mirror of
https://github.com/TTimo/GtkRadiant.git
synced 2024-11-13 00:24:29 +00:00
a16ee23adf
into trunk. Right now all the new code that fixes problems is turned off. There are three new #defines in q3map2.h: EXPERIMENTAL_HIGH_PRECISION_MATH_Q3MAP2_FIXES, EXPERIMENTAL_SNAP_NORMAL_FIX, and EXPERIMENTAL_SNAP_PLANE_FIX. All of these are currently set to 0, which means don't enable that new code. You can easily edit these to be 1 in order to enable the new code. There are very very minor changes to the code even with these three #defines disabled. They are as follows. - In PlaneEqual() in map.c, now considering deltas equal to given epsilon values as "far enough to be different". Previously, the '<=' operation was used, now '<' is being used. - In FindFloatPlane() in map.c, considering delta equal to distanceEpsilon (for plane distance) to be sufficiently far away. Before, delta had to be strictly greater than distanceEpsilon. - VectorNormalize() in mathlib.c is more accurate now. This change itself causes at least one regression test to succeed. The previous implementation of VectorNormalize() caused excessive errors to be introduced due to sloppy arithmetic. Note, the epsilon changes account for the possibility that the epsilons are set to 0.0 on the command-line. git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant/trunk@416 8a3a26a2-13c4-0310-b231-cf6edde360e5
359 lines
15 KiB
C
359 lines
15 KiB
C
/*
|
|
Copyright (C) 1999-2007 id Software, Inc. and contributors.
|
|
For a list of contributors, see the accompanying CONTRIBUTORS file.
|
|
|
|
This file is part of GtkRadiant.
|
|
|
|
GtkRadiant is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
GtkRadiant is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GtkRadiant; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#ifndef __MATHLIB__
|
|
#define __MATHLIB__
|
|
|
|
// mathlib.h
|
|
#include <math.h>
|
|
#include <float.h>
|
|
|
|
#include "bytebool.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C"
|
|
{
|
|
#endif
|
|
|
|
typedef float vec_t;
|
|
typedef vec_t vec3_t[3];
|
|
typedef vec_t vec5_t[5];
|
|
typedef vec_t vec4_t[4];
|
|
|
|
// Smallest positive value for vec_t such that 1.0 + VEC_SMALLEST_EPSILON_AROUND_ONE != 1.0.
|
|
// In the case of 32 bit floats (which is almost certainly the case), it's 0.00000011921.
|
|
// Don't forget that your epsilons should depend on the possible range of values,
|
|
// because for example adding VEC_SMALLEST_EPSILON_AROUND_ONE to 1024.0 will have no effect.
|
|
#define VEC_SMALLEST_EPSILON_AROUND_ONE FLT_EPSILON
|
|
|
|
#define SIDE_FRONT 0
|
|
#define SIDE_ON 2
|
|
#define SIDE_BACK 1
|
|
#define SIDE_CROSS -2
|
|
|
|
// plane types are used to speed some tests
|
|
// 0-2 are axial planes
|
|
#define PLANE_X 0
|
|
#define PLANE_Y 1
|
|
#define PLANE_Z 2
|
|
#define PLANE_NON_AXIAL 3
|
|
|
|
#define Q_PI 3.14159265358979323846f
|
|
|
|
extern vec3_t vec3_origin;
|
|
|
|
#define EQUAL_EPSILON 0.001
|
|
|
|
#ifndef VEC_MAX
|
|
#define VEC_MAX 3.402823466e+38F
|
|
#endif
|
|
|
|
qboolean VectorCompare (vec3_t v1, vec3_t v2);
|
|
|
|
#define DotProduct(x,y) ((x)[0]*(y)[0]+(x)[1]*(y)[1]+(x)[2]*(y)[2])
|
|
#define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2])
|
|
#define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2])
|
|
#define VectorIncrement(a,b) ((b)[0]+=(a)[0],(b)[1]+=(a)[1],(b)[2]+=(a)[2])
|
|
#define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2])
|
|
#define VectorSet(v, a, b, c) ((v)[0]=(a),(v)[1]=(b),(v)[2]=(c))
|
|
#define VectorScale(a,b,c) ((c)[0]=(b)*(a)[0],(c)[1]=(b)*(a)[1],(c)[2]=(b)*(a)[2])
|
|
#define VectorMid(a,b,c) ((c)[0]=((a)[0]+(b)[0])*0.5f,(c)[1]=((a)[1]+(b)[1])*0.5f,(c)[2]=((a)[2]+(b)[2])*0.5f)
|
|
#define VectorNegative(a,b) ((b)[0]=-(a)[0],(b)[1]=-(a)[1],(b)[2]=-(a)[2])
|
|
#define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0])
|
|
#define VectorClear(x) ((x)[0]=(x)[1]=(x)[2]=0)
|
|
|
|
#define Q_rint(in) ((vec_t)floor(in+0.5))
|
|
|
|
