jedi-academy/codemp/renderer/tr_terrain.cpp

1057 lines
26 KiB
C++
Raw Normal View History

2013-04-19 02:52:48 +00:00
//Anything above this #include will be ignored by the compiler
#include "../qcommon/exe_headers.h"
// this include must remain at the top of every CPP file
#include "tr_local.h"
#if !defined(GENERICPARSER2_H_INC)
#include "../qcommon/GenericParser2.h"
#endif
// To do:
// Alter variance dependent on global distance from player (colour code this for cg_terrainCollisionDebug)
// Improve texture blending on edge conditions
// Link to neightbouring terrains or architecture (edge conditions)
// Post process generated light data to make sure there are no bands within a patch
#include "../qcommon/cm_landscape.h"
#include "tr_landscape.h"
cvar_t *r_drawTerrain;
cvar_t *r_showFrameVariance;
cvar_t *r_terrainTessellate;
cvar_t *r_terrainWaterOffset;
static int TerrainFog = 0;
static float TerrainDistanceCull;
//
// Render the tree.
//
void CTRPatch::RenderCorner(ivec5_t corner)
{
if((corner[3] < 0) || (tess.registration != corner[4]))
{
CTerVert *vert;
vert = mRenderMap + (corner[1] * owner->GetRealWidth()) + corner[0];
VectorCopy(vert->coords, tess.xyz[tess.numVertexes]);
VectorCopy(vert->normal, tess.normal[tess.numVertexes]);
*(ulong *)tess.vertexColors[tess.numVertexes] = *(ulong *)vert->tint;
*(ulong *)tess.vertexAlphas[tess.numVertexes] = corner[2];
tess.texCoords[tess.numVertexes][0][0] = vert->tex[0]; //rwwRMG - reverse coords array from sof2
tess.texCoords[tess.numVertexes][0][1] = vert->tex[1];
tess.indexes[tess.numIndexes++] = tess.numVertexes;
corner[3] = tess.numVertexes++;
corner[4] = tess.registration;
}
else
{
tess.indexes[tess.numIndexes++] = corner[3];
}
}
void CTRPatch::RecurseRender(int depth, ivec5_t left, ivec5_t right, ivec5_t apex)
{
// All non-leaf nodes have both children, so just check for one
if (depth >= 0)
{
ivec5_t center;
byte *centerAlphas;
byte *leftAlphas;
byte *rightAlphas;
// Work out the centre of the hypoteneuse
center[0] = (left[0] + right[0]) >> 1;
center[1] = (left[1] + right[1]) >> 1;
// Work out the relevant texture coefficients at that point
leftAlphas = (byte *)&left[2];
rightAlphas = (byte *)&right[2];
centerAlphas = (byte *)&center[2];
centerAlphas[0] = (leftAlphas[0] + rightAlphas[0]) >> 1;
centerAlphas[1] = (leftAlphas[1] + rightAlphas[1]) >> 1;
centerAlphas[2] = (leftAlphas[2] + rightAlphas[2]) >> 1;
centerAlphas[3] = (leftAlphas[3] + rightAlphas[3]) >> 1;
// Make sure the vert index and tesselation registration are not set
center[3] = -1;
center[4] = 0;
if (apex[0] == left[0] && apex[0] == center[0])
{
depth = 0;
}
RecurseRender(depth-1, apex, left, center);
RecurseRender(depth-1, right, apex, center);
}
else
{
if (left[0] == right[0] && left[0] == apex[0])
{
return;
}
if (left[1] == right[1] && left[1] == apex[1])
{
return;
}
// A leaf node! Output a triangle to be rendered.
RB_CheckOverflow(4, 4);
// assert(left[0] != right[0] || left[1] != right[1]);
// assert(left[0] != apex[0] || left[1] != apex[1]);
RenderCorner(left);
RenderCorner(right);
RenderCorner(apex);
}
}
//
// Render the mesh.
