* Applied Thilo Schulz's MDR patch

This commit is contained in:
Tim Angus 2005-09-23 17:08:25 +00:00
parent 2b8395a4d0
commit 4c6f59c541
9 changed files with 1149 additions and 74 deletions

View file

@ -299,6 +299,130 @@ typedef struct {
int ofsEnd; // end of file
} md4Header_t;
/*
* Here are the definitions for Ravensoft's model format of md4. Raven stores their
* playermodels in .mdr files, in some games, which are pretty much like the md4
* format implemented by ID soft. It seems like ID's original md4 stuff is not used at all.
* MDR is being used in EliteForce, JediKnight2 and Soldiers of Fortune2 (I think).
* So this comes in handy for anyone who wants to make it possible to load player
* models from these games.
* This format has bone tags, which is similar to the thing you have in md3 I suppose.
* Raven has released their version of md3view under GPL enabling me to add support
* to this codebase. Thanks to Steven Howes aka Skinner for helping with example
* source code.
*
* - Thilo Schulz (arny@ats.s.bawue.de)
*/
// If you want to enable support for Raven's .mdr / md4 format, uncomment the next
// line.
//#define RAVENMD4
#ifdef RAVENMD4
#define MDR_IDENT (('5'<<24)+('M'<<16)+('D'<<8)+'R')
#define MDR_VERSION 2
#define MDR_MAX_BONES 128
typedef struct {
int boneIndex; // these are indexes into the boneReferences,
float boneWeight; // not the global per-frame bone list
vec3_t offset;
} mdrWeight_t;
typedef struct {
vec3_t normal;
vec2_t texCoords;
int numWeights;
mdrWeight_t weights[1]; // variable sized
} mdrVertex_t;
typedef struct {
int indexes[3];
} mdrTriangle_t;
typedef struct {
int ident;
char name[MAX_QPATH]; // polyset name
char shader[MAX_QPATH];
int shaderIndex; // for in-game use
int ofsHeader; // this will be a negative number
int numVerts;
int ofsVerts;
int numTriangles;
int ofsTriangles;
// Bone references are a set of ints representing all the bones
// present in any vertex weights for this surface. This is
// needed because a model may have surfaces that need to be
// drawn at different sort times, and we don't want to have
// to re-interpolate all the bones for each surface.
int numBoneReferences;
int ofsBoneReferences;
int ofsEnd; // next surface follows
} mdrSurface_t;
typedef struct {
float matrix[3][4];
} mdrBone_t;
typedef struct {
vec3_t bounds[2]; // bounds of all surfaces of all LOD's for this frame
vec3_t localOrigin; // midpoint of bounds, used for sphere cull
float radius; // dist from localOrigin to corner
char name[16];
mdrBone_t bones[1]; // [numBones]
} mdrFrame_t;
typedef struct {
unsigned char Comp[24]; // MC_COMP_BYTES is in MatComp.h, but don't want to couple
} mdrCompBone_t;
typedef struct {
vec3_t bounds[2]; // bounds of all surfaces of all LOD's for this frame
vec3_t localOrigin; // midpoint of bounds, used for sphere cull
float radius; // dist from localOrigin to corner
mdrCompBone_t bones[1]; // [numBones]
} mdrCompFrame_t;
typedef struct {
int numSurfaces;
int ofsSurfaces; // first surface, others follow
int ofsEnd; // next lod follows
} mdrLOD_t;
typedef struct {
int boneIndex;
char name[32];
} mdrTag_t;
typedef struct {
int ident;
int version;
char name[MAX_QPATH]; // model name
// frames and bones are shared by all levels of detail
int numFrames;
int numBones;
int ofsFrames; // mdrFrame_t[numFrames]
// each level of detail has completely separate sets of surfaces
int numLODs;
int ofsLODs;
int numTags;
int ofsTags;
int ofsEnd; // end of file
} mdrHeader_t;
#endif
/*
==============================================================================

