mirror of
https://github.com/ioquake/ioq3.git
synced 2024-11-13 00:24:10 +00:00
429 lines
12 KiB
GLSL
429 lines
12 KiB
GLSL
uniform sampler2D u_DiffuseMap;
|
|
|
|
#if defined(USE_LIGHTMAP)
|
|
uniform sampler2D u_LightMap;
|
|
#endif
|
|
|
|
#if defined(USE_NORMALMAP)
|
|
uniform sampler2D u_NormalMap;
|
|
#endif
|
|
|
|
#if defined(USE_DELUXEMAP)
|
|
uniform sampler2D u_DeluxeMap;
|
|
#endif
|
|
|
|
#if defined(USE_SPECULARMAP)
|
|
uniform sampler2D u_SpecularMap;
|
|
#endif
|
|
|
|
#if defined(USE_SHADOWMAP)
|
|
uniform sampler2D u_ShadowMap;
|
|
#endif
|
|
|
|
uniform vec3 u_ViewOrigin;
|
|
|
|
#if defined(USE_TCGEN)
|
|
uniform int u_TCGen0;
|
|
#endif
|
|
|
|
#if defined(USE_LIGHT_VECTOR)
|
|
uniform vec4 u_LightOrigin;
|
|
uniform vec3 u_DirectedLight;
|
|
uniform vec3 u_AmbientLight;
|
|
uniform float u_LightRadius;
|
|
#endif
|
|
|
|
#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
|
|
uniform vec3 u_PrimaryLightColor;
|
|
uniform vec3 u_PrimaryLightAmbient;
|
|
uniform float u_PrimaryLightRadius;
|
|
#endif
|
|
|
|
|
|
#if defined(USE_LIGHT)
|
|
uniform vec2 u_MaterialInfo;
|
|
#endif
|
|
|
|
varying vec2 var_DiffuseTex;
|
|
#if defined(USE_LIGHTMAP)
|
|
varying vec2 var_LightTex;
|
|
#endif
|
|
varying vec4 var_Color;
|
|
|
|
#if defined(USE_NORMALMAP) && !defined(USE_VERT_TANGENT_SPACE)
|
|
varying vec3 var_Position;
|
|
#endif
|
|
|
|
#if defined(USE_TCGEN) || defined(USE_NORMALMAP) || (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT))
|
|
varying vec3 var_SampleToView;
|
|
#endif
|
|
|
|
#if !defined(USE_FAST_LIGHT)
|
|
varying vec3 var_Normal;
|
|
#endif
|
|
|
|
#if defined(USE_VERT_TANGENT_SPACE)
|
|
varying vec3 var_Tangent;
|
|
varying vec3 var_Bitangent;
|
|
#endif
|
|
|
|
varying vec3 var_VertLight;
|
|
|
|
#if defined(USE_LIGHT) && !defined(USE_DELUXEMAP)
|
|
varying vec3 var_LightDirection;
|
|
#endif
|
|
|
|
#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
|
|
varying vec3 var_PrimaryLightDirection;
|
|
#endif
|
|
|
|
|
|
#define EPSILON 0.00000001
|
|
|
|
#if defined(USE_PARALLAXMAP)
|
|
float SampleHeight(sampler2D normalMap, vec2 t)
|
|
{
|
|
#if defined(SWIZZLE_NORMALMAP)
|
|
return texture2D(normalMap, t).r;
|
|
#else
|
|
return texture2D(normalMap, t).a;
|
|
#endif
|
|
}
|
|
|
|
float RayIntersectDisplaceMap(vec2 dp, vec2 ds, sampler2D normalMap)
|
|
{
|
|
const int linearSearchSteps = 16;
|
|
const int binarySearchSteps = 6;
|
|
|
|
float depthStep = 1.0 / float(linearSearchSteps);
|
|
|
|
// current size of search window
|
|
float size = depthStep;
|
|
|
|
// current depth position
|
|
float depth = 0.0;
|
|
|
|
