for (int y=iYStart, iYCount=0; iYCountwImageHeight; y+=iYStep, iYCount++) { pOut = pRGBA + y * pHeader->wImageWidth *4; for (int x=iXStart, iXCount=0; iXCountwImageWidth; x+=iXStep, iXCount++) { switch (pHeader->byImagePlanes) { case 8: blue = *pIn++; green = blue; red = blue; *pOut++ = red; *pOut++ = green; *pOut++ = blue; *pOut++ = 255; break; case 24: blue = *pIn++; green = *pIn++; red = *pIn++; *pOut++ = red; *pOut++ = green; *pOut++ = blue; *pOut++ = 255; break; case 32: blue = *pIn++; green = *pIn++; red = *pIn++; alpha = *pIn++; *pOut++ = red; *pOut++ = green; *pOut++ = blue; *pOut++ = alpha; break; default: assert(0); // if we ever hit this, someone deleted a header check higher up TGA_FORMAT_ERROR("LoadTGA: Image can only have 8, 24 or 32 planes for RGB/greyscale\n"); break; } } } } else if (pHeader->byImageType == 10) // RLE-RGB { // I've no idea if this stuff works, I normally reject RLE targas, but this is from ID's code // so maybe I should try and support it... // byte packetHeader, packetSize, j; for (int y = pHeader->wImageHeight-1; y >= 0; y--) { pOut = pRGBA + y * pHeader->wImageWidth *4; for (int x=0; xwImageWidth;) { packetHeader = *pIn++; packetSize = 1 + (packetHeader & 0x7f); if (packetHeader & 0x80) // run-length packet { switch (pHeader->byImagePlanes) { case 24: blue = *pIn++; green = *pIn++; red = *pIn++; alpha = 255; break; case 32: blue = *pIn++; green = *pIn++; red = *pIn++; alpha = *pIn++; break; default: assert(0); // if we ever hit this, someone deleted a header check higher up TGA_FORMAT_ERROR("LoadTGA: RLE-RGB can only have 24 or 32 planes\n"); break; } for (j=0; jwImageWidth) // run spans across rows { x = 0; if (y > 0) y--; else goto breakOut; pOut = pRGBA + y * pHeader->wImageWidth * 4; } } } else { // non run-length packet for (j=0; jbyImagePlanes) { case 24: blue = *pIn++; green = *pIn++; red = *pIn++; *pOut++ = red; *pOut++ = green; *pOut++ = blue; *pOut++ = 255; break; case 32: blue = *pIn++; green = *pIn++; red = *pIn++; alpha = *pIn++; *pOut++ = red; *pOut++ = green; *pOut++ = blue; *pOut++ = alpha; break; default: assert(0); // if we ever hit this, someone deleted a header check higher up TGA_FORMAT_ERROR("LoadTGA: RLE-RGB can only have 24 or 32 planes\n"); break; } x++; if (x == pHeader->wImageWidth) // pixel packet run spans across rows { x = 0; if (y > 0) y--; else goto breakOut; pOut = pRGBA + y * pHeader->wImageWidth * 4; } } } } breakOut:; } } TGADone: FS_FreeFile (pTempLoadedBuffer); if (bFormatErrors) { Com_Error( ERR_DROP, "%s( File: \"%s\" )\n",sErrorString,name); } } /* ========================================================= DDS LOADING ========================================================= */ void LoadDDS ( const char *name, byte **pic, int *width, int *height, int *mipcount, GLenum *format ) { fileHandle_t h; int len = FS_FOpenFileRead( name, &h, qfalse ); if ( h == 0 ) { return; } *pic = (byte*)Z_Malloc( len, TAG_TEMP_WORKSPACE, qfalse , 32); FS_Read( *pic, len, h ); FS_FCloseFile( h ); DWORD dds = MAKEFOURCC('D', 'D', 'S', ' '); if (*(DWORD*)(*pic) != dds) { FS_FreeFile (*pic); *pic = NULL; return; } DDS_HEADER *desc = (DDS_HEADER *)(*pic + sizeof(DWORD)); DWORD dxt1 = MAKEFOURCC('D', 'X', 'T', '1'); DWORD dxt5 = MAKEFOURCC('D', 'X', 'T', '5'); if (desc->ddspf.dwFourCC == dxt1) { *format = GL_DDS1_EXT; } else if (desc->ddspf.dwFourCC == dxt5) { *format = GL_DDS5_EXT; } else if (desc->ddspf.dwRGBBitCount == 16) { *format = GL_DDS_RGB16_EXT; } else if (desc->ddspf.dwRGBBitCount == 32) { *format = GL_DDS_RGBA32_EXT; } else { FS_FreeFile (*pic); *pic = NULL; return; } *width = desc->dwWidth; *height = desc->dwHeight; *mipcount = desc->dwMipMapCount; } //=================================================================== /* ================= R_LoadImage