//
// The order of triangles is critical to the subdivision working
void CTRPatch::Render(int Part)
{
ivec5_t TL, TR, BL, BR;
VectorSet5(TL, 0, 0, TEXTURE_ALPHA_TL, -1, 0);
VectorSet5(TR, owner->GetTerxels(), 0, TEXTURE_ALPHA_TR, -1, 0);
VectorSet5(BL, 0, owner->GetTerxels(), TEXTURE_ALPHA_BL, -1, 0);
VectorSet5(BR, owner->GetTerxels(), owner->GetTerxels(), TEXTURE_ALPHA_BR, -1, 0);
if ((Part & PI_TOP) && mTLShader)
{
/* float d;
d = DotProduct (backEnd.refdef.vieworg, mNormal[0]) - mDistance[0];
if (d <= 0.0)*/
{
RecurseRender(r_terrainTessellate->integer, BL, TR, TL);
}
}
if ((Part & PI_BOTTOM) && mBRShader)
{
/* float d;
d = DotProduct (backEnd.refdef.vieworg, mNormal[1]) - mDistance[1];
if (d >= 0.0)*/
{
RecurseRender(r_terrainTessellate->integer, TR, BL, BR);
}
}
}
//
// At this point the patch is visible and at least part of it is below water level
//
int CTRPatch::RenderWaterVert(int x, int y)
{
CTerVert *vert;
vert = mRenderMap + x + (y * owner->GetRealWidth());
if(vert->tessRegistration == tess.registration)
{
return(vert->tessIndex);
}
tess.xyz[tess.numVertexes][0] = vert->coords[0];
tess.xyz[tess.numVertexes][1] = vert->coords[1];
tess.xyz[tess.numVertexes][2] = owner->GetWaterHeight();
*(ulong *)tess.vertexColors[tess.numVertexes] = 0xffffffff;
tess.texCoords[tess.numVertexes][0][0] = vert->tex[0]; //rwwRMG - reverse coords from sof2mp
tess.texCoords[tess.numVertexes][0][1] = vert->tex[1];
vert->tessIndex = tess.numVertexes;
vert->tessRegistration = tess.registration;
tess.numVertexes++;
return(vert->tessIndex);
}
void CTRPatch::RenderWater(void)
{
RB_CheckOverflow(4, 6);
// Get the neighbouring patches
int TL = RenderWaterVert(0, 0);
int TR = RenderWaterVert(owner->GetTerxels(), 0);
int BL = RenderWaterVert(0, owner->GetTerxels());
int BR = RenderWaterVert(owner->GetTerxels(), owner->GetTerxels());
// TL
tess.indexes[tess.numIndexes++] = BL;
tess.indexes[tess.numIndexes++] = TR;
tess.indexes[tess.numIndexes++] = TL;
// BR
tess.indexes[tess.numIndexes++] = TR;
tess.indexes[tess.numIndexes++] = BL;
tess.indexes[tess.numIndexes++] = BR;
}
const bool CTRPatch::HasWater(void) const
{
owner->SetRealWaterHeight( owner->GetBaseWaterHeight() + r_terrainWaterOffset->integer );
return(common->GetMins()[2] < owner->GetWaterHeight());
}
extern bool CM_CullWorldBox (const cplane_t *frustum, const vec3pair_t bounds); //rwwRMG - added (cm_trace.cpp)
void CTRPatch::SetVisibility(bool visCheck)
{
if(visCheck)
{
if(DistanceSquared(mCenter, backEnd.refdef.vieworg) > TerrainDistanceCull)
{
misVisible = false;
}
else
{
// Set the visibility of the patch
misVisible = !CM_CullWorldBox(backEnd.viewParms.frustum, GetBounds());
}
}
else
{
misVisible = true;
}
}
/*
void CTRPatch::CalcNormal(void)
{
CTerVert *vert1, *vert2, *vert3;
ivec5_t TL, TR, BL, BR;
vec3_t v1, v2;
VectorSet5(TL, 0, 0, TEXTURE_ALPHA_TL, -1, 0);
VectorSet5(TR, owner->GetTerxels(), 0, TEXTURE_ALPHA_TR, -1, 0);
VectorSet5(BL, 0, owner->GetTerxels(), TEXTURE_ALPHA_BL, -1, 0);
VectorSet5(BR, owner->GetTerxels(), owner->GetTerxels(), TEXTURE_ALPHA_BR, -1, 0);
vert1 = mRenderMap + (BL[1] * owner->GetRealWidth()) + BL[0];
vert2 = mRenderMap + (TR[1] * owner->GetRealWidth()) + TR[0];