View file

@ -45,7 +45,7 @@ void R_AddAnimSurfaces( trRefEntity_t *ent ) {
shader_t *shader;
int i;
header = tr.currentModel->md4;
header = (md4Header_t *) tr.currentModel->md4;
lod = (md4LOD_t *)( (byte *)header + header->ofsLODs );
surface = (md4Surface_t *)( (byte *)lod + lod->ofsSurfaces );
@ -56,7 +56,6 @@ void R_AddAnimSurfaces( trRefEntity_t *ent ) {
}
}
/*
==============
RB_SurfaceAnim
@ -90,9 +89,9 @@ void RB_SurfaceAnim( md4Surface_t *surface ) {
frameSize = (size_t)( &((md4Frame_t *)0)->bones[ header->numBones ] );
frame = (md4Frame_t *)((byte *)header + header->ofsFrames +
backEnd.currentEntity->e.frame * frameSize );
backEnd.currentEntity->e.frame * frameSize );
oldFrame = (md4Frame_t *)((byte *)header + header->ofsFrames +
backEnd.currentEntity->e.oldframe * frameSize );
backEnd.currentEntity->e.oldframe * frameSize );
RB_CheckOverflow( surface->numVerts, surface->numTriangles * 3 );
@ -115,7 +114,7 @@ void RB_SurfaceAnim( md4Surface_t *surface ) {
bonePtr = bones;
for ( i = 0 ; i < header->numBones*12 ; i++ ) {
((float *)bonePtr)[i] = frontlerp * ((float *)frame->bones)[i]
+ backlerp * ((float *)oldFrame->bones)[i];
+ backlerp * ((float *)oldFrame->bones)[i];
}
}
@ -169,3 +168,491 @@ void RB_SurfaceAnim( md4Surface_t *surface ) {
}
#ifdef RAVENMD4
// copied and adapted from tr_mesh.c
/*
=============
R_MDRCullModel
=============
*/
static int R_MDRCullModel( mdrHeader_t *header, trRefEntity_t *ent ) {
vec3_t bounds[2];
mdrFrame_t *oldFrame, *newFrame;
int i, frameSize;
frameSize = (size_t)( &((mdrFrame_t *)0)->bones[ header->numBones ] );
// compute frame pointers
newFrame = ( mdrFrame_t * ) ( ( byte * ) header + header->ofsFrames + frameSize * ent->e.frame);
oldFrame = ( mdrFrame_t * ) ( ( byte * ) header + header->ofsFrames + frameSize * ent->e.oldframe);
// cull bounding sphere ONLY if this is not an upscaled entity
if ( !ent->e.nonNormalizedAxes )
{
if ( ent->e.frame == ent->e.oldframe )
{
switch ( R_CullLocalPointAndRadius( newFrame->localOrigin, newFrame->radius ) )
{
// Ummm... yeah yeah I know we don't really have an md3 here.. but we pretend
// we do. After all, the purpose of md4s are not that different, are they?
case CULL_OUT:
tr.pc.c_sphere_cull_md3_out++;
return CULL_OUT;
case CULL_IN:
tr.pc.c_sphere_cull_md3_in++;
return CULL_IN;
case CULL_CLIP:
tr.pc.c_sphere_cull_md3_clip++;
break;
}
}
else
{
int sphereCull, sphereCullB;
sphereCull = R_CullLocalPointAndRadius( newFrame->localOrigin, newFrame->radius );
if ( newFrame == oldFrame ) {
sphereCullB = sphereCull;
} else {
sphereCullB = R_CullLocalPointAndRadius( oldFrame->localOrigin, oldFrame->radius );
}
if ( sphereCull == sphereCullB )
{
if ( sphereCull == CULL_OUT )
{
tr.pc.c_sphere_cull_md3_out++;
return CULL_OUT;
}
else if ( sphereCull == CULL_IN )
{
tr.pc.c_sphere_cull_md3_in++;
return CULL_IN;
}
else
{
tr.pc.c_sphere_cull_md3_clip++;
}
}
}
}
// calculate a bounding box in the current coordinate system
for (i = 0 ; i < 3 ; i++) {
bounds[0][i] = oldFrame->bounds[0][i] < newFrame->bounds[0][i] ? oldFrame->bounds[0][i] : newFrame->bounds[0][i];
bounds[1][i] = oldFrame->bounds[1][i] > newFrame->bounds[1][i] ? oldFrame->bounds[1][i] : newFrame->bounds[1][i];
}
switch ( R_CullLocalBox( bounds ) )
{
case CULL_IN:
tr.pc.c_box_cull_md3_in++;
return CULL_IN;
case CULL_CLIP:
tr.pc.c_box_cull_md3_clip++;
return CULL_CLIP;
case CULL_OUT:
default:
tr.pc.c_box_cull_md3_out++;
return CULL_OUT;
}
}
/*
=================
R_MDRComputeFogNum
=================
*/
int R_MDRComputeFogNum( mdrHeader_t *header, trRefEntity_t *ent ) {
int i, j;
fog_t *fog;
mdrFrame_t *mdrFrame;
vec3_t localOrigin;
int frameSize;
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
return 0;
}
frameSize = (size_t)( &((mdrFrame_t *)0)->bones[ header->numBones ] );
// FIXME: non-normalized axis issues
mdrFrame = ( mdrFrame_t * ) ( ( byte * ) header + header->ofsFrames + frameSize * ent->e.frame);
VectorAdd( ent->e.origin, mdrFrame->localOrigin, localOrigin );
for ( i = 1 ; i < tr.world->numfogs ; i++ ) {
fog = &tr.world->fogs[i];
for ( j = 0 ; j < 3 ; j++ ) {
if ( localOrigin[j] - mdrFrame->radius >= fog->bounds[1][j] ) {
break;
}
if ( localOrigin[j] + mdrFrame->radius <= fog->bounds[0][j] ) {
break;
}
}
if ( j == 3 ) {
return i;
}
}
return 0;
}
/*
==============
R_MDRAddAnimSurfaces
==============
*/
// much stuff in there is just copied from R_AddMd3Surfaces in tr_mesh.c
void R_MDRAddAnimSurfaces( trRefEntity_t *ent ) {
mdrHeader_t *header;
mdrSurface_t *surface;
mdrLOD_t *lod;
shader_t *shader;
skin_t *skin;
int i, j;
int lodnum = 0;
int fogNum = 0;
int cull;
qboolean personalModel;
header = (mdrHeader_t *) tr.currentModel->md4;
personalModel = (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal;
if ( ent->e.renderfx & RF_WRAP_FRAMES )
{
ent->e.frame %= header->numFrames;
ent->e.oldframe %= header->numFrames;
}
//
// Validate the frames so there is no chance of a crash.
// This will write directly into the entity structure, so
// when the surfaces are rendered, they don't need to be
// range checked again.
//
if ((ent->e.frame >= header->numFrames)
|| (ent->e.frame < 0)
|| (ent->e.oldframe >= header->numFrames)
|| (ent->e.oldframe < 0) )
{
ri.Printf( PRINT_DEVELOPER, "R_MDRAddAnimSurfaces: no such frame %d to %d for '%s'\n",
ent->e.oldframe, ent->e.frame, tr.currentModel->name );
ent->e.frame = 0;
ent->e.oldframe = 0;
}
//
// cull the entire model if merged bounding box of both frames
// is outside the view frustum.
//
cull = R_MDRCullModel (header, ent);
if ( cull == CULL_OUT ) {
return;
}
// figure out the current LOD of the model we're rendering, and set the lod pointer respectively.
lodnum = R_ComputeLOD(ent);
// check whether this model has as that many LODs at all. If not, try the closest thing we got.
if(header->numLODs <= 0)
return;
if(header->numLODs <= lodnum)
lodnum = header->numLODs - 1;
lod = (mdrLOD_t *)( (byte *)header + header->ofsLODs);
for(i = 0; i < lodnum; i++)
{
lod = (mdrLOD_t *) ((byte *) lod + lod->ofsEnd);
}
// set up lighting
if ( !personalModel || r_shadows->integer > 1 )
{
R_SetupEntityLighting( &tr.refdef, ent );
}
// fogNum?
fogNum = R_MDRComputeFogNum( header, ent );
surface = (mdrSurface_t *)( (byte *)lod + lod->ofsSurfaces );
for ( i = 0 ; i < lod->numSurfaces ; i++ )
{
if(ent->e.customShader)
shader = R_GetShaderByHandle(ent->e.customShader);
else if(ent->e.customSkin > 0 && ent->e.customSkin < tr.numSkins)
{
skin = R_GetSkinByHandle(ent->e.customSkin);
shader = tr.defaultShader;
for(j = 0; j < skin->numSurfaces; j++)
{
if (!strcmp(skin->surfaces[j]->name, surface->name))
{
shader = skin->surfaces[j]->shader;
break;
}
}
}
else if(surface->shaderIndex > 0)
shader = R_GetShaderByHandle( surface->shaderIndex );
else
shader = tr.defaultShader;
// we will add shadows even if the main object isn't visible in the view
// stencil shadows can't do personal models unless I polyhedron clip