Loads any of the supported image types into a cannonical 32 bit format. ================= */ void R_LoadImage( const char *shortname, byte **pic, int *width, int *height, int *mipcount, GLenum *format ) { int bytedepth; char name[MAX_QPATH]; *pic = NULL; *width = 0; *height = 0; //handle external LMs if (shortname[0] == '$') { Q_strncpyz( name, shortname+1, sizeof( name ) ); } else { Q_strncpyz( name, shortname, sizeof( name ) ); } *format = GL_RGBA; *mipcount = 1; COM_StripExtension(name,name); COM_DefaultExtension(name, sizeof(name), ".tga"); LoadTGA( name, pic, width, height ); if (*pic) { int j = (*width) * (*height) * 4; byte *buf = *pic; byte swap; for (int i = 0 ; i < j ; i+=4 ) { swap = buf[i]; buf[i] = buf[i+2]; buf[i+2] = swap; } return; } COM_StripExtension(name,name); COM_DefaultExtension(name, sizeof(name), ".png"); //No .tga existed, try .png LoadPNG32( name, pic, width, height, &bytedepth ); if (*pic) { return; } // No .png either, fall back to .dds COM_StripExtension(name,name); COM_DefaultExtension(name, sizeof(name), ".dds"); LoadDDS( name, pic, width, height, mipcount, format ); return; } void R_LoadDataImage( const char *name, byte **pic, int *width, int *height) { int len; char work[MAX_QPATH]; *pic = NULL; *width = 0; *height = 0; len = strlen(name); if(len >= MAX_QPATH) { return; } if (len < 5) { return; } // MD_PushTag(TAG_DATA_IMAGE_LOAD); strcpy(work, name); COM_DefaultExtension( work, sizeof( work ), ".png" ); LoadPNG8( work, pic, width, height ); if (!pic || !*pic) { //both png and jpeg failed, try targa strcpy(work, name); COM_DefaultExtension( work, sizeof( work ), ".tga" ); LoadTGA( work, pic, width, height ); } if(*pic) { // MD_PopTag(); return; } // Dataimage loading failed Com_Printf("Couldn't read %s -- dataimage load failed\n", name); // MD_PopTag(); } void R_InvertImage(byte *data, int width, int height, int depth) { byte *newData; byte *oldData; byte *saveData; int y, stride; stride = width * depth; oldData = data + ((height - 1) * stride); newData = (byte *)Z_Malloc(height * stride, TAG_TEMP_WORKSPACE, qfalse ); saveData = newData; for(y = 0; y < height; y++) { memcpy(newData, oldData, stride); newData += stride; oldData -= stride; } memcpy(data, saveData, height * stride); Z_Free(saveData); } // Lanczos3 image resampling. Better than bicubic, based on sin(x)/x algorithm #define LANCZOS3 (3.0f) #define M_PI_OVER_3 (M_PI / 3.0f) typedef struct { int pixel; float weight; } contrib_t; typedef struct { int n; // number of contributors contrib_t *p; // pointer to list of contributions } contrib_list_t; // sin(x)/x * sin(x/3)/(x/3) float Lanczos3(float t) { if(!t) { return(1.0f); } t = (float)fabs(t); if(t < 3.0f) { return(sinf(t * M_PI) * sinf(t * M_PI_OVER_3) / (t * M_PI * t * M_PI_OVER_3)); } return(0.0f); } void R_Resample(byte *source, int swidth, int sheight, byte *dest, int dwidth, int dheight, int components) { int i, j, k, l, count, left, right, num; int pixel; byte *raster; float center, weight, scale, width, height; contrib_list_t *contributors; const memtag_t usedTag = TAG_TEMP_WORKSPACE; byte *work = (byte *)Z_Malloc(dwidth * sheight * components, usedTag, qfalse); // Pre calculate filter contributions for rows contributors = (contrib_list_t *)Z_Malloc(sizeof(contrib_list_t) * dwidth, usedTag, qfalse); float xscale = (float)dwidth / (float)swidth; if(xscale < 1.0f) { width = ceilf(LANCZOS3 / xscale); scale = xscale; } else { width = LANCZOS3; scale = 1.0f; } num = ((int)width * 2) + 1; for(i = 0; i < dwidth; i++) { contributors[i].n = 0; contributors[i].p = (contrib_t *)Z_Malloc(num * sizeof(contrib_t), usedTag, qfalse); center = (float)i / xscale; left = (int)ceilf(center - width); right = (int)floorf(center + width); for(j = left; j <= right; j++) { weight = Lanczos3((center - (float)j) * scale) * scale; if(j < 0) { pixel = -j; } else if(j >= swidth) { pixel = (swidth - j) + swidth - 1; } else { pixel = j; } count = contributors[i].n++; contributors[i].p[count].pixel = pixel; contributors[i].p[count].weight = weight; } } // Apply filters to zoom horizontally from source to work for(k = 0; k < sheight; k++) { raster = source + (k * swidth * components); for(i = 0; i < dwidth; i++) { for(l = 0; l < components; l++) { weight = 0.0f; for(j = 0; j < contributors[i].n; j++) { weight += raster[(contributors[i].p[j].pixel * components) + l] * contributors[i].p[j].weight; } pixel = (byte)Com_Clamp(0.0f, 255.0f, weight); work[(k * dwidth * components) + (i * components) + l] = pixel; } } } // Clean up for(i = 0; i < dwidth; i++) { Z_Free(contributors[i].p); } Z_Free(contributors); // Columns contributors = (contrib_list_t *)Z_Malloc(sizeof(contrib_list_t) * dheight, usedTag, qfalse); float yscale = (float)dheight / (float)sheight; if(yscale < 1.0f) { height = ceilf(LANCZOS3 / yscale); scale = yscale; } else { height = LANCZOS3; scale = 1.0f; } num = ((int)height * 2) + 1; for(i = 0; i < dheight; i++) { contributors[i].n = 0; contributors[i].p = (contrib_t *)Z_Malloc(num * sizeof(contrib_t), usedTag, qfalse); center = (float)i / yscale; left = (int)ceilf(center - height); right = (int)floorf(center + height); for(j = left; j <= right; j++) { weight = Lanczos3((center - (float)j) * scale) * scale; if(j < 0) { pixel = -j; } else if(j >= sheight) { pixel = (sheight - j) + sheight - 1; } else { pixel = j; } count = contributors[i].n++; contributors[i].p[count].pixel = pixel; contributors[i].p[count].weight = weight; } } // Apply filter to columns for(k = 0; k < dwidth; k++) { for(l = 0; l < components; l++) { for(i = 0; i < dheight; i++) { weight = 0.0f; for(j = 0; j < contributors[i].n; j++) { weight += work[(contributors[i].p[j].pixel * dwidth * components) + (k * components) + l] * contributors[i].p[j].weight; } pixel = (byte)Com_Clamp(0.0f, 255.0f, weight); dest[(i * dwidth * components) + (k * components) + l] = pixel; } } } // Clean up for(i = 0; i < dheight; i++) { Z_Free(contributors[i].p); } Z_Free(contributors); Z_Free(work); // MD_PopTag(); } /* =============== R_FindImageFile Finds or loads the given image. Returns NULL if it fails, not a default image. ============== */ image_t *R_FindImageFile( const char *name, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode ) { image_t *image; int width, height; int mipcount; byte *pic; GLenum format; if (!name) { return NULL; } // need to do this here as well as in R_CreateImage, or R_FindImageFile_NoLoad() may complain about // different clamp parms used... // if(glConfig.clampToEdgeAvailable && glWrapClampMode == GL_CLAMP) { glWrapClampMode = GL_CLAMP_TO_EDGE; } image = R_FindImageFile_NoLoad(name, mipmap, allowPicmip, glWrapClampMode ); if (image) { return image; } // // load the pic from disk // R_LoadImage( name, &pic, &width, &height, &mipcount, &format ); if ( !pic ) { return NULL; } image = R_CreateImage( ( char * ) name, pic, width, height, format, mipcount, allowPicmip, glWrapClampMode ); Z_Free( pic ); return image; } /* ================ R_CreateDlightImage ================ */ #define DLIGHT_SIZE 64 static void R_CreateDlightImage( void ) { int x,y; byte data[DLIGHT_SIZE][DLIGHT_SIZE][4]; int xs, ys; int b; // The old code claims to have made a centered inverse-square falloff blob for dynamic lighting // and it looked nasty, so, just doing something simpler that seems to have a much softer result for ( x = 0; x < DLIGHT_SIZE; x++ ) { for ( y = 0; y < DLIGHT_SIZE; y++ ) { xs = (DLIGHT_SIZE * 0.5f - x); ys = (DLIGHT_SIZE * 0.5f - y); b = 255 - sqrt( (float)(xs * xs + ys * ys) ) * 9.0f; // try and generate numbers in