vert3 = mRenderMap + (TL[1] * owner->GetRealWidth()) + TL[0];
VectorSubtract(vert2->coords, vert1->coords, v1);
VectorSubtract(vert3->coords, vert1->coords, v2);
CrossProduct(v1, v2, mNormal[0]);
VectorNormalize(mNormal[0]);
mDistance[0] = DotProduct (vert1->coords, mNormal[0]);
vert1 = mRenderMap + (BL[1] * owner->GetRealWidth()) + BL[0];
vert2 = mRenderMap + (TR[1] * owner->GetRealWidth()) + TR[0];
vert3 = mRenderMap + (BR[1] * owner->GetRealWidth()) + BR[0];
VectorSubtract(vert2->coords, vert1->coords, v1);
VectorSubtract(vert3->coords, vert1->coords, v2);
CrossProduct(v1, v2, mNormal[1]);
VectorNormalize(mNormal[1]);
mDistance[1] = DotProduct (vert1->coords, mNormal[1]);
}
*/
//
// Reset all patches, recompute variance if needed
//
void CTRLandScape::Reset(bool visCheck)
{
int x, y;
CTRPatch *patch;
TerrainDistanceCull = tr.distanceCull + mPatchSize;
TerrainDistanceCull *= TerrainDistanceCull;
// Go through the patches performing resets, compute variances, and linking.
for(y = mPatchMiny; y < mPatchMaxy; y++)
{
for(x = mPatchMinx; x < mPatchMaxx; x++, patch++)
{
patch = GetPatch(x, y);
patch->SetVisibility(visCheck);
}
}
}
//
// Render each patch of the landscape & adjust the frame variance.
//
void CTRLandScape::Render(void)
{
int x, y;
CTRPatch *patch;
TPatchInfo *current;
int i;
// Render all the visible patches
current = mSortedPatches;
for(i=0;i<mSortedCount;i++)
{
if (current->mPatch->isVisible())
{
if (tess.shader != current->mShader)
{
RB_EndSurface();
RB_BeginSurface(current->mShader, TerrainFog);
}
current->mPatch->Render(current->mPart);
}
current++;
}
RB_EndSurface();
// Render all the water for visible patches
// Done as a separate iteration to reduce the number of tesses created
if(mWaterShader && (mWaterShader != tr.defaultShader))
{
RB_BeginSurface( mWaterShader, tr.world->globalFog );
for(y = mPatchMiny; y < mPatchMaxy; y++ )
{
for(x = mPatchMinx; x < mPatchMaxx; x++ )
{
patch = GetPatch(x, y);
if(patch->isVisible() && patch->HasWater())
{
patch->RenderWater();
}
}
}
RB_EndSurface();
}
}
void CTRLandScape::CalculateRegion(void)
{
vec3_t mins, maxs, size, offset;
#if _DEBUG
mCycleCount++;
#endif
VectorCopy(GetPatchSize(), size);
VectorCopy(GetMins(), offset);
mins[0] = backEnd.refdef.vieworg[0] - tr.distanceCull - (size[0] * 2.0f) - offset[0];
mins[1] = backEnd.refdef.vieworg[1] - tr.distanceCull - (size[1] * 2.0f) - offset[1];
maxs[0] = backEnd.refdef.vieworg[0] + tr.distanceCull + (size[0] * 2.0f) - offset[0];
maxs[1] = backEnd.refdef.vieworg[1] + tr.distanceCull + (size[1] * 2.0f) - offset[1];
mPatchMinx = Com_Clampi(0, GetBlockWidth(), floorf(mins[0] / size[0]));
mPatchMaxx = Com_Clampi(0, GetBlockWidth(), ceilf(maxs[0] / size[0]));
mPatchMiny = Com_Clampi(0, GetBlockHeight(), floorf(mins[1] / size[1]));
mPatchMaxy = Com_Clampi(0, GetBlockHeight(), ceilf(maxs[1] / size[1]));
}
void CTRLandScape::CalculateRealCoords(void)
{
int x, y;
// Work out the real world coordinates of each heightmap entry
for(y = 0; y < GetRealHeight(); y++)
{
for(x = 0; x < GetRealWidth(); x++)
{
ivec3_t icoords;
int offset;
offset = (y * GetRealWidth()) + x;
VectorSet(icoords, x, y, mRenderMap[offset].height);