if ( !personalModel
&& r_shadows->integer == 2
&& fogNum == 0
&& !(ent->e.renderfx & ( RF_NOSHADOW | RF_DEPTHHACK ) )
&& shader->sort == SS_OPAQUE )
{
R_AddDrawSurf( (void *)surface, tr.shadowShader, 0, qfalse );
}
// projection shadows work fine with personal models
if ( r_shadows->integer == 3
&& fogNum == 0
&& (ent->e.renderfx & RF_SHADOW_PLANE )
&& shader->sort == SS_OPAQUE )
{
R_AddDrawSurf( (void *)surface, tr.projectionShadowShader, 0, qfalse );
}
if (!personalModel)
R_AddDrawSurf( (void *)surface, shader, fogNum, qfalse );
surface = (mdrSurface_t *)( (byte *)surface + surface->ofsEnd );
}
}
/*
==============
RB_MDRSurfaceAnim
==============
*/
void RB_MDRSurfaceAnim( md4Surface_t *surface )
{
int i, j, k;
float frontlerp, backlerp;
int *triangles;
int indexes;
int baseIndex, baseVertex;
int numVerts;
mdrVertex_t *v;
mdrHeader_t *header;
mdrFrame_t *frame;
mdrFrame_t *oldFrame;
mdrBone_t bones[MD4_MAX_BONES], *bonePtr, *bone;
int frameSize;
// don't lerp if lerping off, or this is the only frame, or the last frame...
//
if (backEnd.currentEntity->e.oldframe == backEnd.currentEntity->e.frame)
{
backlerp = 0; // if backlerp is 0, lerping is off and frontlerp is never used
frontlerp = 1;
}
else
{
backlerp = backEnd.currentEntity->e.backlerp;
frontlerp = 1.0f - backlerp;
}
header = (mdrHeader_t *)((byte *)surface + surface->ofsHeader);
frameSize = (size_t)( &((mdrFrame_t *)0)->bones[ header->numBones ] );
frame = (mdrFrame_t *)((byte *)header + header->ofsFrames +
backEnd.currentEntity->e.frame * frameSize );
oldFrame = (mdrFrame_t *)((byte *)header + header->ofsFrames +
backEnd.currentEntity->e.oldframe * frameSize );
RB_CheckOverflow( surface->numVerts, surface->numTriangles );
triangles = (int *) ((byte *)surface + surface->ofsTriangles);
indexes = surface->numTriangles * 3;
baseIndex = tess.numIndexes;
baseVertex = tess.numVertexes;
// Set up all triangles.
for (j = 0 ; j < indexes ; j++)
{
tess.indexes[baseIndex + j] = baseVertex + triangles[j];
}
tess.numIndexes += indexes;
//
// lerp all the needed bones
//
if ( !backlerp )
{
// no lerping needed
bonePtr = frame->bones;
}
else
{
bonePtr = bones;
for ( i = 0 ; i < header->numBones*12 ; i++ )
{
((float *)bonePtr)[i] = frontlerp * ((float *)frame->bones)[i] + backlerp * ((float *)oldFrame->bones)[i];
}
}
//
// deform the vertexes by the lerped bones
//
numVerts = surface->numVerts;
v = (mdrVertex_t *) ((byte *)surface + surface->ofsVerts);
for ( j = 0; j < numVerts; j++ )
{
vec3_t tempVert, tempNormal;
mdrWeight_t *w;
VectorClear( tempVert );
VectorClear( tempNormal );
w = v->weights;
for ( k = 0 ; k < v->numWeights ; k++, w++ )
{
bone = bonePtr + w->boneIndex;
tempVert[0] += w->boneWeight * ( DotProduct( bone->matrix[0], w->offset ) + bone->matrix[0][3] );
tempVert[1] += w->boneWeight * ( DotProduct( bone->matrix[1], w->offset ) + bone->matrix[1][3] );
tempVert[2] += w->boneWeight * ( DotProduct( bone->matrix[2], w->offset ) + bone->matrix[2][3] );
tempNormal[0] += w->boneWeight * DotProduct( bone->matrix[0], v->normal );
tempNormal[1] += w->boneWeight * DotProduct( bone->matrix[1], v->normal );
tempNormal[2] += w->boneWeight * DotProduct( bone->matrix[2], v->normal );
}
tess.xyz[baseVertex + j][0] = tempVert[0];
tess.xyz[baseVertex + j][1] = tempVert[1];
tess.xyz[baseVertex + j][2] = tempVert[2];
tess.normal[baseVertex + j][0] = tempNormal[0];
tess.normal[baseVertex + j][1] = tempNormal[1];
tess.normal[baseVertex + j][2] = tempNormal[2];
tess.texCoords[baseVertex + j][0][0] = v->texCoords[0];
tess.texCoords[baseVertex + j][0][1] = v->texCoords[1];
v = (mdrVertex_t *)&v->weights[v->numWeights];
}
tess.numVertexes += surface->numVerts;
}
#define MC_MASK_X ((1<<(MC_BITS_X))-1)
#define MC_MASK_Y ((1<<(MC_BITS_Y))-1)
#define MC_MASK_Z ((1<<(MC_BITS_Z))-1)
#define MC_MASK_VECT ((1<<(MC_BITS_VECT))-1)
#define MC_SCALE_VECT (1.0f/(float)((1<<(MC_BITS_VECT-1))-2))
#define MC_POS_X (0)
#define MC_SHIFT_X (0)
#define MC_POS_Y ((((MC_BITS_X))/8))
#define MC_SHIFT_Y ((((MC_BITS_X)%8)))
#define MC_POS_Z ((((MC_BITS_X+MC_BITS_Y))/8))
#define MC_SHIFT_Z ((((MC_BITS_X+MC_BITS_Y)%8)))
#define MC_POS_V11 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z))/8))
#define MC_SHIFT_V11 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z)%8)))
#define MC_POS_V12 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT))/8))
#define MC_SHIFT_V12 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT)%8)))
#define MC_POS_V13 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*2))/8))
#define MC_SHIFT_V13 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*2)%8)))
#define MC_POS_V21 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*3))/8))
#define MC_SHIFT_V21 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*3)%8)))
#define MC_POS_V22 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*4))/8))
#define MC_SHIFT_V22 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*4)%8)))
#define MC_POS_V23 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*5))/8))
#define MC_SHIFT_V23 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*5)%8)))
#define MC_POS_V31 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*6))/8))
#define MC_SHIFT_V31 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*6)%8)))
#define MC_POS_V32 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*7))/8))
#define MC_SHIFT_V32 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*7)%8)))
#define MC_POS_V33 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*8))/8))
#define MC_SHIFT_V33 ((((MC_BITS_X+MC_BITS_Y+MC_BITS_Z+MC_BITS_VECT*8)%8)))
void MC_UnCompress(float mat[3][4],const unsigned char * comp)
{
int val;
val=(int)((unsigned short *)(comp))[0];
val-=1<<(MC_BITS_X-1);
mat[0][3]=((float)(val))*MC_SCALE_X;
val=(int)((unsigned short *)(comp))[1];
val-=1<<(MC_BITS_Y-1);
mat[1][3]=((float)(val))*MC_SCALE_Y;
val=(int)((unsigned short *)(comp))[2];
val-=1<<(MC_BITS_Z-1);
mat[2][3]=((float)(val))*MC_SCALE_Z;
val=(int)((unsigned short *)(comp))[3];
val-=1<<(MC_BITS_VECT-1);
mat[0][0]=((float)(val))*MC_SCALE_VECT;
val=(int)((unsigned short *)(comp))[4];
val-=1<<(MC_BITS_VECT-1);
mat[0][1]=((float)(val))*MC_SCALE_VECT;
val=(int)((unsigned short *)(comp))[5];
val-=1<<(MC_BITS_VECT-1);
mat[0][2]=((float)(val))*MC_SCALE_VECT;
val=(int)((unsigned short *)(comp))[6];
val-=1<<(MC_BITS_VECT-1);
mat[1][0]=((float)(val))*MC_SCALE_VECT;
val=(int)((unsigned short *)(comp))[7];
val-=1<<(MC_BITS_VECT-1);
mat[1][1]=((float)(val))*MC_SCALE_VECT;
val=(int)((unsigned short *)(comp))[8];
val-=1<<(MC_BITS_VECT-1);
mat[1][2]=((float)(val))*MC_SCALE_VECT;
val=(int)((unsigned short *)(comp))[9];
val-=1<<(MC_BITS_VECT-1);
mat[2][0]=((float)(val))*MC_SCALE_VECT;
val=(int)((unsigned short *)(comp))[10];
val-=1<<(MC_BITS_VECT-1);
mat[2][1]=((float)(val))*MC_SCALE_VECT;
val=(int)((unsigned short *)(comp))[11];
val-=1<<(MC_BITS_VECT-1);
mat[2][2]=((float)(val))*MC_SCALE_VECT;
}
#endif

