//Anything above this #include will be ignored by the compiler #include "../qcommon/exe_headers.h" #include "cm_local.h" #include "cm_patch.h" #include "cm_landscape.h" #include "../qcommon/GenericParser2.h" #include "cm_randomterrain.h" #ifdef _WIN32 #pragma optimize("p", on) #endif void R_LoadDataImage ( const char *name, byte **pic, int *width, int *height); void R_InvertImage ( byte *data, int width, int height, int depth); void R_Resample ( byte *source, int swidth, int sheight, byte *dest, int dwidth, int dheight, int components); #define _SMOOTH_TERXEL_BRUSH #ifdef _SMOOTH_TERXEL_BRUSH #define BRUSH_SIDES_PER_TERXEL 8 #else #define BRUSH_SIDES_PER_TERXEL 5 #endif void CCMLandScape::SetShaders(int height, CCMShader *shader) { int i; for(i = height; shader && (i < HEIGHT_RESOLUTION); i++) { if(!mHeightDetails[i].GetSurfaceFlags()) { mHeightDetails[i].SetFlags(shader->contentFlags, shader->surfaceFlags); } } } void CCMLandScape::LoadTerrainDef(const char *td) { char terrainDef[MAX_QPATH]; CGenericParser2 parse; CGPGroup *basegroup, *classes, *items; Com_sprintf(terrainDef, MAX_QPATH, "ext_data/RMG/%s.terrain", Info_ValueForKey(td, "terrainDef")); Com_DPrintf("CM_Terrain: Loading and parsing terrainDef %s.....\n", Info_ValueForKey(td, "terrainDef")); if(!Com_ParseTextFile(terrainDef, parse)) { Com_sprintf(terrainDef, MAX_QPATH, "ext_data/arioche/%s.terrain", Info_ValueForKey(td, "terrainDef")); if(!Com_ParseTextFile(terrainDef, parse)) { Com_Printf("Could not open %s\n", terrainDef); return; } } // The whole file.... basegroup = parse.GetBaseParseGroup(); // The root { } struct classes = basegroup->GetSubGroups(); while(classes) { items = classes->GetSubGroups(); while(items) { if(!Q_stricmp(items->GetName(), "altitudetexture")) { int height; const char *shaderName; CCMShader *shader; // Height must exist - the rest are optional height = atol(items->FindPairValue("height", "0")); // Shader for this height shaderName = items->FindPairValue("shader", ""); if(strlen(shaderName)) { shader = CM_GetShaderInfo(shaderName); if(shader) { SetShaders(height, shader); } } } else if(!Q_stricmp(items->GetName(), "water")) { const char *shaderName; CCMShader *shader; // Grab the height of the water mBaseWaterHeight = atol(items->FindPairValue("height", "0")); SetRealWaterHeight(mBaseWaterHeight); // Grab the material of the water shaderName = items->FindPairValue("shader", ""); shader = CM_GetShaderInfo(shaderName); if(shader) { mWaterContents = shader->contentFlags; mWaterSurfaceFlags = shader->surfaceFlags; } } items = (CGPGroup *)items->GetNext(); } classes = (CGPGroup *)classes->GetNext(); } Com_ParseTextFileDestroy(parse); } CCMPatch::~CCMPatch(void) { } CCMLandScape::CCMLandScape(const char *configstring, bool server) { int numPatches, numBrushesPerPatch, size, seed; char heightMap[MAX_QPATH]; char *ptr; holdrand = 0x89abcdef; // Clear out the height details memset(mHeightDetails, 0, sizeof(CCMHeightDetails) * HEIGHT_RESOLUTION); mBaseWaterHeight = 0; mWaterHeight = 0.0f; // When constructed, referenced once mRefCount = 1; // Extract the relevant data from the config string Com_sprintf(heightMap, MAX_QPATH, "%s", Info_ValueForKey(configstring, "heightMap")); numPatches = atol(Info_ValueForKey(configstring, "numPatches")); mTerxels = atol(Info_ValueForKey(configstring, "terxels")); mHasPhysics = !!atol(Info_ValueForKey(configstring, "physics")); seed = strtoul(Info_ValueForKey(configstring, "seed"), &ptr, 10); mBounds[0][0] = (float)atof(Info_ValueForKey(configstring, "minx")); mBounds[0][1] = (float)atof(Info_ValueForKey(configstring, "miny")); mBounds[0][2] = (float)atof(Info_ValueForKey(configstring, "minz")); mBounds[1][0] = (float)atof(Info_ValueForKey(configstring, "maxx")); mBounds[1][1] = (float)atof(Info_ValueForKey(configstring, "maxy")); mBounds[1][2] = (float)atof(Info_ValueForKey(configstring, "maxz")); // Calculate size of the brush VectorSubtract(mBounds[1], mBounds[0], mSize); // Work out the dimensions of the brush in blocks - the object is to make the blocks as square as possible mBlockWidth = Round(sqrtf(numPatches * mSize[0] / mSize[1])); mBlockHeight = Round(sqrtf(numPatches * mSize[1] / mSize[0])); // ...which lets us get the size of the heightmap mWidth = mBlockWidth * mTerxels; mHeight = mBlockHeight * mTerxels; mHeightMap = (byte *)Z_Malloc(GetRealArea(), TAG_CM_TERRAIN); mFlattenMap = (byte *)Z_Malloc(GetRealArea(), TAG_CM_TERRAIN); // Zero means unused. memset ( mFlattenMap, 0, GetRealArea() ); if(strlen(heightMap)) { byte *imageData; int iWidth, iHeight; Com_DPrintf("CM_Terrain: Loading heightmap %s.....