VectorScaleVectorAdd(GetMins(), icoords, GetTerxelSize(), mRenderMap[offset].coords);
}
}
}
void CTRLandScape::CalculateNormals(void)
{
int x, y, offset = 0;
// Work out the normals for every face
for(y = 0; y < GetHeight(); y++)
{
for(x = 0; x < GetWidth(); x++)
{
vec3_t vcenter, vleft;
offset = (y * GetRealWidth()) + x;
VectorSubtract(mRenderMap[offset].coords, mRenderMap[offset + 1].coords, vcenter);
VectorSubtract(mRenderMap[offset].coords, mRenderMap[offset + GetRealWidth()].coords, vleft);
CrossProduct(vcenter, vleft, mRenderMap[offset].normal);
VectorNormalize(mRenderMap[offset].normal);
}
// Duplicate right edge condition
VectorCopy(mRenderMap[offset].normal, mRenderMap[offset + 1].normal);
}
// Duplicate bottom line
offset = GetHeight() * GetRealWidth();
for(x = 0; x < GetRealWidth(); x++)
{
VectorCopy(mRenderMap[offset - GetRealWidth() + x].normal, mRenderMap[offset + x].normal);
}
}
void CTRLandScape::CalculateLighting(void)
{
int x, y, offset = 0;
// Work out the vertex normal (average of every attached face normal) and apply to the direction of the light
for(y = 0; y < GetHeight(); y++)
{
for(x = 0; x < GetWidth(); x++)
{
vec3_t ambient;
vec3_t directed, direction;
vec3_t total, tint;
vec_t dp;
offset = (y * GetRealWidth()) + x;
// Work out average normal
VectorCopy(GetRenderMap(x, y)->normal, total);
VectorAdd(total, GetRenderMap(x + 1, y)->normal, total);
VectorAdd(total, GetRenderMap(x + 1, y + 1)->normal, total);
VectorAdd(total, GetRenderMap(x, y + 1)->normal, total);
VectorNormalize(total);
if (!R_LightForPoint(mRenderMap[offset].coords, ambient, directed, direction))
{
mRenderMap[offset].tint[0] =
mRenderMap[offset].tint[1] =
mRenderMap[offset].tint[2] = 255 >> tr.overbrightBits;
mRenderMap[offset].tint[3] = 255;
continue;
}
if(mRenderMap[offset].coords[2] < common->GetBaseWaterHeight())
{
VectorScale(ambient, 0.75f, ambient);
}
// Both normalised, so -1.0 < dp < 1.0
dp = Com_Clampi(0.0f, 1.0f, DotProduct(direction, total));
dp = powf(dp, 3);
VectorScale(ambient, (1.0 - dp) * 0.5, ambient);
VectorMA(ambient, dp, directed, tint);
mRenderMap[offset].tint[0] = (byte)Com_Clampi(0.0f, 255.0f, tint[0] ) >> tr.overbrightBits;
mRenderMap[offset].tint[1] = (byte)Com_Clampi(0.0f, 255.0f, tint[1] ) >> tr.overbrightBits;
mRenderMap[offset].tint[2] = (byte)Com_Clampi(0.0f, 255.0f, tint[2] ) >> tr.overbrightBits;
mRenderMap[offset].tint[3] = 0xff;
/*
mRenderMap[offset].tint[0] += tr.identityLight * 32;
mRenderMap[offset].tint[1] += tr.identityLight * 32;
mRenderMap[offset].tint[2] += tr.identityLight * 32;
*/
}
mRenderMap[offset + 1].tint[0] = mRenderMap[offset].tint[0];
mRenderMap[offset + 1].tint[1] = mRenderMap[offset].tint[1];
mRenderMap[offset + 1].tint[2] = mRenderMap[offset].tint[2];
mRenderMap[offset + 1].tint[3] = 0xff;
}
// Duplicate bottom line
offset = GetHeight() * GetRealWidth();
for(x = 0; x < GetRealWidth(); x++)
{
mRenderMap[offset + x].tint[0] = mRenderMap[offset - GetRealWidth() + x].tint[0];
mRenderMap[offset + x].tint[1] = mRenderMap[offset - GetRealWidth() + x].tint[1];
mRenderMap[offset + x].tint[2] = mRenderMap[offset - GetRealWidth() + x].tint[2];