View file

@ -1391,10 +1391,10 @@ static void LoadJPG( const char *filename, unsigned char **pic, int *width, int
/* More stuff */
JSAMPARRAY buffer; /* Output row buffer */
unsigned row_stride; /* physical row width in output buffer */
unsigned pixelcount;
unsigned char *out, *out_converted;
unsigned pixelcount, memcount;
unsigned char *out;
byte *fbuffer;
byte *bbuf;
byte *buf;
/* In this example we want to open the input file before doing anything else,
* so that the setjmp() error recovery below can assume the file is open.
@ -1454,8 +1454,6 @@ static void LoadJPG( const char *filename, unsigned char **pic, int *width, int
/* JSAMPLEs per row in output buffer */
pixelcount = cinfo.output_width * cinfo.output_height;
row_stride = cinfo.output_width * cinfo.output_components;
if(!cinfo.output_width || !cinfo.output_height
|| ((pixelcount * 4) / cinfo.output_width) / 4 != cinfo.output_height
@ -1465,7 +1463,10 @@ static void LoadJPG( const char *filename, unsigned char **pic, int *width, int
cinfo.output_width, cinfo.output_height, pixelcount * 4, cinfo.output_components);
}
out = ri.Malloc(pixelcount * 4);
memcount = pixelcount * 4;
row_stride = cinfo.output_width * cinfo.output_components;
out = ri.Malloc(memcount);
*width = cinfo.output_width;
*height = cinfo.output_height;
@ -1481,45 +1482,42 @@ static void LoadJPG( const char *filename, unsigned char **pic, int *width, int
* Here the array is only one element long, but you could ask for
* more than one scanline at a time if that's more convenient.
*/
bbuf = ((out+(row_stride*cinfo.output_scanline)));
buffer = &bbuf;
buf = ((out+(row_stride*cinfo.output_scanline)));
buffer = &buf;
(void) jpeg_read_scanlines(&cinfo, buffer, 1);
}
buf = out;
// If we are processing an 8-bit JPEG (greyscale), we'll have to convert
// the greyscale values to RGBA.
if(cinfo.output_components == 1)
{
int sindex, dindex = 0;
int sindex = pixelcount, dindex = memcount;
unsigned char greyshade;
// allocate a new buffer for the transformed image
out_converted = ri.Malloc(pixelcount*4);
for(sindex = 0; sindex < pixelcount; sindex++)
// Only pixelcount number of bytes have been written.
// Expand the color values over the rest of the buffer, starting
// from the end.
do
{
greyshade = out[sindex];
out_converted[dindex++] = greyshade;
out_converted[dindex++] = greyshade;
out_converted[dindex++] = greyshade;
out_converted[dindex++] = 255;
}
ri.Free(out);
out = out_converted;
greyshade = buf[--sindex];
buf[--dindex] = 255;
buf[--dindex] = greyshade;
buf[--dindex] = greyshade;
buf[--dindex] = greyshade;
} while(sindex);
}
else
{
// clear all the alphas to 255
int i, j;
byte *buf;
// clear all the alphas to 255
int i;
buf = out;
j = cinfo.output_width * cinfo.output_height * 4;
for ( i = 3 ; i < j ; i+=4 ) {
buf[i] = 255;
}
for ( i = 3 ; i < memcount ; i+=4 )
{
buf[i] = 255;
}
}
*pic = out;

