// q_math.c -- stateless support routines that are included in each code module // leave this at the top for PCH reasons... #include "common_headers.h" //#include "q_shared.h" const vec3_t vec3_origin = {0,0,0}; const vec3_t axisDefault[3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } }; vec4_t colorTable[CT_MAX] = { {0, 0, 0, 0}, // CT_NONE {0, 0, 0, 1}, // CT_BLACK {1, 0, 0, 1}, // CT_RED {0, 1, 0, 1}, // CT_GREEN {0, 0, 1, 1}, // CT_BLUE {1, 1, 0, 1}, // CT_YELLOW {1, 0, 1, 1}, // CT_MAGENTA {0, 1, 1, 1}, // CT_CYAN {1, 1, 1, 1}, // CT_WHITE {0.75f, 0.75f, 0.75f, 1}, // CT_LTGREY {0.50f, 0.50f, 0.50f, 1}, // CT_MDGREY {0.25f, 0.25f, 0.25f, 1}, // CT_DKGREY {0.15f, 0.15f, 0.15f, 1}, // CT_DKGREY2 {0.992f, 0.652f, 0.0f, 1}, // CT_VLTORANGE -- needs values {0.810f, 0.530f, 0.0f, 1}, // CT_LTORANGE {0.610f, 0.330f, 0.0f, 1}, // CT_DKORANGE {0.402f, 0.265f, 0.0f, 1}, // CT_VDKORANGE {0.503f, 0.375f, 0.996f, 1}, // CT_VLTBLUE1 {0.367f, 0.261f, 0.722f, 1}, // CT_LTBLUE1 {0.199f, 0.0f, 0.398f, 1}, // CT_DKBLUE1 {0.160f, 0.117f, 0.324f, 1}, // CT_VDKBLUE1 {0.300f, 0.628f, 0.816f, 1}, // CT_VLTBLUE2 -- needs values {0.300f, 0.628f, 0.816f, 1}, // CT_LTBLUE2 {0.191f, 0.289f, 0.457f, 1}, // CT_DKBLUE2 {0.125f, 0.250f, 0.324f, 1}, // CT_VDKBLUE2 {0.796f, 0.398f, 0.199f, 1}, // CT_VLTBROWN1 -- needs values {0.796f, 0.398f, 0.199f, 1}, // CT_LTBROWN1 {0.558f, 0.207f, 0.027f, 1}, // CT_DKBROWN1 {0.328f, 0.125f, 0.035f, 1}, // CT_VDKBROWN1 {0.996f, 0.796f, 0.398f, 1}, // CT_VLTGOLD1 -- needs values {0.996f, 0.796f, 0.398f, 1}, // CT_LTGOLD1 {0.605f, 0.441f, 0.113f, 1}, // CT_DKGOLD1 {0.386f, 0.308f, 0.148f, 1}, // CT_VDKGOLD1 {0.648f, 0.562f, 0.784f, 1}, // CT_VLTPURPLE1 -- needs values {0.648f, 0.562f, 0.784f, 1}, // CT_LTPURPLE1 {0.437f, 0.335f, 0.597f, 1}, // CT_DKPURPLE1 {0.308f, 0.269f, 0.375f, 1}, // CT_VDKPURPLE1 {0.816f, 0.531f, 0.710f, 1}, // CT_VLTPURPLE2 -- needs values {0.816f, 0.531f, 0.710f, 1}, // CT_LTPURPLE2 {0.566f, 0.269f, 0.457f, 1}, // CT_DKPURPLE2 {0.343f, 0.226f, 0.316f, 1}, // CT_VDKPURPLE2 {0.929f, 0.597f, 0.929f, 1}, // CT_VLTPURPLE3 {0.570f, 0.371f, 0.570f, 1}, // CT_LTPURPLE3 {0.355f, 0.199f, 0.355f, 1}, // CT_DKPURPLE3 {0.285f, 0.136f, 0.230f, 1}, // CT_VDKPURPLE3 {0.953f, 0.378f, 0.250f, 1}, // CT_VLTRED1 {0.953f, 0.378f, 0.250f, 1}, // CT_LTRED1 {0.593f, 0.121f, 0.109f, 1}, // CT_DKRED1 {0.429f, 0.171f, 0.113f, 1}, // CT_VDKRED1 {.25f, 0, 0, 1}, // CT_VDKRED {.70f, 0, 0, 1}, // CT_DKRED {0.717f, 0.902f, 1.0f, 1}, // CT_VLTAQUA {0.574f, 0.722f, 0.804f, 1}, // CT_LTAQUA {0.287f, 0.361f, 0.402f, 1}, // CT_DKAQUA {0.143f, 0.180f, 0.201f, 1}, // CT_VDKAQUA {0.871f, 0.386f, 0.375f, 1}, // CT_LTPINK {0.435f, 0.193f, 0.187f, 1}, // CT_DKPINK { 0, .5f, .5f, 1}, // CT_LTCYAN { 0, .25f, .25f, 1}, // CT_DKCYAN { .179f, .51f, .92f, 1}, // CT_LTBLUE3 { .199f, .71f, .92f, 1}, // CT_LTBLUE3 { .5f, .05f, .4f, 1}, // CT_DKBLUE3 { 0.0f, .613f, .097f, 1}, // CT_HUD_GREEN { 0.835f, .015f, .015f, 1}, // CT_HUD_RED { .567f, .685f, 1.0f, .75f}, // CT_ICON_BLUE { .515f, .406f, .507f, 1}, // CT_NO_AMMO_RED { 1.0f, .658f, .062f, 1}, // CT_HUD_ORANGE { 0.549f, .854f, 1.0f, 1.0f}, // CT_TITLE }; vec4_t g_color_table[8] = { {0.0, 0.0, 0.0, 1.0}, {1.0, 0.0, 0.0, 1.0}, {0.0, 1.0, 0.0, 1.0}, {1.0, 1.0, 0.0, 1.0}, {0.0, 0.0, 1.0, 1.0}, {0.0, 