\n", heightMap); mRandomTerrain = 0; #ifdef DEDICATED imageData=NULL; #else R_LoadDataImage(heightMap, &imageData, &iWidth, &iHeight); if(imageData) { if(strstr(heightMap, "random_")) { mRandomTerrain = CreateRandomTerrain ( configstring, this, mHeightMap, GetRealWidth(), GetRealHeight()); } else { // Flip to make the same as GenSurf R_InvertImage(imageData, iWidth, iHeight, 1); R_Resample(imageData, iWidth, iHeight, mHeightMap, GetRealWidth(), GetRealHeight(), 1); } Z_Free(imageData); } #endif } else { Com_Error(ERR_FATAL, "Terrain has no heightmap specified\n"); } // Work out the dimensions of the terxel - should be almost square mTerxelSize[0] = mSize[0] / mWidth; mTerxelSize[1] = mSize[1] / mHeight; mTerxelSize[2] = mSize[2] / 255.0f; // Work out the patchsize mPatchSize[0] = mSize[0] / mBlockWidth; mPatchSize[1] = mSize[1] / mBlockHeight; mPatchSize[2] = 1.0f; mPatchScalarSize = VectorLength(mPatchSize); // Loads in the water height and properties // Gets the shader properties for the blended shaders LoadTerrainDef(configstring); Com_DPrintf("CM_Terrain: Creating patches.....\n"); mPatches = (CCMPatch *)Z_Malloc(sizeof(CCMPatch) * GetBlockCount(), TAG_CM_TERRAIN); numBrushesPerPatch = mTerxels * mTerxels * 2; size = (numBrushesPerPatch * sizeof(cbrush_t)) + (numBrushesPerPatch * BRUSH_SIDES_PER_TERXEL * 2 * (sizeof(cbrushside_t) + sizeof(cplane_t))); mPatchBrushData = (byte *)Z_Malloc(size * GetBlockCount(), TAG_CM_TERRAIN); // Initialize all terrain patches UpdatePatches(); } // Initialise a plane from 3 coords void CCMPatch::InitPlane(struct cbrushside_s *side, cplane_t *plane, vec3_t p0, vec3_t p1, vec3_t p2) { vec3_t dx, dy; VectorSubtract(p1, p0, dx); VectorSubtract(p2, p0, dy); CrossProduct(dx, dy, plane->normal); VectorNormalize(plane->normal); plane->dist = DotProduct(p0, plane->normal); plane->type = PlaneTypeForNormal(plane->normal); SetPlaneSignbits(plane); #ifdef _XBOX cmg.planes[side->planeNum.GetValue()] = *plane; #else side->plane = plane; #endif } // Create the planes required for collision detection // 2 brushes per terxel - each brush has 5 sides and 5 planes void* CCMPatch::GetAdjacentBrushY ( int x, int y ) { int yo1 = y % owner->GetTerxels(); int yo2 = (y-1) % owner->GetTerxels(); int xo = x % owner->GetTerxels(); CCMPatch* patch; // Different patch if ( yo2 > yo1 ) { patch = owner->GetPatch ( x / owner->GetTerxels(), (y-1) / owner->GetTerxels() ); } else { patch = this; } cbrush_t *brush; brush = patch->mPatchBrushData; brush += ((yo2 * owner->GetTerxels ( ) + xo) * 2); brush ++; return brush; } void* CCMPatch::GetAdjacentBrushX ( int x, int y ) { int xo1 = x % owner->GetTerxels(); int xo2 = (x-1) % owner->GetTerxels(); int yo = y % owner->GetTerxels(); CCMPatch* patch; // Different patch if ( xo2 > xo1 ) { patch = owner->GetPatch ( (x-1) / owner->GetTerxels(), y / owner->GetTerxels() ); } else { patch = this; } cbrush_t *brush; brush = patch->mPatchBrushData; brush += ((yo * owner->GetTerxels ( ) + xo2) * 2); if ( ! ((x+y) & 1) ) { brush ++; } return brush; } void CCMPatch::CreatePatchPlaneData(void) { #ifndef PRE_RELEASE_DEMO int realWidth; int x, y, i, j; #if 0 int n; #endif cbrush_t *brush; cbrushside_t *side; cplane_t *plane; vec3_t *coords; vec3_t localCoords[8]; mNumBrushes = owner->GetTerxels() * owner->GetTerxels() * 2; realWidth = owner->GetRealWidth(); coords = owner->GetCoords(); brush = mPatchBrushData; side = (cbrushside_t *)(mPatchBrushData + mNumBrushes); plane = (cplane_t *)(side + (mNumBrushes * BRUSH_SIDES_PER_TERXEL * 2)); for(y = mHy; y < mHy + owner->GetTerxels(); y++) { for(x = mHx; x < mHx + owner->GetTerxels(); x++) { int offsets[4]; if ( (x+y)&1 ) { offsets[0] = (y * realWidth) + x; // TL offsets[1] = (y * realWidth) + x + 1; // TR offsets[2] = ((y + 1) * realWidth) + x; // BL offsets[3] = ((y + 1) * realWidth) + x + 1; // BR } else { offsets[2] = (y * realWidth) + x; // TL offsets[0] = (y * realWidth) + x + 1; // TR offsets[3] = ((y + 1) * realWidth) + x; // BL offsets[1] = ((y + 1) * realWidth) + x + 1; // BR } for(i = 0; i < 4; i++) { VectorCopy(coords[offsets[i]], localCoords[i]); VectorCopy(coords[offsets[i]], localCoords[i + 4]); // Set z of base of brush to bottom of landscape brush localCoords[i + 4][2] = owner->GetMins()[2]; } // Set the bounds of the terxel VectorSet(brush[0].bounds[0], MAX_WORLD_COORD, MAX_WORLD_COORD, MAX_WORLD_COORD); VectorSet(brush[0].bounds[1], MIN_WORLD_COORD, MIN_WORLD_COORD, MIN_WORLD_COORD); for(i = 0; i < 8; i++) { for(j = 0; j < 3; j++) { // mins if(localCoords[i][j] < brush[0].bounds[0][j]) { brush[0].bounds[0][j] = localCoords[i][j]; } // maxs if(localCoords[i][j] > brush[0].bounds[1][j]) { brush[0].bounds[1][j] = localCoords[i][j]; } } } VectorDec(brush[0].bounds[0]); VectorInc(brush[0].bounds[1]); VectorCopy(brush[0].bounds[0], brush[1].bounds[0]); VectorCopy(brush[0].bounds[1], brush[1].bounds[1]); brush[0].contents = mContentFlags; brush[1].contents = mContentFlags; #ifndef _SMOOTH_TERXEL_BRUSH // Set up sides of the brushes brush[0].numsides = 5; brush[0].sides = side; brush[1].numsides = 5; brush[1].sides = side + 5; for ( i = 0; i < 8 ; i ++ ) { localCoords[i][0] = (int)localCoords[i][0]; localCoords[i][1] = (int)localCoords[i][1]; localCoords[i][2] = (int)localCoords[i][2]; } // Create