View file

@ -525,6 +525,9 @@ typedef enum {
SF_POLY,
SF_MD3,
SF_MD4,
#ifdef RAVENMD4
SF_MDR,
#endif
SF_FLARE,
SF_ENTITY, // beams, rails, lightning, etc that can be determined by entity
SF_DISPLAY_LIST,
@ -737,7 +740,10 @@ typedef enum {
MOD_BAD,
MOD_BRUSH,
MOD_MESH,
MOD_MD4
MOD_MD4,
#ifdef RAVENMD4
MOD_MDR
#endif
} modtype_t;
typedef struct model_s {
@ -748,7 +754,7 @@ typedef struct model_s {
int dataSize; // just for listing purposes
bmodel_t *bmodel; // only if type == MOD_BRUSH
md3Header_t *md3[MD3_MAX_LODS]; // only if type == MOD_MESH
md4Header_t *md4; // only if type == MOD_MD4
void *md4; // only if type == (MOD_MD4 | MOD_MDR)
int numLods;
} model_t;
@ -1205,6 +1211,8 @@ int R_SumOfUsedImages( void );
void R_InitSkins( void );
skin_t *R_GetSkinByHandle( qhandle_t hSkin );
int R_ComputeLOD( trRefEntity_t *ent );
//
// tr_shader.c
@ -1421,6 +1429,27 @@ void RE_AddLightToScene( const vec3_t org, float intensity, float r, float g, fl
void RE_AddAdditiveLightToScene( const vec3_t org, float intensity, float r, float g, float b );
void RE_RenderScene( const refdef_t *fd );
#ifdef RAVENMD4
/*
=============================================================
UNCOMPRESSING BONES
=============================================================
*/
#define MC_BITS_X (16)
#define MC_BITS_Y (16)
#define MC_BITS_Z (16)
#define MC_BITS_VECT (16)
#define MC_SCALE_X (1.0f/64)
#define MC_SCALE_Y (1.0f/64)
#define MC_SCALE_Z (1.0f/64)
void MC_UnCompress(float mat[3][4],const unsigned char * comp);
#endif
/*
=============================================================
@ -1429,9 +1458,13 @@ ANIMATED MODELS
=============================================================
*/
void R_MakeAnimModel( model_t *model );
// void R_MakeAnimModel( model_t *model ); haven't seen this one really, so not needed I guess.
void R_AddAnimSurfaces( trRefEntity_t *ent );
void RB_SurfaceAnim( md4Surface_t *surfType );
#ifdef RAVENMD4
void R_MDRAddAnimSurfaces( trRefEntity_t *ent );
void RB_MDRSurfaceAnim( md4Surface_t *surface );
#endif
/*
=============================================================

View file

@ -1356,6 +1356,11 @@ void R_AddEntitySurfaces (void) {
case MOD_MD4:
R_AddAnimSurfaces( ent );
break;
#ifdef RAVENMD4
case MOD_MDR:
R_MDRAddAnimSurfaces( ent );
break;
#endif
case MOD_BRUSH:
R_AddBrushModelSurfaces( ent );
break;

View file

@ -168,6 +168,10 @@ int R_ComputeLOD( trRefEntity_t *ent ) {
float flod, lodscale;
float projectedRadius;
md3Frame_t *frame;
#ifdef RAVENMD4
mdrHeader_t *mdr;
mdrFrame_t *mdrframe;
#endif
int lod;
if ( tr.currentModel->numLods < 2 )
@ -180,11 +184,28 @@ int R_ComputeLOD( trRefEntity_t *ent ) {
// multiple LODs exist, so compute projected bounding sphere
// and use that as a criteria for selecting LOD
frame = ( md3Frame_t * ) ( ( ( unsigned char * ) tr.currentModel->md3[0] ) + tr.currentModel->md3[0]->ofsFrames );
#ifdef RAVENMD4
// This is an MDR model.
if(tr.currentModel->md4)
{
int frameSize;
mdr = (mdrHeader_t *) tr.currentModel->md4;
frameSize = (size_t) (&((mdrFrame_t *)0)->bones[mdr->numBones]);
mdrframe = (mdrFrame_t *) ((byte *) mdr + mdr->ofsFrames + frameSize * ent->e.frame);
radius = RadiusFromBounds(mdrframe->bounds[0], mdrframe->bounds[1]);
}
else
#endif
{
frame = ( md3Frame_t * ) ( ( ( unsigned char * ) tr.currentModel->md3[0] ) + tr.currentModel->md3[0]->ofsFrames );
frame += ent->e.frame;
frame += ent->e.frame;
radius = RadiusFromBounds( frame->bounds[0], frame->bounds[1] );
radius = RadiusFromBounds( frame->bounds[0], frame->bounds[1] );
}
if ( ( projectedRadius = ProjectRadius( radius, ent->e.origin ) ) != 0 )
{