mRenderMap[offset + x].tint[3] = 0xff;
}
}
void CTRLandScape::CalculateTextureCoords(void)
{
int x, y;
for(y = 0; y < GetRealHeight(); y++)
{
for(x = 0; x < GetRealWidth(); x++)
{
int offset = (y * GetRealWidth()) + x;
mRenderMap[offset].tex[0] = x * mTextureScale * GetTerxelSize()[0];
mRenderMap[offset].tex[1] = y * mTextureScale * GetTerxelSize()[1];
}
}
}
void CTRLandScape::SetShaders(const int height, const qhandle_t shader)
{
int i;
for(i = height; shader && (i < HEIGHT_RESOLUTION); i++)
{
if(!mHeightDetails[i].GetShader())
{
mHeightDetails[i].SetShader(shader);
}
}
}
void CTRLandScape::LoadTerrainDef(const char *td)
{
#ifndef PRE_RELEASE_DEMO
char terrainDef[MAX_QPATH];
CGenericParser2 parse;
CGPGroup *basegroup, *classes, *items;
Com_sprintf(terrainDef, MAX_QPATH, "ext_data/RMG/%s.terrain", td);
Com_Printf("R_Terrain: Loading and parsing terrainDef %s.....\n", td);
mWaterShader = NULL;
mFlatShader = NULL;
if(!Com_ParseTextFile(terrainDef, parse))
{
Com_sprintf(terrainDef, MAX_QPATH, "ext_data/arioche/%s.terrain", td);
if(!Com_ParseTextFile(terrainDef, parse))
{
Com_Printf("Could not open %s\n", terrainDef);
return;
}
}
// The whole file....
basegroup = parse.GetBaseParseGroup();
// The root { } struct
classes = basegroup->GetSubGroups();
while(classes)
{
items = classes->GetSubGroups();
while(items)
{
const char* type = items->GetName ( );
if(!stricmp( type, "altitudetexture"))
{
int height;
const char *shaderName;
qhandle_t shader;
// Height must exist - the rest are optional
height = atol(items->FindPairValue("height", "0"));
// Shader for this height
shaderName = items->FindPairValue("shader", "");
if(strlen(shaderName))
{
shader = RE_RegisterShader(shaderName);
if(shader)
{
SetShaders(height, shader);
}
}
}
else if(!stricmp(type, "water"))
{
mWaterShader = R_GetShaderByHandle(RE_RegisterShader(items->FindPairValue("shader", "")));
}
else if(!stricmp(type, "flattexture"))
{
mFlatShader = RE_RegisterShader ( items->FindPairValue("shader", "") );
}
items = (CGPGroup *)items->GetNext();
}
classes = (CGPGroup *)classes->GetNext();
}
Com_ParseTextFileDestroy(parse);
#endif // PRE_RELEASE_DEMO
}
qhandle_t CTRLandScape::GetBlendedShader(qhandle_t a, qhandle_t b, qhandle_t c, bool surfaceSprites)
{
qhandle_t blended;
// Special case single pass shader
if((a == b) && (a == c))
{
return(a);
}
blended = R_CreateBlendedShader(a, b, c, surfaceSprites );
return(blended);
}
static int ComparePatchInfo(const TPatchInfo *arg1, const TPatchInfo *arg2)
{
shader_t *s1, *s2;
if ((arg1->mPart & PI_TOP))
{
s1 = arg1->mPatch->GetTLShader();
}
else
{
s1 = arg1->mPatch->GetBRShader();
}
if ((arg2->mPart & PI_TOP))
{
s2 = arg2->mPatch->GetTLShader();
}
else
{
s2 = arg2->mPatch->GetBRShader();
}
if (s1 < s2)
{
return -1;
}
else if (s1 > s2)
{
return 1;
}
return 0;
}
void CTRLandScape::CalculateShaders(void)
{
#ifndef PRE_RELEASE_DEMO
int x, y;
int width, height;
int offset;
// int offsets[4];
qhandle_t handles[4];
CTRPatch *patch;
qhandle_t *shaders;
TPatchInfo *current = mSortedPatches;
width = GetWidth ( ) / common->GetTerxels ( );
height = GetHeight ( ) / common->GetTerxels ( );
shaders = new qhandle_t [ (width+1) * (height+1) ];