// best match found (starts with last position 1.0)
|
|
float bestDepth = 1.0;
|
|
|
|
// search front to back for first point inside object
|
|
for(int i = 0; i < linearSearchSteps - 1; ++i)
|
|
{
|
|
depth += size;
|
|
|
|
float t = 1.0 - SampleHeight(normalMap, dp + ds * depth);
|
|
|
|
if(bestDepth > 0.996) // if no depth found yet
|
|
if(depth >= t)
|
|
bestDepth = depth; // store best depth
|
|
}
|
|
|
|
depth = bestDepth;
|
|
|
|
// recurse around first point (depth) for closest match
|
|
for(int i = 0; i < binarySearchSteps; ++i)
|
|
{
|
|
size *= 0.5;
|
|
|
|
float t = 1.0 - SampleHeight(normalMap, dp + ds * depth);
|
|
|
|
if(depth >= t)
|
|
{
|
|
bestDepth = depth;
|
|
depth -= 2.0 * size;
|
|
}
|
|
|
|
depth += size;
|
|
}
|
|
|
|
return bestDepth;
|
|
}
|
|
#endif
|
|
|
|
vec3 CalcDiffuse(vec3 diffuseAlbedo, vec3 N, vec3 L, vec3 E, float NE, float NL, float shininess)
|
|
{
|
|
#if defined(USE_OREN_NAYAR) || defined(USE_TRIACE_OREN_NAYAR)
|
|
float gamma = dot(E, L) - NE * NL;
|
|
float B = 2.22222 + 0.1 * shininess;
|
|
|
|
#if defined(USE_OREN_NAYAR)
|
|
float A = 1.0 - 1.0 / (2.0 + 0.33 * shininess);
|
|
gamma = clamp(gamma, 0.0, 1.0);
|
|
#endif
|
|
|
|
#if defined(USE_TRIACE_OREN_NAYAR)
|
|
float A = 1.0 - 1.0 / (2.0 + 0.65 * shininess);
|
|
|
|
if (gamma >= 0.0)
|
|
#endif
|
|
{
|
|
B *= max(max(NL, NE), EPSILON);
|
|
}
|
|
|
|
return diffuseAlbedo * (A + gamma / B);
|
|
#else
|
|
return diffuseAlbedo;
|
|
#endif
|
|
}
|
|
|
|
#if defined(USE_SPECULARMAP)
|
|
vec3 CalcSpecular(vec3 specularReflectance, float NH, float NL, float NE, float EH, float shininess)
|
|
{
|
|
#if defined(USE_BLINN) || defined(USE_TRIACE) || defined(USE_TORRANCE_SPARROW)
|
|
float blinn = pow(NH, shininess);
|
|
#endif
|
|
|
|
#if defined(USE_BLINN)
|
|
return specularReflectance * blinn;
|
|
#endif
|
|
|
|
#if defined(USE_COOK_TORRANCE) || defined (USE_TRIACE) || defined (USE_TORRANCE_SPARROW)
|
|
vec3 fresnel = specularReflectance + (vec3(1.0) - specularReflectance) * pow(1.0 - EH, 5);
|
|
#endif
|
|
|
|
#if defined(USE_COOK_TORRANCE) || defined(USE_TORRANCE_SPARROW)
|
|
float geo = 2.0 * NH * min(NE, NL);
|
|
geo /= max(EH, geo);
|
|
#endif
|
|
|
|
#if defined(USE_COOK_TORRANCE)
|
|
float m_sq = 2.0 / max(shininess, EPSILON);
|
|
float NH_sq = NH * NH;
|
|
float m_NH_sq = m_sq * NH_sq;
|
|
float beckmann = exp((NH_sq - 1.0) / max(m_NH_sq, EPSILON)) / max(4.0 * m_NH_sq * NH_sq, EPSILON);
|
|
|
|
return fresnel * geo * beckmann / max(NE, EPSILON);
|
|
#endif
|
|
|
|
#if defined(USE_TRIACE)
|
|
float scale = 0.1248582 * shininess + 0.2691817;
|
|
|
|
return fresnel * scale * blinn / max(max(NL, NE), EPSILON);