View file

@ -27,6 +27,9 @@ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
static qboolean R_LoadMD3 (model_t *mod, int lod, void *buffer, const char *name );
static qboolean R_LoadMD4 (model_t *mod, void *buffer, const char *name );
#ifdef RAVENMD4
static qboolean R_LoadMDR (model_t *mod, void *buffer, int filesize, const char *name );
#endif
model_t *loadmodel;
@ -83,9 +86,10 @@ qhandle_t RE_RegisterModel( const char *name ) {
unsigned *buf;
int lod;
int ident;
qboolean loaded;
qboolean loaded = qfalse;
qhandle_t hModel;
int numLoaded;
char *fext, defex[] = "md3", filename[MAX_QPATH], namebuf[MAX_QPATH+20];
if ( !name || !name[0] ) {
ri.Printf( PRINT_ALL, "RE_RegisterModel: NULL name\n" );
@ -131,22 +135,56 @@ qhandle_t RE_RegisterModel( const char *name ) {
//
numLoaded = 0;
for ( lod = MD3_MAX_LODS - 1 ; lod >= 0 ; lod-- ) {
char filename[1024];
strcpy(filename, name);
strcpy( filename, name );
fext = strchr(filename, '.');
if(!fext)
fext = defex;
else
{
*fext = '\0';
fext++;
}
if ( lod != 0 ) {
char namebuf[80];
if ( strrchr( filename, '.' ) ) {
*strrchr( filename, '.' ) = 0;
}
sprintf( namebuf, "_%d.md3", lod );
strcat( filename, namebuf );
#ifdef RAVENMD4
if(!stricmp(fext, "mdr"))
{
int filesize;
filesize = ri.FS_ReadFile(name, (void **) &buf);
if(!buf)
{
ri.Printf (PRINT_WARNING,"RE_RegisterModel: couldn't load %s\n", name);
mod->type = MOD_BAD;
return 0;
}
ident = LittleLong(*(unsigned *)buf);
if(ident == MDR_IDENT)
loaded = R_LoadMDR(mod, buf, filesize, name);
ri.FS_ReadFile( filename, (void **)&buf );
ri.FS_FreeFile (buf);
if(!loaded)
{
ri.Printf(PRINT_WARNING,"RE_RegisterModel: couldn't load mdr file %s\n", name);
mod->type = MOD_BAD;
return 0;
}
return mod->index;
}
#endif
fext = defex;
for ( lod = MD3_MAX_LODS - 1 ; lod >= 0 ; lod-- ) {
if ( lod )
snprintf(namebuf, sizeof(namebuf), "%s_%d.%s", filename, lod, fext);
else
snprintf(namebuf, sizeof(namebuf), "%s.%s", filename, fext);
ri.FS_ReadFile( namebuf, (void **)&buf );
if ( !buf ) {
continue;
}
@ -367,11 +405,305 @@ static qboolean R_LoadMD3 (model_t *mod, int lod, void *buffer, const char *mod_
/*
=================
R_LoadMDR
=================
*/
#ifdef RAVENMD4
static qboolean R_LoadMDR( model_t *mod, void *buffer, int filesize, const char *mod_name )
{
int i, j, k, l;
mdrHeader_t *pinmodel, *mdr;
mdrFrame_t *frame;
mdrLOD_t *lod, *curlod;
mdrSurface_t *surf, *cursurf;
mdrTriangle_t *tri, *curtri;
mdrVertex_t *v, *curv;
mdrWeight_t *weight, *curweight;
mdrTag_t *tag, *curtag;
int size;
shader_t *sh;
pinmodel = (mdrHeader_t *)buffer;
pinmodel->version = LittleLong(pinmodel->version);
if (pinmodel->version != MDR_VERSION)
{
ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has wrong version (%i should be %i)\n", mod_name, pinmodel->version, MDR_VERSION);
return qfalse;
}
size = LittleLong(pinmodel->ofsEnd);
if(size > filesize)
{
ri.Printf(PRINT_WARNING, "R_LoadMDR: Header of %s is broken. Wrong filesize declared!\n", mod_name);
return qfalse;
}
mod->type = MOD_MDR;
pinmodel->numFrames = LittleLong(pinmodel->numFrames);
pinmodel->numBones = LittleLong(pinmodel->numBones);
pinmodel->ofsFrames = LittleLong(pinmodel->ofsFrames);
// This is a model that uses some type of compressed Bones. We don't want to uncompress every bone for each rendered frame
// over and over again, we'll uncompress it in this function already, so we must adjust the size of the target md4.
if(pinmodel->ofsFrames < 0)
{
// mdrFrame_t is larger than mdrCompFrame_t:
size += pinmodel->numFrames * sizeof(frame->name);
// now add enough space for the uncompressed bones.
size += pinmodel->numFrames * pinmodel->numBones * ((sizeof(mdrBone_t) - sizeof(mdrCompBone_t)));
}
mod->dataSize += size;
mod->md4 = mdr = ri.Hunk_Alloc( size, h_low );
// Copy all the values over from the file and fix endian issues in the process, if necessary.
mdr->ident = LittleLong(pinmodel->ident);
mdr->version = pinmodel->version; // Don't need to swap byte order on this one, we already did above.
Q_strncpyz(mdr->name, pinmodel->name, sizeof(mdr->name));
mdr->numFrames = pinmodel->numFrames;
mdr->numBones = pinmodel->numBones;
mdr->numLODs = LittleLong(pinmodel->numLODs);
mdr->numTags = LittleLong(pinmodel->numTags);
// We don't care about offset values, we'll generate them ourselves while loading.
mod->numLods = mdr->numLODs;
if ( mdr->numFrames < 1 )
{
ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has no frames\n", mod_name);
return qfalse;
}
/* The first frame will be put into the first free space after the header */
frame = (mdrFrame_t *)(mdr + 1);
mdr->ofsFrames = (int)((byte *) frame - (byte *) mdr);
if (pinmodel->ofsFrames < 0)
{
mdrCompFrame_t *cframe;
// compressed model...
cframe = (mdrCompFrame_t *)((byte *) pinmodel - pinmodel->ofsFrames);
for(i = 0; i < mdr->numFrames; i++)
{
for(j = 0; j < 3; j++)
{
frame->bounds[0][j] = LittleFloat(cframe->bounds[0][j]);
frame->bounds[1][j] = LittleFloat(cframe->bounds[1][j]);
frame->localOrigin[j] = LittleFloat(cframe->localOrigin[j]);
}
frame->radius = LittleFloat(cframe->radius);
frame->name[0] = '\0'; // No name supplied in the compressed version.
for(j = 0; j < mdr->numBones; j++)
{
for(k = 0; k < (sizeof(cframe->bones[j].Comp) / 2); k++)
{
// Do swapping for the uncompressing functions. They seem to use shorts
// values only, so I assume this will work. Never tested it on other
// platforms, though.
((unsigned short *)(cframe->bones[j].Comp))[k] =
LittleShort( ((unsigned short *)(cframe->bones[j].Comp))[k] );
}
/* Now do the actual uncompressing */
MC_UnCompress(frame->bones[j].matrix, cframe->bones[j].Comp);
}
// Next Frame...
cframe = (mdrCompFrame_t *) &cframe->bones[j];
frame = (mdrFrame_t *) &frame->bones[j];
}
}
else
{
mdrFrame_t *curframe;
// uncompressed model...
//
curframe = (mdrFrame_t *)((byte *) pinmodel + pinmodel->ofsFrames);
// swap all the frames
for ( i = 0 ; i < mdr->numFrames ; i++)
{
for(j = 0; j < 3; j++)
{
frame->bounds[0][j] = LittleFloat(curframe->bounds[0][j]);
frame->bounds[1][j] = LittleFloat(curframe->bounds[1][j]);
frame->localOrigin[j] = LittleFloat(curframe->localOrigin[j]);
}
frame->radius = LittleFloat(curframe->radius);
Q_strncpyz(frame->name, curframe->name, sizeof(frame->name));
for (j = 0; j < (int) (mdr->numBones * sizeof(mdrBone_t) / 4); j++)
{
((float *)frame->bones)[j] = LittleFloat( ((float *)curframe->bones)[j] );
}
curframe++;
frame++;
}
}
// frame should now point to the first free address after all frames.
lod = (mdrLOD_t *) frame;
mdr->ofsLODs = (int) ((byte *) lod - (byte *)mdr);
curlod = (mdrLOD_t *)((byte *) pinmodel + LittleLong(pinmodel->ofsLODs));
// swap all the LOD's
for ( l = 0 ; l < mdr->numLODs ; l++)
{
lod->numSurfaces = LittleLong(curlod->numSurfaces);
// swap all the surfaces
surf = (mdrSurface_t *) (lod + 1);
lod->ofsSurfaces = (int)((byte *) surf - (byte *) lod);
cursurf = (mdrSurface_t *) ((byte *)curlod + LittleLong(curlod->ofsSurfaces));
for ( i = 0 ; i < lod->numSurfaces ; i++) {
// first do some copying stuff
surf->ident = SF_MDR;