1.0, 1.0, 1.0}, {1.0, 0.0, 1.0, 1.0}, {1.0, 1.0, 1.0, 1.0}, }; #pragma warning(disable : 4305) // truncation from const double to float vec3_t bytedirs[NUMVERTEXNORMALS] = { {-0.525731, 0.000000, 0.850651}, {-0.442863, 0.238856, 0.864188}, {-0.295242, 0.000000, 0.955423}, {-0.309017, 0.500000, 0.809017}, {-0.162460, 0.262866, 0.951056}, {0.000000, 0.000000, 1.000000}, {0.000000, 0.850651, 0.525731}, {-0.147621, 0.716567, 0.681718}, {0.147621, 0.716567, 0.681718}, {0.000000, 0.525731, 0.850651}, {0.309017, 0.500000, 0.809017}, {0.525731, 0.000000, 0.850651}, {0.295242, 0.000000, 0.955423}, {0.442863, 0.238856, 0.864188}, {0.162460, 0.262866, 0.951056}, {-0.681718, 0.147621, 0.716567}, {-0.809017, 0.309017, 0.500000},{-0.587785, 0.425325, 0.688191}, {-0.850651, 0.525731, 0.000000},{-0.864188, 0.442863, 0.238856}, {-0.716567, 0.681718, 0.147621},{-0.688191, 0.587785, 0.425325}, {-0.500000, 0.809017, 0.309017}, {-0.238856, 0.864188, 0.442863}, {-0.425325, 0.688191, 0.587785}, {-0.716567, 0.681718, -0.147621}, {-0.500000, 0.809017, -0.309017}, {-0.525731, 0.850651, 0.000000}, {0.000000, 0.850651, -0.525731}, {-0.238856, 0.864188, -0.442863}, {0.000000, 0.955423, -0.295242}, {-0.262866, 0.951056, -0.162460}, {0.000000, 1.000000, 0.000000}, {0.000000, 0.955423, 0.295242}, {-0.262866, 0.951056, 0.162460}, {0.238856, 0.864188, 0.442863}, {0.262866, 0.951056, 0.162460}, {0.500000, 0.809017, 0.309017}, {0.238856, 0.864188, -0.442863},{0.262866, 0.951056, -0.162460}, {0.500000, 0.809017, -0.309017},{0.850651, 0.525731, 0.000000}, {0.716567, 0.681718, 0.147621}, {0.716567, 0.681718, -0.147621}, {0.525731, 0.850651, 0.000000}, {0.425325, 0.688191, 0.587785}, {0.864188, 0.442863, 0.238856}, {0.688191, 0.587785, 0.425325}, {0.809017, 0.309017, 0.500000}, {0.681718, 0.147621, 0.716567}, {0.587785, 0.425325, 0.688191}, {0.955423, 0.295242, 0.000000}, {1.000000, 0.000000, 0.000000}, {0.951056, 0.162460, 0.262866}, {0.850651, -0.525731, 0.000000},{0.955423, -0.295242, 0.000000}, {0.864188, -0.442863, 0.238856}, {0.951056, -0.162460, 0.262866}, {0.809017, -0.309017, 0.500000}, {0.681718, -0.147621, 0.716567}, {0.850651, 0.000000, 0.525731}, {0.864188, 0.442863, -0.238856}, {0.809017, 0.309017, -0.500000}, {0.951056, 0.162460, -0.262866}, {0.525731, 0.000000, -0.850651}, {0.681718, 0.147621, -0.716567}, {0.681718, -0.147621, -0.716567},{0.850651, 0.000000, -0.525731}, {0.809017, -0.309017, -0.500000}, {0.864188, -0.442863, -0.238856}, {0.951056, -0.162460, -0.262866}, {0.147621, 0.716567, -0.681718}, {0.309017, 0.500000, -0.809017}, {0.425325, 0.688191, -0.587785}, {0.442863, 0.238856, -0.864188}, {0.587785, 0.425325, -0.688191}, {0.688191, 0.587785, -0.425325}, {-0.147621, 0.716567, -0.681718}, {-0.309017, 0.500000, -0.809017}, {0.000000, 0.525731, -0.850651}, {-0.525731, 0.000000, -0.850651}, {-0.442863, 0.238856, -0.864188}, {-0.295242, 0.000000, -0.955423}, {-0.162460, 0.262866, -0.951056}, {0.000000, 0.000000, -1.000000}, {0.295242, 0.000000, -0.955423}, {0.162460, 