// On the first pass determine all of the shaders for the entire
// terrain assuming no flat ground
offset = 0;
for ( y = 0; y < height + 1; y ++ )
{
if ( y <= height )
{
offset = common->GetTerxels ( ) * y * GetRealWidth ( );
}
else
{
offset = common->GetTerxels ( ) * (y-1) * GetRealWidth ( );
offset += GetRealWidth ( );
}
for ( x = 0; x < width + 1; x ++, offset += common->GetTerxels ( ) )
{
// Save the shader
shaders[y * width + x] = GetHeightDetail(mRenderMap[offset].height)->GetShader ( );
}
}
// On the second pass determine flat ground and replace the shader
// at that point with the flat ground shader
if ( mFlatShader )
{
for ( y = 1; y < height; y ++ )
{
for ( x = 1; x < width; x ++ )
{
int offset;
int xx;
int yy;
byte* flattenMap = common->GetFlattenMap ( );
bool flat = false;
offset = (x) * common->GetTerxels ( );
offset += (y) * common->GetTerxels ( ) * GetRealWidth();
offset -= GetRealWidth();
offset -= 1;
for ( yy = 0; yy < 3 && !flat; yy++ )
{
for ( xx = 0; xx < 3 && !flat; xx++ )
{
if ( flattenMap [ offset + xx] & 0x80)
{
flat = true;
break;
}
}
offset += GetRealWidth();
}
/*
// Calculate the height map offset
offset = x * common->GetTerxels ( );
offset += (y * common->GetTerxels ( ) * GetRealWidth());
// Calculate the offsets around this particular shader location
offsets[INDEX_TL] = offset - 1 - GetRealWidth();
offsets[INDEX_TR] = offsets[INDEX_TL] + 1;
offsets[INDEX_BL] = offsets[INDEX_TL] + GetRealWidth();
offsets[INDEX_BR] = offsets[INDEX_BL] + 1;
// If not equal to the top left one then skip
if ( mRenderMap[offset].height != mRenderMap[offsets[INDEX_TL]].height )
{
continue;
}
// If not equal to the top right one then skip
if ( mRenderMap[offset].height != mRenderMap[offsets[INDEX_TR]].height )
{
continue;
}
// If not equal to the bottom left one then skip
if ( mRenderMap[offset].height != mRenderMap[offsets[INDEX_BL]].height )
{
continue;
}
// If not equal to the bottom right one then skip
if ( mRenderMap[offset].height != mRenderMap[offsets[INDEX_BR]].height )
{
continue;
}
*/
// This shader is now a flat shader
if ( flat )
{
shaders[y * width + x] = mFlatShader;
}
#ifdef _DEBUG
OutputDebugString ( va("Flat Area: %f %f\n",
GetMins()[0] + (GetMaxs()[0]-GetMins()[0])/width * x,
GetMins()[1] + (GetMaxs()[1]-GetMins()[1])/height * y) );
#endif
}
}
}
// Now that the shaders have been determined, set them for each patch
patch = mTRPatches;
mSortedCount = 0;
for ( y = 0; y < height; y ++ )
{
for ( x = 0; x < width; x ++, patch++ )
{
bool surfaceSprites = true;
handles[INDEX_TL] = shaders[ x + y * width ];
handles[INDEX_TR] = shaders[ x + 1 + y * width ];
handles[INDEX_BL] = shaders[ x + (y + 1) * width ];
handles[INDEX_BR] = shaders[ x + 1 + (y + 1) * width ];
if ( handles[INDEX_TL] == mFlatShader ||
handles[INDEX_TR] == mFlatShader ||
handles[INDEX_BL] == mFlatShader ||
handles[INDEX_BR] == mFlatShader )
{
surfaceSprites = false;
}
patch->SetTLShader(GetBlendedShader(handles[INDEX_TR], handles[INDEX_BL], handles[INDEX_TL], surfaceSprites));
current->mPatch = patch;
current->mShader = patch->GetTLShader();
current->mPart = PI_TOP;
patch->SetBRShader(GetBlendedShader(handles[INDEX_TR], handles[INDEX_BL], handles[INDEX_BR], surfaceSprites));