Q_strncpyz(surf->name, cursurf->name, sizeof(surf->name));
Q_strncpyz(surf->shader, cursurf->shader, sizeof(surf->shader));
surf->ofsHeader = (byte *) mdr - (byte *) surf;
surf->numVerts = LittleLong(cursurf->numVerts);
surf->numTriangles = LittleLong(cursurf->numTriangles);
// numBoneReferences and BoneReferences generally seem to be unused
// now do the checks that may fail.
if ( surf->numVerts > SHADER_MAX_VERTEXES )
{
ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has more than %i verts on a surface (%i)",
mod_name, SHADER_MAX_VERTEXES, surf->numVerts );
return qfalse;
}
if ( surf->numTriangles*3 > SHADER_MAX_INDEXES )
{
ri.Printf(PRINT_WARNING, "R_LoadMDR: %s has more than %i triangles on a surface (%i)",
mod_name, SHADER_MAX_INDEXES / 3, surf->numTriangles );
return qfalse;
}
// lowercase the surface name so skin compares are faster
Q_strlwr( surf->name );
// register the shaders
sh = R_FindShader(surf->shader, LIGHTMAP_NONE, qtrue);
if ( sh->defaultShader ) {
surf->shaderIndex = 0;
} else {
surf->shaderIndex = sh->index;
}
// now copy the vertexes.
v = (mdrVertex_t *) (surf + 1);
surf->ofsVerts = (int)((byte *) v - (byte *) surf);
curv = (mdrVertex_t *) ((byte *)cursurf + LittleLong(cursurf->ofsVerts));
for(j = 0; j < surf->numVerts; j++)
{
v->normal[0] = LittleFloat(curv->normal[0]);
v->normal[1] = LittleFloat(curv->normal[1]);
v->normal[2] = LittleFloat(curv->normal[2]);
v->texCoords[0] = LittleFloat(curv->texCoords[0]);
v->texCoords[1] = LittleFloat(curv->texCoords[1]);
v->numWeights = LittleLong(curv->numWeights);
weight = &v->weights[0];
curweight = &curv->weights[0];
// Now copy all the weights
for(k = 0; k < v->numWeights; k++)
{
weight->boneIndex = LittleLong(curweight->boneIndex);
weight->boneWeight = LittleFloat(curweight->boneWeight);
weight->offset[0] = LittleFloat(curweight->offset[0]);
weight->offset[1] = LittleFloat(curweight->offset[1]);
weight->offset[2] = LittleFloat(curweight->offset[2]);
weight++;
curweight++;
}
v = (mdrVertex_t *) weight;
curv = (mdrVertex_t *) curweight;
}
// we know the offset to the triangles now:
tri = (mdrTriangle_t *) v;
surf->ofsTriangles = (int)((byte *) tri - (byte *) surf);
curtri = (mdrTriangle_t *)((byte *) cursurf + LittleLong(cursurf->ofsTriangles));
for(j = 0; j < surf->numTriangles; j++)
{
tri->indexes[0] = curtri->indexes[0];
tri->indexes[1] = curtri->indexes[1];
tri->indexes[2] = curtri->indexes[2];
tri++;
curtri++;
}
// tri and curtri now point to the end of their surfaces.
surf->ofsEnd = (byte *) tri - (byte *) surf;
// find the next surface
surf = (mdrSurface_t *) tri;
cursurf = (mdrSurface_t *) curtri;
}
// surf points to the next lod now.
lod->ofsEnd = (int)((byte *) surf - (byte *) lod);
lod = (mdrLOD_t *) surf;
curlod = (mdrLOD_t *) cursurf;
}
// lod points to the first tag now, so update the offset too.
tag = (mdrTag_t *) lod;
mdr->ofsTags = (int)((byte *) tag - (byte *) mdr);
curtag = (mdrTag_t *) ((byte *)pinmodel + LittleLong(pinmodel->ofsTags));
for (i = 0 ; i < mdr->numTags ; i++)
{
tag->boneIndex = LittleLong(curtag->boneIndex);
Q_strncpyz(tag->name, curtag->name, sizeof(tag->name));
tag++;
curtag++;
}
// And finally we know the offset to the end.
mdr->ofsEnd = (int)((byte *) tag - (byte *) mdr);
// phew! we're done.
return qtrue;
}
#endif
/*
=================
R_LoadMD4
=================
*/
static qboolean R_LoadMD4( model_t *mod, void *buffer, const char *mod_name ) {
int i, j, k, lodindex;
md4Header_t *pinmodel, *md4;
@ -399,7 +731,7 @@ static qboolean R_LoadMD4( model_t *mod, void *buffer, const char *mod_name ) {
mod->dataSize += size;
md4 = mod->md4 = ri.Hunk_Alloc( size, h_low );
Com_Memcpy( md4, buffer, LittleLong(pinmodel->ofsEnd) );
Com_Memcpy(md4, buffer, size);
LL(md4->ident);
LL(md4->version);
@ -408,7 +740,7 @@ static qboolean R_LoadMD4( model_t *mod, void *buffer, const char *mod_name ) {
LL(md4->numLODs);
LL(md4->ofsFrames);
LL(md4->ofsLODs);
LL(md4->ofsEnd);
md4->ofsEnd = size;
if ( md4->numFrames < 1 ) {
ri.Printf( PRINT_WARNING, "R_LoadMD4: %s has no frames\n", mod_name );
@ -520,7 +852,6 @@ static qboolean R_LoadMD4( model_t *mod, void *buffer, const char *mod_name ) {
//=============================================================================
/*
@ -624,6 +955,59 @@ static md3Tag_t *R_GetTag( md3Header_t *mod, int frame, const char *tagName ) {
return NULL;
}
#ifdef RAVENMD4
void R_GetAnimTag( mdrHeader_t *mod, int framenum, const char *tagName, md3Tag_t * dest)
{
int i;
int frameSize;
mdrFrame_t *frame;
mdrTag_t *tag;
if ( framenum >= mod->numFrames )
{
// it is possible to have a bad frame while changing models, so don't error
framenum = mod->numFrames - 1;
}
tag = (mdrTag_t *)((byte *)mod + mod->ofsTags);
for ( i = 0 ; i < mod->numTags ; i++, tag++ )
{
if ( !strcmp( tag->name, tagName ) )
{
Q_strncpyz(dest->name, tag->name, sizeof(dest->name));
// uncompressed model...
//
frameSize = (long)( &((mdrFrame_t *)0)->bones[ mod->numBones ] );
frame = (mdrFrame_t *)((byte *)mod + mod->ofsFrames + framenum * frameSize );
#if 1
VectorCopy(&frame->bones[tag->boneIndex].matrix[0][0], dest->axis[0] );
VectorCopy(&frame->bones[tag->boneIndex].matrix[1][0], dest->axis[1] );
VectorCopy(&frame->bones[tag->boneIndex].matrix[2][0], dest->axis[2] );
#else
{
int j,k;
for (j=0;j<3;j++)
{
for (k=0;k<3;k++)
dest->axis[j][k]=frame->bones[tag->boneIndex].matrix[k][j];
}
}
#endif
dest->origin[0]=frame->bones[tag->boneIndex].matrix[0][3];
dest->origin[1]=frame->bones[tag->boneIndex].matrix[1][3];
dest->origin[2]=frame->bones[tag->boneIndex].matrix[2][3];
return;
}
}
AxisClear( dest->axis );
VectorClear( dest->origin );
strcpy(dest->name,"");
}
#endif
/*
================
R_LerpTag
@ -632,25 +1016,45 @@ R_LerpTag
int R_LerpTag( orientation_t *tag, qhandle_t handle, int startFrame, int endFrame,
float frac, const char *tagName ) {
md3Tag_t *start, *end;
#ifdef RAVENMD4
md3Tag_t start_space, end_space;
#endif
int i;
float frontLerp, backLerp;
model_t *model;
model = R_GetModelByHandle( handle );
if ( !model->md3[0] ) {
AxisClear( tag->axis );
VectorClear( tag->origin );
return qfalse;
}
if ( !model->md3[0] )
{
#ifdef RAVENMD4
if(model->md4)
{
start = &start_space;
end = &end_space;
R_GetAnimTag((mdrHeader_t *) model->md4, startFrame, tagName, start);
R_GetAnimTag((mdrHeader_t *) model->md4, endFrame, tagName, end);
}
else
#endif
{
start = R_GetTag( model->md3[0], startFrame, tagName );
end = R_GetTag( model->md3[0], endFrame, tagName );
if ( !start || !end ) {
AxisClear( tag->axis );
VectorClear( tag->origin );
return qfalse;
}
AxisClear( tag->axis );
VectorClear( tag->origin );
return qfalse;
}
}
else
{
start = R_GetTag( model->md3[0], startFrame, tagName );
end = R_GetTag( model->md3[0], endFrame, tagName );
if ( !start || !end ) {
AxisClear( tag->axis );
VectorClear( tag->origin );
return qfalse;
}
}
frontLerp = frac;
backLerp = 1.0f - frac;
@ -698,3 +1102,4 @@ void R_ModelBounds( qhandle_t handle, vec3_t mins, vec3_t maxs ) {
VectorCopy( frame->bounds[0], mins );
VectorCopy( frame->bounds[1], maxs );
}