0.262866, -0.951056}, {-0.442863, -0.238856, -0.864188}, {-0.309017, -0.500000, -0.809017}, {-0.162460, -0.262866, -0.951056}, {0.000000, -0.850651, -0.525731}, {-0.147621, -0.716567, -0.681718}, {0.147621, -0.716567, -0.681718}, {0.000000, -0.525731, -0.850651}, {0.309017, -0.500000, -0.809017}, {0.442863, -0.238856, -0.864188}, {0.162460, -0.262866, -0.951056}, {0.238856, -0.864188, -0.442863}, {0.500000, -0.809017, -0.309017}, {0.425325, -0.688191, -0.587785}, {0.716567, -0.681718, -0.147621}, {0.688191, -0.587785, -0.425325}, {0.587785, -0.425325, -0.688191}, {0.000000, -0.955423, -0.295242}, {0.000000, -1.000000, 0.000000}, {0.262866, -0.951056, -0.162460}, {0.000000, -0.850651, 0.525731}, {0.000000, -0.955423, 0.295242}, {0.238856, -0.864188, 0.442863}, {0.262866, -0.951056, 0.162460}, {0.500000, -0.809017, 0.309017}, {0.716567, -0.681718, 0.147621}, {0.525731, -0.850651, 0.000000}, {-0.238856, -0.864188, -0.442863}, {-0.500000, -0.809017, -0.309017}, {-0.262866, -0.951056, -0.162460}, {-0.850651, -0.525731, 0.000000}, {-0.716567, -0.681718, -0.147621}, {-0.716567, -0.681718, 0.147621}, {-0.525731, -0.850651, 0.000000}, {-0.500000, -0.809017, 0.309017}, {-0.238856, -0.864188, 0.442863}, {-0.262866, -0.951056, 0.162460}, {-0.864188, -0.442863, 0.238856}, {-0.809017, -0.309017, 0.500000}, {-0.688191, -0.587785, 0.425325}, {-0.681718, -0.147621, 0.716567}, {-0.442863, -0.238856, 0.864188}, {-0.587785, -0.425325, 0.688191}, {-0.309017, -0.500000, 0.809017}, {-0.147621, -0.716567, 0.681718}, {-0.425325, -0.688191, 0.587785}, {-0.162460, -0.262866, 0.951056}, {0.442863, -0.238856, 0.864188}, {0.162460, -0.262866, 0.951056}, {0.309017, -0.500000, 0.809017}, {0.147621, -0.716567, 0.681718}, {0.000000, -0.525731, 0.850651}, {0.425325, -0.688191, 0.587785}, {0.587785, -0.425325, 0.688191}, {0.688191, -0.587785, 0.425325}, {-0.955423, 0.295242, 0.000000}, {-0.951056, 0.162460, 0.262866}, {-1.000000, 0.000000, 0.000000}, {-0.850651, 0.000000, 0.525731}, {-0.955423, -0.295242, 0.000000}, {-0.951056, -0.162460, 0.262866}, {-0.864188, 0.442863, -0.238856}, {-0.951056, 0.162460, -0.262866}, {-0.809017, 0.309017, -0.500000}, {-0.864188, -0.442863, -0.238856}, {-0.951056, -0.162460, -0.262866}, {-0.809017, -0.309017, -0.500000}, {-0.681718, 0.147621, -0.716567}, {-0.681718, -0.147621, -0.716567}, {-0.850651, 0.000000, -0.525731}, {-0.688191, 0.587785, -0.425325}, {-0.587785, 0.425325, -0.688191}, {-0.425325, 0.688191, -0.587785}, {-0.425325, -0.688191, -0.587785}, {-0.587785, -0.425325, -0.688191}, {-0.688191, -0.587785, -0.425325} }; #pragma warning(default : 4305) // truncation from const double to float //============================================================== //======================================================= /* erandom This function produces a random number with a exponential distribution and the specified mean value. */ float erandom( float mean ) { float r; do { r = random(); } while ( r == 0.0 ); return -mean * log( r ); } signed char ClampChar( int i ) { if ( i < -128 ) { return -128; } if ( i > 127 ) { return 127; } return i; } signed short ClampShort( int i ) { if ( i < (short)0x8000 ) { return (short)0x8000; } if ( i > 0x7fff ) { return 0x7fff; } return i; } // this isn't a real cheap function to call! int DirToByte( vec3_t dir ) { int i, best; float d, bestd; if ( !dir ) { return 0; } bestd = 0; best = 0; for (i=0 ; i bestd) { bestd = d; best = i; } } return best; } void ByteToDir( int b, vec3_t dir ) { if ( b < 0 || b >= NUMVERTEXNORMALS ) { VectorCopy( vec3_origin, dir ); return; } VectorCopy (bytedirs[b], dir); } unsigned ColorBytes3 (float r, float g, float b) { unsigned i; ( (byte *)&i )[0] = r * 255; ( (byte *)&i )[1] = g * 255; ( (byte *)&i )[2] = b * 255; return i; } unsigned ColorBytes4 (float r, float g, float b, float a) { unsigned i; ( (byte *)&i )[0] = r * 255; ( (byte *)&i )[1] = g * 255; ( (byte *)&i )[2] = b * 255; ( (byte *)&i )[3] = a * 255; return i; } float NormalizeColor( const vec3_t in, vec3_t out ) { float max; max = in[0]; if ( in[1] > max ) { max = in[1]; } if ( in[2] > max ) { max = in[2]; } if ( !max ) { VectorClear( out ); } else { out[0] = in[0] / max; out[1] = in[1] / max; out[2] = in[2] / max; } return max; } void VectorAdvance( const vec3_t veca, const float scale, const vec3_t vecb, vec3_t vecc) { vecc[0] = veca[0] + (scale * (vecb[0] - veca[0])); vecc[1] = veca[1] + (scale * (vecb[1] - veca[1])); vecc[2] = veca[2] + (scale * (vecb[2] - veca[2])); } //============================================================================ /* ===================== PlaneFromPoints Returns false if the triangle is degenrate. The normal will point out of the clock for clockwise ordered points ===================== */ qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) { vec3_t d1, d2; VectorSubtract( b, a, d1 ); VectorSubtract( c, a, d2 ); CrossProduct( d2, d1, plane ); if ( VectorNormalize( plane ) == 0 ) { return qfalse; } plane[3] = DotProduct( a, plane ); return qtrue; } #ifdef _XBOX qboolean PlaneFromPoints( vec4_t plane, const short a[3], const short b[3], const short c[3] ) { vec3_t d1, d2; VectorSubtract( b, a, d1 ); VectorSubtract( c, a, d2 ); CrossProduct( d2, d1, plane ); if ( VectorNormalize( plane ) == 0 ) { return qfalse; } plane[3] = DotProduct( a, plane ); return qtrue; } #endif /* =============== RotatePointAroundVector This is not implemented very well... =============== */ void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ) { float m[3][3]; float im[3][3]; float zrot[3][3]; float tmpmat[3][3]; float rot[3][3]; int i; vec3_t vr, vup, vf; float rad; vf[0] = dir[0]; vf[1] = dir[1]; vf[2] = dir[2]; PerpendicularVector( vr, dir ); CrossProduct( vr, vf, vup ); m[0][0] = vr[0]; m[1][0] = vr[1]; m[2][0] = vr[2]; m[0][1] = vup[0]; m[1][1] = vup[1]; m[2][1] = vup[2]; m[0][2] = vf[0]; m[1][2] = vf[1]; m[2][2] = vf[2]; memcpy( im, m, sizeof( im ) ); im[0][1] = m[1][0]; im[0][2] = m[2][0]; im[1][0] = m[0][1]; im[1][2] = m[2][1]; im[2][0] = m[0][2]; im[2][1] = m[1][2]; memset( zrot, 0, sizeof( zrot ) ); zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F; rad = DEG2RAD( degrees ); zrot[0][0] = cos( rad ); zrot[0][1] = sin( rad ); zrot[1][0] = -sin( rad ); zrot[1][1] = cos( rad ); MatrixMultiply( m, zrot, tmpmat ); MatrixMultiply( tmpmat, im, rot ); for ( i = 0; i < 3; i++ ) { dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2]; } } /* =============== RotateAroundDirection =============== */ void RotateAroundDirection( vec3_t axis[3], float yaw ) { // create an arbitrary axis[1] PerpendicularVector( axis[1], axis[0] ); // rotate it around axis[0] by yaw if ( yaw ) { vec3_t temp; VectorCopy( axis[1], temp ); RotatePointAroundVector( axis[1], axis[0], temp, yaw ); } // cross to get axis[2] CrossProduct( axis[0], axis[1], axis[2] ); } void vectoangles( const vec3_t value1, vec3_t angles ) { float