if (patch->GetBRShader() == current->mShader)
{
current->mPart |= PI_BOTTOM;
}
else
{
mSortedCount++;
current++;
current->mPatch = patch;
current->mShader = patch->GetBRShader();
current->mPart = PI_BOTTOM;
}
mSortedCount++;
current++;
}
}
// Cleanup our temporary array
delete[] shaders;
qsort(mSortedPatches, mSortedCount, sizeof(*mSortedPatches), (int (__cdecl *)(const void *,const void *))ComparePatchInfo);
#endif // PRE_RELEASE_DEMO
}
void CTRPatch::SetRenderMap(const int x, const int y)
{
mRenderMap = localowner->GetRenderMap(x, y);
}
void InitRendererPatches( CCMPatch *patch, void *userdata )
{
int tx, ty, bx, by;
CTRPatch *localpatch;
CCMLandScape *owner;
CTRLandScape *localowner;
// Set owning landscape
localowner = (CTRLandScape *)userdata;
owner = (CCMLandScape *)localowner->GetCommon();
// Get TRPatch pointer
tx = patch->GetHeightMapX();
ty = patch->GetHeightMapY();
bx = tx / owner->GetTerxels();
by = ty / owner->GetTerxels();
localpatch = localowner->GetPatch(bx, by);
localpatch->Clear();
localpatch->SetCommon(patch);
localpatch->SetOwner(owner);
localpatch->SetLocalOwner(localowner);
localpatch->SetRenderMap(tx, ty);
localpatch->SetCenter();
// localpatch->CalcNormal();
}
void CTRLandScape::CopyHeightMap(void)
{
const CCMLandScape *common = GetCommon();
const byte *heightMap = common->GetHeightMap();
CTerVert *renderMap = mRenderMap;
int i;
for(i = 0; i < common->GetRealArea(); i++)
{
renderMap->height = *heightMap;
renderMap++;
heightMap++;
}
}
CTRLandScape::~CTRLandScape(void)
{
if(mTRPatches)
{
Z_Free(mTRPatches);
mTRPatches = NULL;
}
if (mSortedPatches)
{
Z_Free(mSortedPatches);
mSortedPatches = 0;
}
if(mRenderMap)
{
Z_Free(mRenderMap);
mRenderMap = NULL;
}
}
extern CCMLandScape *CM_RegisterTerrain(const char *config, bool server); //cm_load.cpp
CTRLandScape::CTRLandScape(const char *configstring)
{
#ifndef PRE_RELEASE_DEMO
int shaderNum;
const CCMLandScape *common;
memset(this, 0, sizeof(*this));
// Sets up the common aspects of the terrain
common = CM_RegisterTerrain(configstring, false);
SetCommon(common);
tr.landScape.landscape = this;
mTextureScale = (float)atof(Info_ValueForKey(configstring, "texturescale")) / common->GetTerxels();
LoadTerrainDef(Info_ValueForKey(configstring, "terrainDef"));
// To normalise the variance value to a reasonable number
mScalarSize = VectorLengthSquared(common->GetSize());
// Calculate and set variance depth
mMaxNode = (Q_log2(common->GetTerxels()) << 1) - 1;
// Allocate space for the renderer specific data
mRenderMap = (CTerVert *)Z_Malloc(sizeof(CTerVert) * common->GetRealArea(), TAG_R_TERRAIN);
// Copy byte heightmap to rendermap to speed up calcs
CopyHeightMap();
// Calculate the real world location for each heightmap entry
CalculateRealCoords();
// Calculate the normal of each terxel
CalculateNormals();
// Calculate modulation values for the heightmap
CalculateLighting();
// Calculate texture coords (not projected - real)
CalculateTextureCoords();
Com_Printf ("R_Terrain: Creating renderer patches.....\n");
// Initialise all terrain patches
mTRPatches = (CTRPatch *)Z_Malloc(sizeof(CTRPatch) * common->GetBlockCount(), TAG_R_TERRAIN);