the range of 255-0 // should be close, but clamp anyway if ( b > 255 ) { b = 255; } else if ( b < 0 ) { b = 0; } data[y][x][0] = data[y][x][1] = data[y][x][2] = b; data[y][x][3] = 255; } } tr.dlightImage = R_CreateImage("*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, GL_RGBA, qfalse, qfalse, GL_CLAMP); } /* ================= R_InitFogTable ================= */ void R_InitFogTable( void ) { int i; float d; float exp; exp = 0.5; for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) { d = pow ( (float)i/(FOG_TABLE_SIZE-1), exp ); tr.fogTable[i] = d; } } /* ================ R_FogFactor Returns a 0.0 to 1.0 fog density value This is called for each texel of the fog texture on startup and for each vertex of transparent shaders in fog dynamically ================ */ float R_FogFactor( float s, float t ) { float d; s -= 1.0/512; if ( s < 0 ) { return 0; } if ( t < 1.0/32 ) { return 0; } if ( t < 31.0/32 ) { s *= (t - 1.0/32) / (30.0/32); } // we need to leave a lot of clamp range s *= 8; if ( s > 1.0 ) { s = 1.0; } d = tr.fogTable[ (int)(s * (FOG_TABLE_SIZE-1)) ]; return d; } /* ================ R_CreateFogImage ================ */ #define FOG_S 256 #define FOG_T 32 static void R_CreateFogImage( void ) { int x,y; byte *data; float g; float d; float borderColor[4]; data = (byte*) Z_Malloc( FOG_S * FOG_T * 4, TAG_TEMP_WORKSPACE, qfalse ); g = 2.0; // S is distance, T is depth for (x=0 ; xinteger; if ( !glConfig.deviceSupportsGamma ) { tr.overbrightBits = 0; // need hardware gamma for overbright } // never overbright in windowed mode if ( !glConfig.isFullscreen ) { tr.overbrightBits = 0; } if ( tr.overbrightBits > 1 ) { tr.overbrightBits = 1; } if ( tr.overbrightBits < 0 ) { tr.overbrightBits = 0; } tr.identityLight = 1.0 / ( 1 << tr.overbrightBits ); tr.identityLightByte = 255 * tr.identityLight; if ( r_intensity->value < 1.0f ) { Cvar_Set( "r_intensity", "1.0" ); } if ( r_gamma->value < 0.5f ) { Cvar_Set( "r_gamma", "0.5" ); } else if ( r_gamma->value > 3.0f ) { Cvar_Set( "r_gamma", "3.0" ); } g = r_gamma->value; shift = tr.overbrightBits; for ( i = 0; i < 256; i++ ) { if ( g == 1 ) { inf = i; } else { inf = 255 * pow ( i/255.0f, 1.0f / g ) + 0.5f; } inf <<= shift; if (inf < 0) { inf = 0; } if (inf > 255) { inf = 255; } s_gammatable[i] = inf; } for (i=0 ; i<256 ; i++) { j = i * r_intensity->value; if (j > 255) { j = 255; } s_intensitytable[i] = j; } } /* =============== R_InitImages =============== */ void R_InitImages( void ) { //memset(hashTable, 0, sizeof(hashTable)); // DO NOT DO THIS NOW (because of image cacheing) -ste. if (!AllocatedImages) { AllocatedImages = new AllocatedImages_t; } // build brightness translation tables R_SetColorMappings(); // create default texture and white texture R_CreateBuiltinImages(); } /* =============== R_DeleteTextures =============== */ // (only gets called during vid_restart now (and app exit), not during map load) // void R_DeleteTextures( void ) { R_Images_Clear(); GL_ResetBinds(); } /* ============================================================================ SKINS ============================================================================ */ /* ================== CommaParse This is unfortunate, but the skin files aren't compatable with our normal parsing rules. ================== */ static char *CommaParse( char **data_p ) { int c = 0, len; char *data; static char com_token[MAX_TOKEN_CHARS]; data = *data_p; len = 0; com_token[0] = 0; // make sure incoming data is valid if ( !data ) { *data_p = NULL; return com_token; } while ( 1 ) { // skip whitespace while( (c = *data) <= ' ') { if( !c ) { break; } data++; } c = *data; // skip double slash comments if ( c == '/' && data[1] == '/' ) { while (*data && *data != '\n') data++; } // skip /* */ comments else if ( c=='/' && data[1] == '*' ) { while ( *data && ( *data != '*' || data[1] != '/' ) ) { data++; } if ( *data ) { data += 2; } } else { break; } } if ( c == 0 ) { return ""; } // handle quoted strings if (c == '\"') { data++; while (1) { c = *data++; if (c=='\"' || !c) { com_token[len] = 0; *data_p = ( char * ) data; return com_token; } if (len < MAX_TOKEN_CHARS) { com_token[len] = c; len++; } } } // parse a regular word do { if (len < MAX_TOKEN_CHARS) { com_token[len] = c; len++; } data++; c = *data; } while (c>32 && c != ',' ); if (len == MAX_TOKEN_CHARS) { // Com_Printf ("Token exceeded %i chars, discarded.\n", MAX_TOKEN_CHARS); len = 0; } com_token[len] = 0; *data_p = ( char * ) data; return com_token; } bool gServerSkinHack = false; shader_t *R_FindServerShader( const char *name, const int *lightmapIndex, const byte *styles, qboolean mipRawImage ); /* =============== RE_SplitSkins input = skinname, possibly being a macro for three skins return= true if three part skins found output= qualified names to three skins if return is true, undefined if false =============== */ bool RE_SplitSkins(const char *INname, char *skinhead, char *skintorso, char *skinlower) { //INname= "models/players/jedi_tf/|head01_skin1|torso01|lower01"; if (strchr(INname, '|')) { char name[MAX_QPATH]; strcpy(name, INname); char *p = strchr(name, '|'); *p=0; p++; //fill in the base path strcpy (skinhead, name); strcpy (skintorso, name); strcpy (skinlower, name); //now get the the individual files //advance to second char *p2 = strchr(p, '|'); assert(p2); *p2=0; p2++; strcat (skinhead, p); strcat (skinhead, ".skin"); //advance to third p = strchr(p2, '|'); assert(p); *p=0; p++; strcat (skintorso,p2); strcat (skintorso, ".skin"); strcat (skinlower,p); strcat (skinlower, ".skin"); return true; } return false; } qhandle_t RE_RegisterIndividualSkin( const char *name , qhandle_t hSkin); /* =============== RE_RegisterSkin =============== */ qhandle_t RE_RegisterSkin( const char *name) { qhandle_t hSkin; skin_t *skin; if (!cls.cgameStarted && !cls.uiStarted) //rww - added uiStarted exception because we want ghoul2 models in the menus. return 1; // cope with Ghoul2's calling-the-renderer-before-its-even-started hackery, must be any NZ amount here to trigger configstring setting if ( !name || !name[0] ) { Com_Printf( "Empty name passed to RE_RegisterSkin\n" ); return 0; } if ( strlen( name ) >= MAX_QPATH ) { Com_Printf( "Skin name exceeds MAX_QPATH\n" ); return 0; } if (gServerSkinHack) { //This can happen on the server. if (!tr.numSkins) { //skins haven't been init'd yet, should start off at 1. R_InitSkins(); } } // see if the skin is already loaded for ( hSkin = 1; hSkin < tr.numSkins ; hSkin++ ) { skin = tr.skins[hSkin]; if ( !Q_stricmp( skin->name, name ) ) { if( skin->numSurfaces == 0 ) { return 0; // default skin } return(hSkin); } } if ( tr.numSkins == MAX_SKINS ) { Com_Printf( "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name ); return 0; } // allocate a new skin tr.numSkins++; skin = (skin_t*) Hunk_Alloc( sizeof( skin_t ), h_low ); tr.skins[hSkin] = skin; Q_strncpyz( skin->name, name, sizeof( skin->name ) ); //always make one so it won't search for it again // make sure the render thread is stopped R_SyncRenderThread(); // If not a .skin file, load as a single shader - then return if ( strcmp( name + strlen( name ) - 5, ".skin" ) ) { /* skin->numSurfaces = 1; skin->surfaces[0] = (skinSurface_t *) Hunk_Alloc( sizeof(skin->surfaces[0]), qtrue ); skin->surfaces[0]->shader = R_FindShader( name, lightmapsNone, stylesDefault, qtrue ); return hSkin; */ } char skinhead[MAX_QPATH]={0}; char skintorso[MAX_QPATH]={0}; char skinlower[MAX_QPATH]={0}; if ( RE_SplitSkins(name, (char*)&skinhead, (char*)&skintorso, (char*)&skinlower ) ) {//three part hSkin = RE_RegisterIndividualSkin(skinhead, hSkin); if (hSkin) { hSkin = RE_RegisterIndividualSkin(skintorso, hSkin); if (hSkin) { hSkin = RE_RegisterIndividualSkin(skinlower, hSkin); } } } else {//single skin hSkin = RE_RegisterIndividualSkin(name, hSkin); } return(hSkin); } // given a name, go get the skin we want and return qhandle_t RE_RegisterIndividualSkin( const char *name , qhandle_t hSkin) { skin_t *skin; skinSurface_t *surf; char *text, *text_p; char *token; char surfName[MAX_QPATH]; // load and parse the skin file FS_ReadFile( name, (void **)&text ); if ( !text ) { Com_Printf( "WARNING: RE_RegisterSkin( '%s' ) failed to load!\n", name ); return 0; } assert (tr.skins[hSkin]); //should already be setup, but might be an 3part append skin = tr.skins[hSkin]; text_p = text; while ( text_p && *text_p ) { // get surface name token = CommaParse( &text_p ); Q_strncpyz( surfName, token, sizeof( surfName ) ); if ( !token[0] ) { break; } // lowercase the surface name so skin compares are faster Q_strlwr( surfName ); if ( *text_p == ',' ) { text_p++; } if ( !strncmp( token, "tag_", 4 ) ) { //these aren't in there, but just in case you load an id style one... continue; } // parse the shader name token = CommaParse( &text_p ); if ( !strcmp( &surfName[strlen(surfName)-4], "_off") ) { if ( !strcmp( token ,"*off" ) ) { continue; //don't need these double offs } surfName[strlen(surfName)-4] = 0; //remove the "_off" } if (sizeof( skin->surfaces) / sizeof( skin->surfaces[0] ) <= skin->numSurfaces) { assert( sizeof( skin->surfaces) / sizeof( skin->surfaces[0] ) > skin->numSurfaces ); Com_Printf( "WARNING: RE_RegisterSkin( '%s' ) more than %d surfaces!\n", name, sizeof( skin->surfaces) / sizeof( skin->surfaces[0] ) ); break; } surf = skin->surfaces[ skin->numSurfaces ] = (skinSurface_t *) Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low ); Q_strncpyz( surf->name, surfName, sizeof( surf->name ) ); if (gServerSkinHack) { surf->shader = R_FindServerShader( token, lightmapsNone, stylesDefault, qtrue ); } else { surf->shader = R_FindShader( token, lightmapsNone, stylesDefault, qtrue ); } skin->numSurfaces++; } FS_FreeFile( text ); // never let a skin have 0 shaders if ( skin->numSurfaces == 0 ) { return 0; // use default skin } return hSkin; } /* =============== RE_RegisterServerSkin Mangled version of the above function to load .skin files on the server. =============== */ qhandle_t RE_RegisterServerSkin( const char *name ) { qhandle_t r; if (com_cl_running && com_cl_running->integer) { //If the client is running then we can go straight into the normal registerskin func return RE_RegisterSkin(name); } gServerSkinHack = true; r = RE_RegisterSkin(name); gServerSkinHack = false; return r; } /* =============== R_InitSkins =============== */ void R_InitSkins( void ) { skin_t *skin; tr.numSkins = 1; // make the default skin have all default shaders skin = tr.skins[0] = (skin_t*) Hunk_Alloc( sizeof( skin_t ), h_low ); Q_strncpyz( skin->name, "", sizeof( skin->name ) ); skin->numSurfaces = 1; skin->surfaces[0] = (skinSurface_t *) Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low ); skin->surfaces[0]->shader = tr.defaultShader; } /* =============== R_GetSkinByHandle =============== */ skin_t *R_GetSkinByHandle( qhandle_t hSkin ) { if ( hSkin < 1 || hSkin >= tr.numSkins ) { return tr.skins[0]; } return tr.skins[ hSkin ]; } /* =============== R_SkinList_f =============== */ void R_SkinList_f (void) { int i, j; skin_t *skin; Com_Printf ("------------------\n"); for ( i = 0 ; i < tr.numSkins ; i++ ) { skin = tr.skins[i]; Com_Printf( "%3i:%s\n", i, skin->name ); for ( j = 0 ; j < skin->numSurfaces ; j++ ) { Com_Printf( " %s = %s\n", skin->surfaces[j]->name, skin->surfaces[j]->shader->name ); } } Com_Printf ("------------------\n"); }