the planes of the 2 triangles that make up the tops of the brushes InitPlane(side + 0, plane + 0, localCoords[0], localCoords[1], localCoords[2]); InitPlane(side + 5, plane + 5, localCoords[3], localCoords[2], localCoords[1]); // Create the bottom face of the brushes InitPlane(side + 1, plane + 1, localCoords[6], localCoords[5], localCoords[4]); InitPlane(side + 6, plane + 6, localCoords[5], localCoords[6], localCoords[7]); // Create the 3 vertical faces InitPlane(side + 2, plane + 2, localCoords[0], localCoords[2], localCoords[4]); InitPlane(side + 7, plane + 7, localCoords[3], localCoords[1], localCoords[7]); InitPlane(side + 3, plane + 3, localCoords[0], localCoords[4], localCoords[1]); InitPlane(side + 8, plane + 8, localCoords[3], localCoords[7], localCoords[2]); InitPlane(side + 4, plane + 4, localCoords[2], localCoords[1], localCoords[6]); InitPlane(side + 9, plane + 9, localCoords[5], localCoords[1], localCoords[6]); // Increment to next terxel brush += 2; side += 10; plane += 10; #else // Set up sides of the brushes brush[0].numsides = 5; brush[0].sides = side; brush[1].numsides = 5; brush[1].sides = side + 8; // Create the planes of the 2 triangles that make up the tops of the brushes InitPlane(side + 0, plane + 0, localCoords[0], localCoords[1], localCoords[2]); InitPlane(side + 8, plane + 8, localCoords[3], localCoords[2], localCoords[1]); // Create the bottom face of the brushes InitPlane(side + 1, plane + 1, localCoords[4], localCoords[6], localCoords[5]); InitPlane(side + 9, plane + 9, localCoords[7], localCoords[5], localCoords[6]); // Create the 3 vertical faces InitPlane(side + 2, plane + 2, localCoords[0], localCoords[2], localCoords[4]); InitPlane(side + 10, plane + 10, localCoords[3], localCoords[1], localCoords[7]); InitPlane(side + 3, plane + 3, localCoords[0], localCoords[4], localCoords[1]); InitPlane(side + 11, plane + 11, localCoords[3], localCoords[7], localCoords[2]); InitPlane(side + 4, plane + 4, localCoords[2], localCoords[1], localCoords[6]); InitPlane(side + 12, plane + 12, localCoords[5], localCoords[1], localCoords[6]); float V = DotProduct ( (plane + 8)->normal, localCoords[0] ) - (plane + 8)->dist; if ( V < 0 ) { InitPlane ( brush[0].sides + brush[0].numsides, plane + brush[0].numsides, localCoords[3], localCoords[2], localCoords[1]); brush[0].numsides++; InitPlane ( brush[1].sides + brush[1].numsides, plane + 8 + brush[1].numsides, localCoords[0], localCoords[1], localCoords[2]); brush[1].numsides++; } // Determine if we need to smooth the brush transition from the brush above us if ( y > 0 && y < owner->GetPatchHeight ( ) - 1 ) { cbrush_t* abovebrush = (cbrush_t*)GetAdjacentBrushY ( x, y ); #ifdef _XBOX cplane_t* aboveplane = &cmg.planes[abovebrush->sides->planeNum.GetValue()]; #else cplane_t* aboveplane = abovebrush->sides->plane; #endif V = DotProduct ( aboveplane->normal, ((y+x)&1)?(localCoords[2]):(localCoords[1]) ) - aboveplane->dist; if ( V < 0 ) { memcpy ( brush[0].sides + brush[0].numsides, abovebrush->sides, sizeof(cbrushside_t) ); brush[0].numsides++; memcpy ( abovebrush->sides + abovebrush->numsides, side + 0, sizeof(cbrushside_t) ); abovebrush->numsides++; } } // Determine if we need to smooth the brush transition from the brush to the left of us if ( x > 0 && x < owner->GetPatchWidth ( ) - 1 ) { cbrush_t* abovebrush = (cbrush_t*)GetAdjacentBrushX ( x, y ); #ifdef _XBOX cplane_t* aboveplane = &cmg.planes[abovebrush->sides->planeNum.GetValue()]; #else cplane_t* aboveplane = abovebrush->sides->plane; #endif V = DotProduct ( aboveplane->normal, localCoords[1] ) - aboveplane->dist; if ( V < 0 ) { if ( (x+y)&1 ) { memcpy ( brush[0].sides + brush[0].numsides, abovebrush->sides, sizeof(cbrushside_t) ); brush[0].numsides++; memcpy ( abovebrush->sides + abovebrush->numsides, side + 0, sizeof(cbrushside_t) ); abovebrush->numsides++; } else { memcpy ( brush[1].sides + brush[1].numsides, abovebrush->sides, sizeof(cbrushside_t) ); brush[1].numsides++; memcpy ( abovebrush->sides + abovebrush->numsides, side + 8, sizeof(cbrushside_t) ); abovebrush->numsides++; } } } // Increment to next terxel brush += 2; side += 16; plane += 16; #endif } } #endif // PRE_RELEASE_DEMO } void CCMPatch::Init(CCMLandScape *ls, int heightX, int heightY, vec3_t world, byte *hMap, byte *patchBrushData) { #ifndef PRE_RELEASE_DEMO int min, max, x, y, height; // Set owning landscape owner = ls; // Store the base of the top left corner VectorCopy(world, mWorldCoords); // Store pointer to first byte of the height data for this patch. mHx = heightX; mHy = heightY; mHeightMap = hMap + ((heightY * owner->GetRealWidth()) + heightX); // Calculate the bounds for culling // Use the dimensions 1 terxel outside the patch to allow for sloping of edge terxels min = 256; max = -1; for(y = heightY - 1; y < heightY + owner->GetTerxels() + 1; y++) { if(y >= 0) { for(x = heightX - 1; x < heightX + owner->GetTerxels() + 1; x++) { if(x >= 