mSortedCount = 2 * common->GetBlockCount();
mSortedPatches = (TPatchInfo *)Z_Malloc(sizeof(TPatchInfo) * mSortedCount, TAG_R_TERRAIN);
CM_TerrainPatchIterate(common, InitRendererPatches, this);
// Calculate shaders dependent on the .terrain file
CalculateShaders();
// Get the contents shader
shaderNum = atol(Info_ValueForKey(configstring, "shader"));;
mShader = R_GetShaderByHandle(R_GetShaderByNum(shaderNum, *tr.world));
mPatchSize = VectorLength(common->GetPatchSize());
#if _DEBUG
mCycleCount = 0;
#endif
#endif // PRE_RELEASE_DEMO
}
// ---------------------------------------------------------------------
void RB_SurfaceTerrain( surfaceInfo_t *surf )
{
/*
if(backEnd.refdef.rdflags & RDF_PROJECTION2D)
{
return;
}
*/
srfTerrain_t *ls = (srfTerrain_t *)surf;
CTRLandScape *landscape = ls->landscape;
TerrainFog = tr.world->globalFog;
landscape->CalculateRegion();
landscape->Reset();
// landscape->Tessellate();
landscape->Render();
}
void R_CalcTerrainVisBounds(CTRLandScape *landscape)
{
const CCMLandScape *common = landscape->GetCommon();
// Set up the visbounds using terrain data
if ( common->GetMins()[0] < tr.viewParms.visBounds[0][0] )
{
tr.viewParms.visBounds[0][0] = common->GetMins()[0];
}
if ( common->GetMins()[1] < tr.viewParms.visBounds[0][1] )
{
tr.viewParms.visBounds[0][1] = common->GetMins()[1];
}
if ( common->GetMins()[2] < tr.viewParms.visBounds[0][2] )
{
tr.viewParms.visBounds[0][2] = common->GetMins()[2];
}
if ( common->GetMaxs()[0] > tr.viewParms.visBounds[1][0] )
{
tr.viewParms.visBounds[1][0] = common->GetMaxs()[0];
}
if ( common->GetMaxs()[1] > tr.viewParms.visBounds[1][1] )
{
tr.viewParms.visBounds[1][1] = common->GetMaxs()[1];
}
if ( common->GetMaxs()[2] > tr.viewParms.visBounds[1][2] )
{
tr.viewParms.visBounds[1][2] = common->GetMaxs()[2];
}
}
void R_AddTerrainSurfaces(void)
{
CTRLandScape *landscape;
if (!r_drawTerrain->integer || (tr.refdef.rdflags & RDF_NOWORLDMODEL))
{
return;
}
landscape = tr.landScape.landscape;
if(landscape)
{
R_AddDrawSurf( (surfaceType_t *)(&tr.landScape), landscape->GetShader(), 0, qfalse );
R_CalcTerrainVisBounds(landscape);
}
}
void RE_InitRendererTerrain( const char *info )
{
CTRLandScape *ls;
if ( !info || !info[0] )
{
Com_Printf( "RE_RegisterTerrain: NULL name\n" );
return;
}
Com_Printf("R_Terrain: Creating RENDERER data.....\n");
// Create and register a new landscape structure
ls = new CTRLandScape(info);
}
void R_TerrainInit(void)
{
tr.landScape.surfaceType = SF_TERRAIN;
tr.landScape.landscape = NULL;
r_terrainTessellate = Cvar_Get("r_terrainTessellate", "3", CVAR_CHEAT);
r_drawTerrain = Cvar_Get("r_drawTerrain", "1", CVAR_CHEAT);
r_showFrameVariance = Cvar_Get("r_showFrameVariance", "0", 0);
r_terrainWaterOffset = Cvar_Get("r_terrainWaterOffset", "0", 0);
tr.distanceCull = 6000;
tr.distanceCullSquared = tr.distanceCull * tr.distanceCull;
}
extern void CM_ShutdownTerrain( thandle_t terrainId ); //cm_load.cpp
void R_TerrainShutdown(void)
{
CTRLandScape *ls;
// Com_Printf("R_Terrain: Shutting down RENDERER terrain.....\n");
ls = tr.landScape.landscape;
if(ls)
{
CM_ShutdownTerrain(0);
delete ls;
tr.landScape.landscape = NULL;
}
}
// end