|
|
#endif
|
|
|
|
#if defined(USE_TORRANCE_SPARROW)
|
|
float scale = 0.125 * shininess + 1.0;
|
|
|
|
return fresnel * geo * scale * blinn / max(NE, EPSILON);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
void main()
|
|
{
|
|
#if !defined(USE_FAST_LIGHT) && (defined(USE_LIGHT) || defined(USE_NORMALMAP))
|
|
vec3 surfN = normalize(var_Normal);
|
|
#endif
|
|
|
|
#if defined(USE_DELUXEMAP)
|
|
vec3 L = 2.0 * texture2D(u_DeluxeMap, var_LightTex).xyz - vec3(1.0);
|
|
//L += var_LightDirection * 0.0001;
|
|
#elif defined(USE_LIGHT)
|
|
vec3 L = var_LightDirection;
|
|
#endif
|
|
|
|
#if defined(USE_LIGHTMAP)
|
|
vec4 lightSample = texture2D(u_LightMap, var_LightTex).rgba;
|
|
#if defined(RGBE_LIGHTMAP)
|
|
lightSample.rgb *= exp2(lightSample.a * 255.0 - 128.0);
|
|
#endif
|
|
vec3 lightColor = lightSample.rgb;
|
|
#elif defined(USE_LIGHT_VECTOR) && !defined(USE_FAST_LIGHT)
|
|
#if defined(USE_INVSQRLIGHT)
|
|
float intensity = 1.0 / dot(L, L);
|
|
#else
|
|
float intensity = clamp((1.0 - dot(L, L) / (u_LightRadius * u_LightRadius)) * 1.07, 0.0, 1.0);
|
|
#endif
|
|
|
|
vec3 lightColor = u_DirectedLight * intensity;
|
|
vec3 ambientColor = u_AmbientLight;
|
|
#elif defined(USE_LIGHT_VERTEX) && !defined(USE_FAST_LIGHT)
|
|
vec3 lightColor = var_VertLight;
|
|
#endif
|
|
|
|
#if defined(USE_TCGEN) || defined(USE_NORMALMAP) || (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT))
|
|
vec3 E = normalize(var_SampleToView);
|
|
#endif
|
|
vec2 texCoords = var_DiffuseTex;
|
|
|
|
float ambientDiff = 1.0;
|
|
|
|
#if defined(USE_NORMALMAP)
|
|
#if defined(USE_VERT_TANGENT_SPACE)
|
|
mat3 tangentToWorld = mat3(var_Tangent, var_Bitangent, var_Normal);
|
|
#else
|
|
vec3 q0 = dFdx(var_Position);
|
|
vec3 q1 = dFdy(var_Position);
|
|
vec2 st0 = dFdx(texCoords);
|
|
vec2 st1 = dFdy(texCoords);
|
|
float dir = sign(st1.t * st0.s - st0.t * st1.s);
|
|
|
|
vec3 tangent = normalize(q0 * st1.t - q1 * st0.t) * dir;
|
|
vec3 bitangent = -normalize(q0 * st1.s - q1 * st0.s) * dir;
|
|
|
|
mat3 tangentToWorld = mat3(tangent, bitangent, var_Normal);
|
|
#endif
|
|
|
|
#if defined(USE_PARALLAXMAP)
|
|
vec3 offsetDir = normalize(E * tangentToWorld);
|
|
offsetDir.xy *= -0.05 / offsetDir.z;
|
|
|
|
texCoords += offsetDir.xy * RayIntersectDisplaceMap(texCoords, offsetDir.xy, u_NormalMap);
|
|
#endif
|
|
vec3 texN;
|
|
#if defined(SWIZZLE_NORMALMAP)
|
|
texN.xy = 2.0 * texture2D(u_NormalMap, texCoords).ag - 1.0;
|
|
#else
|
|
texN.xy = 2.0 * texture2D(u_NormalMap, texCoords).rg - 1.0;
|
|
#endif
|
|
texN.z = sqrt(clamp(1.0 - dot(texN.xy, texN.xy), 0.0, 1.0));
|
|
vec3 N = tangentToWorld * texN;
|