forward; float yaw, pitch; if ( value1[1] == 0 && value1[0] == 0 ) { yaw = 0; if ( value1[2] > 0 ) { pitch = 90; } else { pitch = 270; } } else { if ( value1[0] ) { yaw = ( atan2 ( value1[1], value1[0] ) * 180 / M_PI ); } else if ( value1[1] > 0 ) { yaw = 90; } else { yaw = 270; } if ( yaw < 0 ) { yaw += 360; } forward = sqrt ( value1[0]*value1[0] + value1[1]*value1[1] ); pitch = ( atan2(value1[2], forward) * 180 / M_PI ); if ( pitch < 0 ) { pitch += 360; } } angles[PITCH] = -pitch; angles[YAW] = yaw; angles[ROLL] = 0; } void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal ) { float d; vec3_t n; float inv_denom; inv_denom = 1.0F / DotProduct( normal, normal ); d = DotProduct( normal, p ) * inv_denom; n[0] = normal[0] * inv_denom; n[1] = normal[1] * inv_denom; n[2] = normal[2] * inv_denom; dst[0] = p[0] - d * n[0]; dst[1] = p[1] - d * n[1]; dst[2] = p[2] - d * n[2]; } /* ================ MakeNormalVectors Given a normalized forward vector, create two other perpendicular vectors ================ */ void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) { float d; // this rotate and negate guarantees a vector // not colinear with the original right[1] = -forward[0]; right[2] = forward[1]; right[0] = forward[2]; d = DotProduct (right, forward); VectorMA (right, -d, forward, right); VectorNormalize (right); CrossProduct (right, forward, up); } //============================================================================ /* ** float q_rsqrt( float number ) */ float Q_rsqrt( float number ) { floatint_t t; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; t.f = number; t.i = 0x5f3759df - (t.i >> 1); // what the fuck? y = t.f; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed return y; } float Q_fabs( float f ) { floatint_t fi; fi.f = f; fi.i &= 0x7FFFFFFF; return fi.f; } //============================================================ //float AngleMod(float a) { // a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535); // return a; //} //============================================================ /* ================= SetPlaneSignbits ================= */ void SetPlaneSignbits (cplane_t *out) { int bits, j; // for fast box on planeside test bits = 0; for (j=0 ; j<3 ; j++) { if (out->normal[j] < 0) { bits |= 1<signbits = bits; } /* ================== BoxOnPlaneSide Returns 1, 2, or 1 + 2 // this is the slow, general version int BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, struct cplane_s *p) { int i; float dist1, dist2; int sides; vec3_t corners[2]; for (i=0 ; i<3 ; i++) { if (p->normal[i] < 0) { corners[0][i] = emins[i]; corners[1][i] = emaxs[i]; } else { corners[1][i] = emins[i]; corners[0][i] = emaxs[i]; } } dist1 = DotProduct (p->normal, corners[0]) - p->dist; dist2 = DotProduct (p->normal, corners[1]) - p->dist; sides = 0; if (dist1 >= 0) sides = 1; if (dist2 < 0) sides |= 2; return sides; } ================== */ #ifndef _MSC_VER int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p) { float dist1, dist2; int sides; // fast axial cases if (p->type < 3) { if (p->dist <= emins[p->type]) return 1; if (p->dist >= emaxs[p->type]) return 2; return 3; } // general case switch (p->signbits) { case 0: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; break; case 1: dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; break; case 