0) { height = hMap[(y * owner->GetRealWidth()) + x]; if(height > max) { max = height; } if(height < min) { min = height; } } } } } // Mins mBounds[0][0] = world[0]; mBounds[0][1] = world[1]; mBounds[0][2] = world[2] + (min * owner->GetTerxelSize()[2]); // Maxs mBounds[1][0] = world[0] + (owner->GetPatchSize()[0]); mBounds[1][1] = world[1] + (owner->GetPatchSize()[1]); mBounds[1][2] = world[2] + (max * owner->GetTerxelSize()[2]); // Corner heights mCornerHeights[0] = mHeightMap[0]; mCornerHeights[1] = mHeightMap[owner->GetTerxels()]; mCornerHeights[2] = mHeightMap[owner->GetTerxels() * owner->GetRealWidth()]; mCornerHeights[3] = mHeightMap[(owner->GetTerxels() * owner->GetRealWidth()) + owner->GetTerxels()]; // Set the surfaceFlags using average height (may want a more complex algo here) mSurfaceFlags = owner->GetSurfaceFlags((min + max) >> 1); mContentFlags = owner->GetContentFlags((min + max) >> 1); // Set base of brush data from big array mPatchBrushData = (cbrush_t *)patchBrushData; CreatePatchPlaneData(); #endif // PRE_RELEASE_DEMO } CCMPatch *CCMLandScape::GetPatch(int x, int y) { return(mPatches + ((y * mBlockWidth) + x)); } extern cvar_t *com_newtrace; void CCMLandScape::PatchCollide(struct traceWork_s *tw, trace_t &trace, const vec3_t start, const vec3_t end, int checkcount) { vec3pair_t tBounds; // Convert to valid bounding box CM_CalcExtents(start, end, tw, tBounds); //if (com_newtrace->integer) if (1) { float slope, offset; float startPatchLoc, endPatchLoc, startPos, endPos; float patchDirection = 1; float checkDirection = 1; int countPatches, count; CCMPatch *patch; float fraction = trace.fraction; if (fabs(end[0]-start[0]) >= fabs(fabs(end[1]-start[1]))) { // x travels more than y // calculate line slope and offset if (end[0] - start[0]) { slope = (end[1] - start[1]) / (end[0] - start[0]); } else { slope = 0; } offset = start[1] - (start[0] * slope); // find the starting startPatchLoc = floor((start[0] - mBounds[0][0]) / mPatchSize[0]); endPatchLoc = floor((end[0] - mBounds[0][0]) / mPatchSize[0]); if (startPatchLoc <= endPatchLoc) { // moving along slope in a positive direction endPatchLoc++; startPatchLoc--; countPatches = endPatchLoc - startPatchLoc + 1; } else { // moving along slope in a negative direction endPatchLoc--; startPatchLoc++; patchDirection = -1; countPatches = startPatchLoc - endPatchLoc + 1; } if (slope < 0.0) { checkDirection = -1; } // first calculate the real world location startPos = ((startPatchLoc * mPatchSize[0] + mBounds[0][0]) * slope) + offset; // calculate it back into patch coords startPos = floor((startPos - mBounds[0][1] + tw->size[0][1]) / mPatchSize[1]); do { if (startPatchLoc >= 0 && startPatchLoc < mBlockWidth) { // valid location // first calculate the real world location endPos = (((startPatchLoc+patchDirection) * mPatchSize[0] + mBounds[0][0]) * slope) + offset; // calculate it back into patch coords endPos = floor((endPos - mBounds[0][1] + tw->size[1][1]) / mPatchSize[1]); if (checkDirection < 0) { startPos++; endPos--; } else { startPos--; endPos++; } count = fabs(endPos - startPos) + 1; while(count) { if (startPos >= 0 && startPos < mBlockHeight) { // valid location patch = GetPatch(startPatchLoc, startPos); // Collide with every patch to find the minimum fraction CM_HandlePatchCollision(tw, trace, tBounds[0], tBounds[1], patch, checkcount); if (trace.fraction <= 0.0) { return; } } startPos += checkDirection; count--; } if (trace.fraction < fraction) { return; } } // move to the next spot // we still stay one behind, to get the opposite edge of the terrain patch startPos = ((startPatchLoc * mPatchSize[0] + mBounds[0][0]) * slope) + offset; startPatchLoc += patchDirection; // first calculate the real world location // calculate it back into patch coords startPos = floor((startPos - mBounds[0][1] + tw->size[0][1]) / mPatchSize[1]); countPatches--; } while (countPatches); } else { // calculate line slope and offset slope = (end[0] - start[0]) / (end[1] - start[1]); offset = start[0] - (start[1] * slope); // find the starting startPatchLoc = floor((start[1] - mBounds[0][1]) / mPatchSize[1]); endPatchLoc = floor((end[1] - mBounds[0][1]) / mPatchSize[1]); if (startPatchLoc <= endPatchLoc) { // moving along slope in a positive direction endPatchLoc++; startPatchLoc--; countPatches = endPatchLoc - startPatchLoc + 1; } else { // moving along slope in a negative direction endPatchLoc--; startPatchLoc++; patchDirection = -1; countPatches = startPatchLoc - endPatchLoc + 1; } if (slope < 0.0) { checkDirection = -1; } // first calculate the real world location startPos = ((startPatchLoc * mPatchSize[1] + mBounds[0][1]) * slope) + offset; // calculate it back into patch coords startPos = floor((startPos - mBounds[0][0] + tw->size[0][0]) / mPatchSize[0]); do { if (startPatchLoc >= 0 && startPatchLoc < mBlockHeight) { // valid location // first calculate the real world location endPos = (((startPatchLoc+patchDirection) * mPatchSize[1] + mBounds[0][1]) * slope) + offset; // calculate it back into patch coords endPos = floor((endPos - mBounds[0][0] + tw->size[1][0]) / mPatchSize[0]); if (checkDirection < 0) { startPos++; endPos--; } else { startPos--; endPos++; } count = fabs(endPos - startPos) + 1; while(count) { if (startPos >= 0 && startPos < mBlockWidth) { // valid location patch = GetPatch(startPos, startPatchLoc); // Collide with every patch to find the minimum fraction CM_HandlePatchCollision(tw, trace, tBounds[0], tBounds[1], patch, checkcount); if (trace.fraction <= 0.0) { return; } } startPos += checkDirection; count--; } if (trace.fraction < fraction) { return; } } // move to the next spot // we still stay one behind, to get the opposite edge of the terrain patch startPos = ((startPatchLoc * mPatchSize[1] + mBounds[0][1]) * slope) + offset; startPatchLoc += patchDirection; // first calculate the real world location // calculate it back into patch coords startPos = floor((startPos - mBounds[0][0] + tw->size[0][0]) / mPatchSize[0]); countPatches--; } while (countPatches); } } else { int x, y; vec3_t tWork; vec3_t pStart, pEnd; int minx, maxx, miny, maxy; CCMPatch *patch; // Work out and grab the relevant patches VectorSubtract(tBounds[0], mBounds[0], tWork); VectorInverseScaleVector(tWork, mPatchSize, pStart); VectorSubtract(tBounds[1], mBounds[0], tWork); VectorInverseScaleVector(tWork, mPatchSize, pEnd); minx = Com_Clamp(0, mBlockWidth - 1, floorf(pStart[0])); maxx = Com_Clamp(0, mBlockWidth - 1, ceilf(pEnd[0])); miny = Com_Clamp(0, mBlockHeight - 1, floorf(pStart[1])); maxy = Com_Clamp(0, mBlockHeight - 1, ceilf(pEnd[1])); // generic box collide with each one for(y = miny; y <= maxy; y++) { for(x = minx; x <= maxx; x++) { patch = GetPatch(x, y); // Collide with every patch to find the minimum fraction CM_HandlePatchCollision(tw, trace, tBounds[0], tBounds[1], patch, checkcount); if (trace.fraction <= 0.0) { break; } } } } } float CCMLandScape::WaterCollide(const vec3_t begin, const vec3_t end, float fraction) const { // Check for completely above water if((begin[2] > mWaterHeight) && (end[2] > mWaterHeight)) { return(fraction); } // Check for completely below water if((begin[2] < mWaterHeight) && (end[2] < mWaterHeight)) { return(fraction); } // Check for starting in water and leaving if(begin[2] < mWaterHeight - SURFACE_CLIP_EPSILON) { fraction = ((mWaterHeight - SURFACE_CLIP_EPSILON) - begin[2]) / (end[2] - begin[2]); return(fraction); } // Now the trace must be entering the water if(begin[2] > mWaterHeight + SURFACE_CLIP_EPSILON) { fraction = (begin[2] - (mWaterHeight + SURFACE_CLIP_EPSILON)) / (begin[2] - end[2]); } return(fraction); } void CCMLandScape::GetTerxelLocalCoords ( int x, int y, vec3_t localCoords[8] ) { int realWidth; vec3_t* coords; int offsets[4]; int i; coords = GetCoords ( ); realWidth = GetRealWidth ( ); if ( (x+y)&1 ) { offsets[0] = (y * realWidth) + x; // TL offsets[1] = (y * realWidth) + x + 1; // TR offsets[2] = ((y + 1) * realWidth) + x; // BL offsets[3] = ((y + 1) * realWidth) + x + 1; // BR } else { offsets[2] = (y * realWidth) + x; // TL offsets[0] = (y * realWidth) + x + 1; // TR offsets[3] = ((y + 1) * realWidth) + x; // BL offsets[1] = ((y + 1) * realWidth) + x + 1; // BR } for( i = 0; i < 4; i++ ) { VectorCopy(coords[offsets[i]], localCoords[i]); VectorCopy(coords[offsets[i]], localCoords[i + 4]); // Set z of base of brush to bottom of landscape brush localCoords[i + 4][2] = GetMins()[2]; } } void CCMLandScape::UpdatePatches(void) { CCMPatch *patch; int x, y, ix, iy, numBrushesPerPatch; vec3_t world; int size; /* for(y=0;yInit(this, x, y, world, mHeightMap, mPatchBrushData + (size * (ix + (iy * mBlockWidth)))); } } /* for ( y = mTerxels; y < mHeight - mTerxels; y ++ ) { for ( x = mTerxels; x < mWidth - mTerxels; x ++ ) { int xo = x % mTerxels; int yo = y % mTerxels; int xor = (x + 1) % mTerxels; int yob = (y + 1) % mTerxels; CCMPatch* patch = mPatches + (mWidth / mTerxels) * y + (x / mTerxels); CCMPatch* rpatch = mPatches + (mWidth / mTerxels) * y + ((x+1) / mTerxels); CCMPatch* bpatch = mPatches + (mWidth / mTerxels) * (y + 1) + (x / mTerxels); int offsets[4]; vec3_t localCoords[8]; vec3_t localCoordsR[8]; vec3_t localCoordsL[8]; GetTerxelLocalCoords ( x, y, localCoords ); GetTerxelLocalCoords ( x + 1, y, localCoordsR ); GetTerxelLocalCoords ( x, y + 1, localCoordsB ); brush = patch->GetCollisionData ( );; side = (cbrushside_t *)(mPatchBrushData + patch->GetNumBrushes ( ) ); plane = (cplane_t *)(side + (mNumBrushes * BRUSH_SIDES_PER_TERXEL * 2)); float V = DotProduct ( (plane + 8)->normal, localCoords[0] ) + plane->dist; if ( V < 0 ) { InitPlane ( brush[0].sides + brush[0].numsides, plane + brush[0].numsides, localCoords[3], localCoords[2], localCoords[1]); brush[0].numsides++; InitPlane ( brush[1].sides + brush[1].numsides, plane + 8 + brush[1].numsides, localCoords[0], localCoords[1], localCoords[2]); brush[1].numsides++; } } } */ // Cleanup coord array Z_Free(mCoords); } void CCMLandScape::CalcRealCoords(void) { int x, y; mCoords = (vec3_t *)Z_Malloc(sizeof(vec3_t) * GetRealWidth() * GetRealHeight(), TAG_CM_TERRAIN_TEMP); // Work out the real world coordinates of each heightmap entry for(y = 0; y < GetRealHeight(); y++) { for(x = 0; x < GetRealWidth(); x++) { ivec3_t icoords; int offset; offset = (y * GetRealWidth()) + x; VectorSet(icoords, x, y, mHeightMap[offset]); VectorScaleVectorAdd(GetMins(), icoords, GetTerxelSize(), mCoords[offset]); } } } void CCMLandScape::TerrainPatchIterate(void (*IterateFunc)( CCMPatch *, void * ), void *userdata) const { int i; CCMPatch *patch; patch = mPatches; for(i = 0; i < GetBlockCount(); i++, patch++) { IterateFunc(patch, userdata); } } #define LERP(t, a, b) (((b)-(a))*(t) + (a)) float CCMLandScape::GetWorldHeight(vec3_t origin, const vec3pair_t bounds, bool aboveGround) const { vec3_t work; int minx, maxx, miny, maxy; int TL, TR, BL, BR; int final; VectorSubtract(origin, mBounds[0], work); VectorInverseScaleVector(work, mTerxelSize, work); // Presume the bases of all misc models are less than 1 terxel square minx = Com_Clamp(0, GetWidth(), (int)floorf(work[0])); maxx = Com_Clamp(0, GetWidth(), (int)ceilf(work[0])); miny = Com_Clamp(0, GetHeight(), (int)floorf(work[1])); maxy = Com_Clamp(0, GetHeight(), (int)ceilf(work[1])); TL = mHeightMap[(miny * GetRealWidth()) + minx]; TR = mHeightMap[(miny * GetRealWidth()) + maxx]; BL = mHeightMap[(maxy * GetRealWidth()) + minx]; BR = mHeightMap[(maxy * GetRealWidth()) + maxx]; if(aboveGround) { // int max1, max2; // max1 = maximum(TL, TR); // max2 = maximum(BL, BR); // final = maximum(max1, max2); float h1, h2; float tx, ty; tx = (work[0] - minx)/((float)(maxx-minx)); ty = (work[1] - miny)/((float)(maxy-miny)); h1 = LERP(tx, TL, TR); h2 = LERP(tx, BL, BR); final = LERP(ty, h1, h2); } else { int min1, min2; min1 = minimum(TL, TR); min2 = minimum(BL, BR); final = minimum(min1, min2); } origin[2] = (final * mTerxelSize[2]) + mBounds[0][2]; // compute slope at this spot if (maxx == minx) maxx = Com_Clamp(0, GetWidth(), minx+1); if (maxy == miny) maxy = Com_Clamp(0, GetHeight(), miny+1); BR = mHeightMap[(maxy * GetRealWidth()) + maxx]; // rise over run return (fabs((float)(BR - TL)) * mTerxelSize[2]) / mTerxelSize[0]; } void CM_CircularIterate(byte *data, int width, int height, int xo, int yo, int insideRadius, int outsideRadius, int *user, void (*callback)(byte *, float, int *)) { int x, y, offset; byte *work; for(y = -outsideRadius; y < outsideRadius + 1; y++) { if(y + yo >= 0 && y + yo < height) { offset = sqrtf((outsideRadius * outsideRadius) - (y * y)); for(x = -offset; x < offset + 1; x++) { if(x + xo >= 0 && x + xo < width) { float radius = sqrt((float)(x*x+y*y)); if ( radius >= insideRadius ) { work = data + (x + xo) + ((y + yo) * width); callback( work, (radius - (float)insideRadius) / (float)(outsideRadius - insideRadius), user); } } } } } } void CM_ForceHeight( byte *work, float lerp, int *user) { *work = (byte)Com_Clamp(0, 255, (int)*user); } void CM_GetAverage( byte *work, float lerp, int *user) { user[0] += *work; user[1]++; } void CM_Smooth ( byte* work, float lerp, int *user ) { float smooth = sin ( M_PI/2*3 + (1.0f-lerp) * (M_PI / 2) ) + 1.0f; // float smooth = (1.0f - lerp); *work = *work + (int)((float)(*user - *work) * smooth); } void CM_MakeAverage( byte *work, float lerp, int *user) { int height, diff; height = (int)*work; diff = *user - height; if(abs(diff) > 3) { diff >>= 2; } height += diff; *work = (byte)Com_Clamp(0, 255, height); } void CCMLandScape::SaveArea(CArea *area) { mAreas.push_back(area); } void CCMLandScape::CarveLine ( vec3_t start, vec3_t end, int depth, int width ) { int x, x1, x2, deltax; int y, y1, y2, deltay; int xinc1, xinc2; int yinc1, yinc2; int den, num; int count, add; int i; float heightStart; float heightEnd; float heightStep; x1 = (int) start[0]; y1 = (int) start[1]; x2 = (int) end[0]; y2 = (int) end[1]; deltax = abs(x2 - x1); deltay = abs(y2 - y1); x = x1; y = y1; // The x-values are increasing if (x2 >= x1) { xinc1 = 1; xinc2 = 1; } // The x-values are decreasing else { xinc1 = -1; xinc2 = -1; } // The y-values are increasing if (y2 >= y1) { yinc1 = 1; yinc2 = 1; } // The y-values are decreasing else { yinc1 = -1; yinc2 = -1; } if (deltax >= deltay) // There is at least one x-value for every y-value { xinc1 = 0; // Don't change the x when numerator >= denominator yinc2 = 0; // Don't change the y for every iteration den = deltax; num = deltax / 2; add = deltay; count = deltax; // There are more x-values than y-values } else // There is at least one y-value for every x-value { xinc2 = 0; // Don't change the x for every iteration yinc1 = 0; // Don't change the y when numerator >= denominator den = deltay; num = deltay / 2; add = deltax; count = deltay; // There are more y-values than x-values } vec3_t pt; vec3_t