View file

@ -2746,7 +2746,6 @@ qhandle_t RE_RegisterShaderNoMip( const char *name ) {
return sh->index;
}
/*
====================
R_GetShaderByHandle

View file

@ -1208,11 +1208,14 @@ void (*rb_surfaceTable[SF_NUM_SURFACE_TYPES])( void *) = {
(void(*)(void*))RB_SurfaceSkip, // SF_SKIP,
(void(*)(void*))RB_SurfaceFace, // SF_FACE,
(void(*)(void*))RB_SurfaceGrid, // SF_GRID,
(void(*)(void*))RB_SurfaceTriangles, // SF_TRIANGLES,
(void(*)(void*))RB_SurfacePolychain, // SF_POLY,
(void(*)(void*))RB_SurfaceTriangles, // SF_TRIANGLES,
(void(*)(void*))RB_SurfacePolychain, // SF_POLY,
(void(*)(void*))RB_SurfaceMesh, // SF_MD3,
(void(*)(void*))RB_SurfaceAnim, // SF_MD4,
#ifdef RAVENMD4
(void(*)(void*))RB_MDRSurfaceAnim, // SF_MDR,
#endif
(void(*)(void*))RB_SurfaceFlare, // SF_FLARE,
(void(*)(void*))RB_SurfaceEntity, // SF_ENTITY
(void(*)(void*))RB_SurfaceDisplayList // SF_DISPLAY_LIST
(void(*)(void*))RB_SurfaceDisplayList // SF_DISPLAY_LIST
};