|
#if defined(r_normalAmbient)
|
|
ambientDiff = 0.781341 * texN.z + 0.218659;
|
|
#endif
|
|
#elif defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
|
|
vec3 N = surfN;
|
|
#endif
|
|
|
|
#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) || (defined(USE_TCGEN) && defined(USE_NORMALMAP))
|
|
N = normalize(N);
|
|
#endif
|
|
|
|
#if defined(USE_TCGEN) && defined(USE_NORMALMAP)
|
|
if (u_TCGen0 == TCGEN_ENVIRONMENT_MAPPED)
|
|
{
|
|
texCoords = -reflect(E, N).yz * vec2(0.5, -0.5) + 0.5;
|
|
}
|
|
#endif
|
|
|
|
vec4 diffuseAlbedo = texture2D(u_DiffuseMap, texCoords);
|
|
#if defined(USE_LIGHT) && defined(USE_GAMMA2_TEXTURES)
|
|
diffuseAlbedo.rgb *= diffuseAlbedo.rgb;
|
|
#endif
|
|
|
|
#if defined(USE_LIGHT) && defined(USE_FAST_LIGHT)
|
|
gl_FragColor = diffuse.rgb;
|
|
#if defined(USE_LIGHTMAP)
|
|
gl_FragColor *= lightColor;
|
|
#endif
|
|
#elif defined(USE_LIGHT)
|
|
L = normalize(L);
|
|
|
|
float surfNL = clamp(dot(surfN, L), 0.0, 1.0);
|
|
|
|
#if defined(USE_SHADOWMAP)
|
|
vec2 shadowTex = gl_FragCoord.xy * r_FBufScale;
|
|
float shadowValue = texture2D(u_ShadowMap, shadowTex).r;
|
|
|
|
// surfaces not facing the light are always shadowed
|
|
shadowValue *= step(0.0, dot(surfN, var_PrimaryLightDirection));
|
|
|
|
#if defined(SHADOWMAP_MODULATE)
|
|
//vec3 shadowColor = min(u_PrimaryLightAmbient, lightColor);
|
|
vec3 shadowColor = u_PrimaryLightAmbient * lightColor;
|
|
|
|
#if 0
|
|
// Only shadow when the world light is parallel to the primary light
|
|
shadowValue = 1.0 + (shadowValue - 1.0) * clamp(dot(L, var_PrimaryLightDirection), 0.0, 1.0);
|
|
#endif
|
|
lightColor = mix(shadowColor, lightColor, shadowValue);
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(USE_LIGHTMAP) || defined(USE_LIGHT_VERTEX)
|
|
#if defined(USE_STANDARD_DELUXEMAP)
|
|
// Standard deluxe mapping treats the light sample as fully directed
|
|
// and doesn't compensate for light angle attenuation.
|
|
vec3 ambientColor = vec3(0.0);
|
|
#else
|
|
// Separate the light sample into directed and ambient parts.
|
|
//
|
|
// ambientMax - if the cosine of the angle between the surface
|
|
// normal and the light is below this value, the light
|
|
// is fully ambient.
|
|
// directedMax - if the cosine of the angle between the surface
|
|
// normal and the light is above this value, the light
|
|
// is fully directed.
|
|
const float ambientMax = 0.25;
|
|
const float directedMax = 0.5;
|
|
|
|
float directedScale = clamp((surfNL - ambientMax) / (directedMax - ambientMax), 0.0, 1.0);
|
|
|
|
// Scale the directed portion to compensate for the baked-in
|
|
// light angle attenuation.