2: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; break; case 3: dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; break; case 4: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; break; case 5: dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; break; case 6: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; break; case 7: dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; break; default: dist1 = dist2 = 0; // shut up compiler break; } sides = 0; if (dist1 >= p->dist) sides = 1; if (dist2 < p->dist) sides |= 2; return sides; } #else #pragma warning( disable: 4035 ) __declspec( naked ) int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p) { static int bops_initialized; static int Ljmptab[8]; __asm { push ebx cmp bops_initialized, 1 je initialized mov bops_initialized, 1 mov Ljmptab[0*4], offset Lcase0 mov Ljmptab[1*4], offset Lcase1 mov Ljmptab[2*4], offset Lcase2 mov Ljmptab[3*4], offset Lcase3 mov Ljmptab[4*4], offset Lcase4 mov Ljmptab[5*4], offset Lcase5 mov Ljmptab[6*4], offset Lcase6 mov Ljmptab[7*4], offset Lcase7 initialized: mov edx,dword ptr[4+12+esp] mov ecx,dword ptr[4+4+esp] xor eax,eax mov ebx,dword ptr[4+8+esp] mov al,byte ptr[17+edx] cmp al,8 jge Lerror fld dword ptr[0+edx] fld st(0) jmp dword ptr[Ljmptab+eax*4] Lcase0: fmul dword ptr[ebx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ecx] fxch st(2) fld st(0) fmul dword ptr[4+ebx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ecx] fxch st(2) fld st(0) fmul dword ptr[8+ebx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ecx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase1: fmul dword ptr[ecx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ebx] fxch st(2) fld st(0) fmul dword ptr[4+ebx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ecx] fxch st(2) fld st(0) fmul dword ptr[8+ebx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ecx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase2: fmul dword ptr[ebx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ecx] fxch st(2) fld st(0) fmul dword ptr[4+ecx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ebx] fxch st(2) fld st(0) fmul dword ptr[8+ebx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ecx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase3: fmul dword ptr[ecx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ebx] fxch st(2) fld st(0) fmul dword ptr[4+ecx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ebx] fxch st(2) fld st(0) fmul dword ptr[8+ebx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ecx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase4: fmul dword ptr[ebx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ecx] fxch st(2) fld st(0) fmul dword ptr[4+ebx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ecx] fxch st(2) fld st(0) fmul dword ptr[8+ecx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ebx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase5: fmul dword ptr[ecx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ebx] fxch st(2) fld st(0) fmul dword ptr[4+ebx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ecx] fxch st(2) fld st(0) fmul dword ptr[8+ecx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ebx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase6: fmul dword ptr[ebx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ecx] fxch st(2) fld st(0) fmul dword ptr[4+ecx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ebx] fxch st(2) fld st(0) fmul dword ptr[8+ecx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ebx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase7: fmul dword ptr[ecx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ebx] fxch st(2) fld st(0) fmul dword ptr[4+ecx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ebx] fxch st(2) fld st(0) fmul dword ptr[8+ecx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ebx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) LSetSides: faddp st(2),st(0) fcomp dword ptr[12+edx] xor ecx,ecx fnstsw ax fcomp dword ptr[12+edx] and ah,1 xor ah,1 add cl,ah fnstsw ax and ah,1 add ah,ah add cl,ah pop ebx mov eax,ecx ret Lerror: int 3 } } #pragma warning( default: 4035 ) #endif // !def _MSC_VER /* ================= RadiusFromBounds ================= */ float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) { int i; vec3_t corner; float a, b; for (i=0 ; i<3 ; i++) { a = Q_fabs( mins[i] ); b = Q_fabs( maxs[i] ); corner[i] = a > b ? a : b; } return VectorLength (corner); } void ClearBounds( vec3_t mins, vec3_t maxs ) { mins[0] = mins[1] = mins[2] = WORLD_SIZE; //99999; // I used WORLD_SIZE instead of MAX_WORLD_COORD... maxs[0] = maxs[1] = maxs[2] = -WORLD_SIZE; //-99999; // ... so it would definately be beyond furthese legal. } vec_t DistanceHorizontal( const vec3_t p1, const vec3_t p2 ) { vec3_t v; VectorSubtract( p2, p1, v ); return sqrt( v[0]*v[0] + v[1]*v[1] ); //Leave off the z component } vec_t DistanceHorizontalSquared( const vec3_t p1, const vec3_t p2 ) { vec3_t v; VectorSubtract( p2, p1, v ); return v[0]*v[0] + v[1]*v[1]; //Leave off the z component } int Q_log2( int val ) { int answer; answer = 0; while ( ( val>>=1 ) != 0 ) { answer++; } return answer; } /* ================= PlaneTypeForNormal ================= */ int PlaneTypeForNormal (vec3_t normal) { if ( normal[0] == 1.0 ) return PLANE_X; if ( normal[1] == 1.0 ) return PLANE_Y; if ( normal[2] == 1.0 ) return PLANE_Z; return PLANE_NON_AXIAL; } /* ================ MatrixMultiply ================ */ void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; } void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; static float sr, sp, sy, cr, cp, cy; // static to help MS compiler fp bugs angle = angles[YAW] * (M_PI*2 / 360.0); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (M_PI*2 / 360.0); sp = sin(angle); cp = cos(angle); if (forward) { forward[0] = cp*cy; forward[1] = cp*sy; forward[2] = -sp; } if (right || up) { angle = angles[ROLL] * (M_PI*2 / 360.0); sr = sin(angle); cr = cos(angle); if (right) { right[0] = (-sr*sp*cy + cr*sy); right[1] = (-sr*sp*sy + -cr*cy); right[2] = -sr*cp; } if (up) { up[0] = (cr*sp*cy + sr*sy); up[1] = (cr*sp*sy + -sr*cy); up[2] = cr*cp; } } } /* ** assumes "src" is normalized */ void PerpendicularVector( vec3_t dst, const vec3_t src ) { int pos; int i; float minelem = 1.0F; vec3_t tempvec; /* ** find the smallest magnitude axially aligned vector ** bias towards using z instead of x or y */ for ( pos = 0, i = 2; i >= 0; i-- ) { if ( Q_fabs( src[i] ) < minelem ) { pos = i; minelem = Q_fabs( src[i] ); } } tempvec[0] = tempvec[1] = tempvec[2] = 0.0F; tempvec[pos] = 1.0F; /* ** project the point onto the plane defined by src */ ProjectPointOnPlane( dst, tempvec, src ); /* ** normalize the result */ VectorNormalize( dst ); } /* ------------------------- DotProductNormalize ------------------------- */ float DotProductNormalize( const vec3_t inVec1, const vec3_t inVec2 ) { vec3_t v1, v2; VectorNormalize2( inVec1, v1 ); VectorNormalize2( inVec2, v2 ); return DotProduct(v1, v2); } /* ------------------------- G_FindClosestPointOnLineSegment ------------------------- */ qboolean G_FindClosestPointOnLineSegment( const vec3_t start, const vec3_t end, const vec3_t from, vec3_t result ) { vec3_t vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From; float distEnd2From, distEnd2Result, theta, cos_theta; //Find the perpendicular vector to vec from start to end VectorSubtract( from, start, vecStart2From); VectorSubtract( end, start, vecStart2End); float dot = DotProductNormalize( vecStart2From, vecStart2End ); if ( dot <= 0 ) { //The perpendicular would be beyond or through the start point VectorCopy( start, result ); return qfalse; } if ( dot == 1 ) { //parallel, closer of 2 points will be the target if( (VectorLengthSquared( vecStart2From )) < (VectorLengthSquared( vecStart2End )) ) { VectorCopy( from, result ); } else { VectorCopy( end, result ); } return qfalse; } //Try other end VectorSubtract( from, end, vecEnd2From); VectorSubtract( start, end, vecEnd2Start); dot = DotProductNormalize( vecEnd2From, vecEnd2Start ); if ( dot <= 0 ) {//The perpendicular would be beyond or through the start point VectorCopy( end, result ); return qfalse; } if ( dot == 1 ) {//parallel, closer of 2 points will be the target if( (VectorLengthSquared( vecEnd2From )) < (VectorLengthSquared( vecEnd2Start ))) { VectorCopy( from, result ); } else { VectorCopy( end, result ); } return qfalse; } // /| // c / | // / |a // theta /)__| // b //cos(theta) = b / c //solve for b //b = cos(theta) * c //angle between vecs end2from and end2start, should be between 0 and 90 theta = 90 * (1 - dot);//theta //Get length of side from End2Result using sine of theta distEnd2From = VectorLength( vecEnd2From );//c cos_theta = cos(DEG2RAD(theta));//cos(theta) distEnd2Result = cos_theta * distEnd2From;//b //Extrapolate to find result VectorNormalize( vecEnd2Start ); VectorMA( end, distEnd2Result, vecEnd2Start, result ); //perpendicular intersection is between the 2 endpoints return qtrue; } float G_PointDistFromLineSegment( const vec3_t start, const vec3_t end, const vec3_t from ) { vec3_t vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From, intersection; float distEnd2From, distStart2From, distEnd2Result, theta, cos_theta; //Find the perpendicular vector to vec from start to end VectorSubtract( from, start, vecStart2From); VectorSubtract( end, start, vecStart2End); VectorSubtract( from, end, vecEnd2From); VectorSubtract( start, end, vecEnd2Start); float dot = DotProductNormalize( vecStart2From, vecStart2End ); distStart2From = Distance( start, from ); distEnd2From = Distance( end, from ); if ( dot <= 0 ) { //The perpendicular would be beyond or through the start point return distStart2From; } if ( dot == 1 ) { //parallel, closer of 2 points will be the target return ((distStart2From