bounds[2] = {{-1,-1,-1},{1,1,1}}; pt[0] = start[0]; pt[1] = start[1]; GetWorldHeight ( pt, bounds, false ); heightStart = pt[2]; pt[0] = end[0]; pt[1] = end[1]; GetWorldHeight ( pt, bounds, false ); heightEnd = pt[2]; heightStep = (heightEnd-heightStart) / count; for ( i = 0; i <= count; i++ ) { // Flatten the current location CArea area; pt[0] = x; pt[1] = y; area.Init ( pt, width / 2 + (irand(0, width/2)) ); FlattenArea ( &area, heightStart + (heightStep * i) - (depth/2 - (irand(0, depth/2))), false, true, true ); // Increase the numerator by the top of the fraction num += add; if (num >= den) { // Calculate the new numerator value num -= den; // Change the x and y as appropriate x += xinc1; y += yinc1; } // Change the x and y as appropriate x += xinc2; y += yinc2; } } void CCMLandScape::CarveBezierCurve ( int numCtlPoints, vec3_t* ctlPoints, int steps, int depth, int size ) { int i; int choose; int n; float u; float t; float tt; float t1; float step; vec3_t pt; vec3_t lastpt; vec3_t b[10]; n = numCtlPoints - 1; choose = 1; for ( i = 1; i <= n; i ++ ) { if ( i == 1 ) choose = n; else choose = choose * (n-i+1) / i; (*(ctlPoints+i))[0] *= choose; (*(ctlPoints+i))[1] *= choose; } step = 1.0f / (float)steps; for ( choose = 0, t = step; t < 1; t += step, choose++ ) { b[0][0] = (*(ctlPoints+0))[0]; b[0][1] = (*(ctlPoints+0))[1]; for ( u = t, i = 1; i <= n; i ++ ) { b[i][0] = (*(ctlPoints+i))[0] * u; b[i][1] = (*(ctlPoints+i))[1] * u; u = u * t; } pt[0] = b[n][0]; pt[1] = b[n][1]; t1 = 1 - t; tt = t1; for ( i = n - 1; i >= 0; i -- ) { pt[0] += b[i][0] * tt; pt[1] += b[i][1] * tt; tt = tt * t1; } if ( choose != 0 ) { CarveLine ( lastpt, pt, depth, size ); } // Save this point for next time around lastpt[0] = pt[0]; lastpt[1] = pt[1]; } } void CCMLandScape::FlattenArea(CArea *area, int height, bool save, bool forceHeight, bool smooth ) { vec3_t temp; ivec3_t icoords; int radius; int height2; if(save) { SaveArea(area); // mAreas.push_back(*area); } // Work out coords in the heightmap VectorSubtract(area->GetPosition(), mBounds[0], temp); icoords[0] = temp[0] / (mBounds[1][0] - mBounds[0][0]) * (float)GetRealWidth ( ); icoords[1] = temp[1] / (mBounds[1][1] - mBounds[0][1]) * (float)GetRealHeight ( ); // VectorInverseScaleVector(temp, mTerxelSize, icoords); // round up, we'd rather have a little more area flattened than have less then what was requested radius = (int)ceilf( (area->GetRadius() / mTerxelSize[1]) ); // Work out the average height of the surrounding terrain height2 = height; if(height < 0) { ivec3_t info; info[0] = 0; info[1] = 0; CM_CircularIterate(mHeightMap, GetRealWidth(), GetRealHeight(), icoords[0], icoords[1], 0, radius, info, CM_GetAverage); if(info[1]) { height = info[0] / info[1]; } } else { height = height & 0x7F; } if ( smooth ) { CM_CircularIterate(mHeightMap, GetRealWidth(), GetRealHeight(), icoords[0], icoords[1], radius, radius * 3, &height, CM_Smooth); } if ( forceHeight ) { CM_CircularIterate(mHeightMap, GetRealWidth(), GetRealHeight(), icoords[0], icoords[1], 0, radius + 1, &height, CM_ForceHeight ); CM_CircularIterate(mFlattenMap, GetRealWidth(), GetRealHeight(), icoords[0], icoords[1], 0, radius + 1, &height2, CM_ForceHeight ); } else if ( smooth ) { CM_CircularIterate(mHeightMap, GetRealWidth(), GetRealHeight(), icoords[0], icoords[1], 0, radius, &height, CM_Smooth); } } void CM_BelowLevel(byte *data, float lerp, int *info) { info[1]++; if(*data < info[2]) { info[0]++; } } float CCMLandScape::FractionBelowLevel(CArea *area, int height) { vec3_t temp; ivec3_t icoords, info; int count; float level; // Work out coords in the heightmap VectorSubtract(area->GetPosition(), mBounds[0], temp); VectorInverseScaleVector(temp, mTerxelSize, icoords); // Work out radius of area in heightmap entries count = area->GetRadius() / mTerxelSize[1]; info[0] = 0; info[1] = 0; info[2] = height; if(height < 0) { info[2] = mBaseWaterHeight; } CM_CircularIterate(mHeightMap, GetRealWidth(), GetRealHeight(), icoords[0], icoords[1], 0, count, info, CM_BelowLevel); level = 0.0f; if(info[1]) { level = (float)info[0] / info[1]; } return(level); } CArea *CCMLandScape::GetFirstArea(void) { if(!mAreas.size()) { return(NULL); } mAreasIt = mAreas.begin(); return (*mAreasIt); } CArea *CCMLandScape::GetFirstObjectiveArea(void) { if(!mAreas.size()) { return(NULL); } mAreasIt = mAreas.begin(); while (mAreasIt != mAreas.end()) { // run through the areas to find the player area if((*mAreasIt)->GetType() == AT_OBJECTIVE) { return (*mAreasIt); } mAreasIt++; } return(NULL); } CArea *CCMLandScape::GetPlayerArea(void) { // do me if(!mAreas.size()) { return(NULL); } mAreasIt = mAreas.begin(); while (mAreasIt != mAreas.end()) { // run through the areas to find the player area if((*mAreasIt)->GetType() == AT_PLAYER) { return (*mAreasIt); } mAreasIt++; } return(NULL); } CArea *CCMLandScape::GetNextArea(void) { mAreasIt++; if(mAreasIt == mAreas.end()) { return(NULL); } return (*mAreasIt); } CArea *CCMLandScape::GetNextObjectiveArea(void) { mAreasIt++; while (mAreasIt != mAreas.end()) { // run through the areas to find the player area if((*mAreasIt)->GetType() == AT_OBJECTIVE) { return (*mAreasIt); } mAreasIt++; } return(NULL); } bool CCMLandScape::AreaCollision(CArea *area, int *areaTypes, int areaTypeCount) { CArea *areas; int i; float segment; bool collision; areas = GetFirstArea(); while(areas) { collision = false; if(area->GetVillageID() == areas->GetVillageID()) { // Check for being too close angularly if(area->GetAngleDiff() && areas->GetAngleDiff()) { segment = areas->GetAngle() - area->GetAngle(); if(segment < M_PI) { segment += 2 * M_PI; } if(segment > M_PI) { segment -= 2 * M_PI; } if(fabsf(segment) < areas->GetAngleDiff() + area->GetAngleDiff()) { collision = true; } } } // Check for buildings being too close together if(Distance(areas->GetPosition(), area->GetPosition()) < areas->GetRadius() + area->GetRadius()) { collision = true; } if(collision) { // If no area type list was specified then all areas are fair game if ( !areaTypes ) { return true; } for(i = 0; i < areaTypeCount; i++) { if(areas->GetType() == areaTypes[i]) { return(true); } } } areas = GetNextArea(); } return(false); } void CCMLandScape::rand_seed(int seed) { holdrand = seed; Com_Printf("rand_seed = %d\n", holdrand); } float CCMLandScape::flrand(float min, float max) { float result; assert((max - min) < 32768); holdrand = (holdrand * 214013L) + 2531011L; result = (float)(holdrand >> 17); // 0 - 32767 range result = ((result * (max - min)) / 32768.0F) + min; // Com_Printf("flrand: Seed = %d\n", holdrand); return(result); } int CCMLandScape::irand(int min, int max) { int result; assert((max - min) < 32768); max++; holdrand = (holdrand * 214013L) + 2531011L; result = holdrand >> 17; result = ((result * (max - min)) >> 15) + min; // Com_Printf("irand: Seed = %d\n", holdrand); return(result); } CCMLandScape::~CCMLandScape(void) { if(mHeightMap) { Z_Free(mHeightMap); mHeightMap = NULL; } if(mFlattenMap) { Z_Free(mFlattenMap); mFlattenMap = NULL; } if(mPatchBrushData) { Z_Free(mPatchBrushData); mPatchBrushData = NULL; } if(mPatches) { Z_Free(mPatches); mPatches = NULL; } if (mRandomTerrain) { delete mRandomTerrain; } for(mAreasIt=mAreas.begin(); mAreasIt != mAreas.end(); mAreasIt++) { delete (*mAreasIt); } mAreas.clear(); } class CCMLandScape *CM_InitTerrain(const char *configstring, thandle_t terrainId, bool server) { CCMLandScape *ls; ls = new CCMLandScape(configstring, server); ls->SetTerrainId(terrainId); return(ls); } void CM_TerrainPatchIterate(const class CCMLandScape *landscape, void (*IterateFunc)( CCMPatch *, void * ), void *userdata) { landscape->TerrainPatchIterate(IterateFunc, userdata); } float CM_GetWorldHeight(const CCMLandScape *landscape, vec3_t origin, const vec3pair_t bounds, bool aboveGround) { return landscape->GetWorldHeight(origin, bounds, aboveGround); } void CM_FlattenArea(CCMLandScape *landscape, CArea *area, int height, bool save, bool forceHeight, bool smooth ) { landscape->FlattenArea(area, height, save, forceHeight, smooth ); } void CM_CarveBezierCurve(CCMLandScape *landscape, int numCtls, vec3_t* ctls, int steps, int depth, int size ) { landscape->CarveBezierCurve(numCtls, ctls, steps, depth, size ); } void CM_SaveArea(CCMLandScape *landscape, CArea *area) { landscape->SaveArea(area); } float CM_FractionBelowLevel(CCMLandScape *landscape, CArea *area, int height) { return(landscape->FractionBelowLevel(area, height)); } bool CM_AreaCollision(class CCMLandScape *landscape, class CArea *area, int *areaTypes, int areaTypeCount) { return(landscape->AreaCollision(area, areaTypes, areaTypeCount)); } CArea *CM_GetFirstArea(CCMLandScape *landscape) { return(landscape->GetFirstArea()); } CArea *CM_GetFirstObjectiveArea(CCMLandScape *landscape) { return(landscape->GetFirstObjectiveArea()); } CArea *CM_GetPlayerArea(CCMLandScape *landscape) { return(landscape->GetPlayerArea()); } CArea *CM_GetNextArea(CCMLandScape *landscape) { return(landscape->GetNextArea()); } CArea *CM_GetNextObjectiveArea(CCMLandScape *landscape) { return(landscape->GetNextObjectiveArea()); } CRandomTerrain *CreateRandomTerrain(const char *config, CCMLandScape *landscape, byte *heightmap, int width, int height) { CRandomTerrain *RandomTerrain = 0; #ifndef PRE_RELEASE_DEMO char *ptr; unsigned long seed; seed = strtoul(Info_ValueForKey(config, "seed"), &ptr, 10); landscape->rand_seed(seed); RandomTerrain = new CRandomTerrain; RandomTerrain->Init(landscape, heightmap, width, height); #endif // #ifndef PRE_RELEASE_DEMO /* RandomTerrain->CreatePath(0, -1, 0, 9, 0.1, 0.5, 0.5, 0.5, 0.05, 0.08, 0.31, 0.1, 3); RandomTerrain->CreatePath(1, 0, 0, 6, 0.5, 0.5, 0.9, 0.1, 0.08, 0.1, 0.31, 0.1, 0.9); RandomTerrain->CreatePath(2, 0, 0, 6, 0.5, 0.5, 0.9, 0.9, 0.08, 0.1, 0.31, 0.1, 0.9); RandomTerrain->Generate(); */ return RandomTerrain; } // end #ifdef _WIN32 #pragma optimize("p", off) #endif