|
|
directedScale /= max(surfNL, ambientMax);
|
|
|
|
#if defined(r_normalAmbient)
|
|
directedScale *= 1.0 - r_normalAmbient;
|
|
#endif
|
|
|
|
// Recover any unused light as ambient
|
|
vec3 ambientColor = lightColor;
|
|
lightColor *= directedScale;
|
|
ambientColor -= lightColor * surfNL;
|
|
#endif
|
|
#endif
|
|
|
|
float NL = clamp(dot(N, L), 0.0, 1.0);
|
|
float NE = clamp(dot(N, E), 0.0, 1.0);
|
|
|
|
float maxReflectance = u_MaterialInfo.x;
|
|
float shininess = u_MaterialInfo.y;
|
|
|
|
#if defined(USE_SPECULARMAP)
|
|
vec4 specularReflectance = texture2D(u_SpecularMap, texCoords);
|
|
specularReflectance.rgb *= maxReflectance;
|
|
shininess *= specularReflectance.a;
|
|
// adjust diffuse by specular reflectance, to maintain energy conservation
|
|
diffuseAlbedo.rgb *= vec3(1.0) - specularReflectance.rgb;
|
|
#endif
|
|
|
|
gl_FragColor.rgb = lightColor * NL * CalcDiffuse(diffuseAlbedo.rgb, N, L, E, NE, NL, shininess);
|
|
gl_FragColor.rgb += ambientDiff * ambientColor * diffuseAlbedo.rgb;
|
|
#if defined(USE_PRIMARY_LIGHT)
|
|
vec3 L2 = var_PrimaryLightDirection;
|
|
float NL2 = clamp(dot(N, L2), 0.0, 1.0);
|
|
|
|
#if defined(USE_SHADOWMAP)
|
|
gl_FragColor.rgb += u_PrimaryLightColor * shadowValue * NL2 * CalcDiffuse(diffuseAlbedo.rgb, N, L2, E, NE, NL2, shininess);
|
|
#else
|
|
gl_FragColor.rgb += u_PrimaryLightColor * NL2 * CalcDiffuse(diffuseAlbedo.rgb, N, L2, E, NE, NL2, shininess);
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(USE_SPECULARMAP)
|
|
vec3 H = normalize(L + E);
|
|
|
|
float EH = clamp(dot(E, H), 0.0, 1.0);
|
|
float NH = clamp(dot(N, H), 0.0, 1.0);
|
|
|
|
gl_FragColor.rgb += lightColor * NL * CalcSpecular(specularReflectance.rgb, NH, NL, NE, EH, shininess);
|
|
|
|
#if defined(r_normalAmbient)
|
|
vec3 ambientHalf = normalize(surfN + E);
|
|
float ambientSpec = max(dot(ambientHalf, N) + 0.5, 0.0);
|
|
ambientSpec *= ambientSpec * 0.44;
|
|
gl_FragColor.rgb += specularReflectance.rgb * ambientSpec * ambientColor;
|
|
#endif
|
|
|
|
#if defined(USE_PRIMARY_LIGHT)
|
|
vec3 H2 = normalize(L2 + E);
|
|
float EH2 = clamp(dot(E, H2), 0.0, 1.0);
|
|
float NH2 = clamp(dot(N, H2), 0.0, 1.0);
|
|
|
|
|
|
#if defined(USE_SHADOWMAP)
|
|
gl_FragColor.rgb += u_PrimaryLightColor * shadowValue * NL2 * CalcSpecular(specularReflectance.rgb, NH2, NL2, NE, EH2, shininess);
|
|
#else
|
|
gl_FragColor.rgb += u_PrimaryLightColor * NL2 * CalcSpecular(specularReflectance.rgb, NH2, NL2, NE, EH2, shininess);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#else
|
|
gl_FragColor.rgb = diffuseAlbedo.rgb;
|
|
#endif
|
|
|
|
gl_FragColor.a = diffuseAlbedo.a;
|
|
|
|
gl_FragColor *= var_Color;
|
|
}
|