qboolean VectorIsOnAxis(vec3_t v);
|
|
qboolean VectorIsOnAxialPlane(vec3_t v);
|
|
|
|
vec_t VectorLength(vec3_t v);
|
|
|
|
void VectorMA( const vec3_t va, vec_t scale, const vec3_t vb, vec3_t vc );
|
|
|
|
void _CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross);
|
|
vec_t VectorNormalize (const vec3_t in, vec3_t out);
|
|
vec_t ColorNormalize( const vec3_t in, vec3_t out );
|
|
void VectorInverse (vec3_t v);
|
|
void VectorPolar(vec3_t v, float radius, float theta, float phi);
|
|
|
|
// default snapping, to 1
|
|
void VectorSnap(vec3_t v);
|
|
|
|
// integer snapping
|
|
void VectorISnap(vec3_t point, int snap);
|
|
|
|
// Gef: added snap to float for sub-integer grid sizes
|
|
// TTimo: we still use the int version of VectorSnap when possible
|
|
// to avoid potential rounding issues
|
|
// TTimo: renaming to VectorFSnap for C implementation
|
|
void VectorFSnap(vec3_t point, float snap);
|
|
|
|
// NOTE: added these from Ritual's Q3Radiant
|
|
void ClearBounds (vec3_t mins, vec3_t maxs);
|
|
void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs);
|
|
|
|
void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up);
|
|
void VectorToAngles( vec3_t vec, vec3_t angles );
|
|
|
|
#define ZERO_EPSILON 1.0E-6
|
|
#define RAD2DEGMULT 57.29577951308232f
|
|
#define DEG2RADMULT 0.01745329251994329f
|
|
#define RAD2DEG( a ) ( (a) * RAD2DEGMULT )
|
|
#define DEG2RAD( a ) ( (a) * DEG2RADMULT )
|
|
|
|
void VectorRotate (vec3_t vIn, vec3_t vRotation, vec3_t out);
|
|
void VectorRotateOrigin (vec3_t vIn, vec3_t vRotation, vec3_t vOrigin, vec3_t out);
|
|
|
|
// some function merged from tools mathlib code
|
|
|
|
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c );
|
|
void NormalToLatLong( const vec3_t normal, byte bytes[2] );
|
|
int PlaneTypeForNormal (vec3_t normal);
|
|
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees );
|
|
|
|
// Spog
|
|
// code imported from geomlib
|
|
|
|
/*!
|
|
\todo
|
|
FIXME test calls such as intersect tests should be named test_
|
|
*/
|
|
|
|
typedef vec_t m3x3_t[9];
|
|
/*!NOTE
|
|
m4x4 looks like this..
|
|
|
|
x y z
|
|
x axis ( 0 1 2)
|
|
y axis ( 4 5 6)
|
|
z axis ( 8 9 10)
|
|
translation (12 13 14)
|
|
scale ( 0 5 10)
|
|
*/
|
|
typedef vec_t m4x4_t[16];
|
|
|
|
#define M4X4_INDEX(m,row,col) (m[(col<<2)+row])
|
|
|
|
typedef enum { TRANSLATE, SCALE, ROTATE } transformtype; // legacy, used only in pmesh.cpp
|
|
|
|
typedef enum { eXYZ, eYZX, eZXY, eXZY, eYXZ, eZYX } eulerOrder_t;
|
|
|
|
// constructors
|
|
/*! create m4x4 as identity matrix */
|
|
void m4x4_identity(m4x4_t matrix);
|
|
/*! create m4x4 as a translation matrix, for a translation vec3 */
|
|
void m4x4_translation_for_vec3(m4x4_t matrix, const vec3_t translation);
|
|
/*! create m4x4 as a rotation matrix, for an euler angles (degrees) vec3 */
|
|
void m4x4_rotation_for_vec3(m4x4_t matrix, const vec3_t euler, eulerOrder_t order);
|
|
/*! create m4x4 as a scaling matrix, for a scale vec3 */
|
|
void m4x4_scale_for_vec3(m4x4_t matrix, const vec3_t scale);
|
|
/*! create m4x4 as a rotation matrix, for a quaternion vec4 */
|
|
void m4x4_rotation_for_quat(m4x4_t matrix, const vec4_t rotation);
|
|
/*! create m4x4 as a rotation matrix, for an axis vec3 and an angle (radians) */
|
|
void m4x4_rotation_for_axisangle(m4x4_t matrix, const vec3_t axis, vec_t angle);
|
|
|
|
// a valid m4x4 to be modified is always first argument
|
|
/*! translate m4x4 by a translation vec3 */
|
|
void m4x4_translate_by_vec3(m4x4_t matrix, const vec3_t translation);
|
|
/*! rotate m4x4 by a euler (degrees) vec3 */
|
|
void m4x4_rotate_by_vec3(m4x4_t matrix, const vec3_t euler, eulerOrder_t order);
|
|
/*! scale m4x4 by a scaling vec3 */
|
|
void m4x4_scale_by_vec3(m4x4_t matrix, const vec3_t scale);
|
|
/*! rotate m4x4 by a quaternion vec4 */
|
|
void m4x4_rotate_by_quat(m4x4_t matrix, const vec4_t rotation);
|
|
/*! rotate m4x4 by an axis vec3 and an angle (radians) */
|
|
void m4x4_rotate_by_axisangle(m4x4_t matrix, const vec3_t axis, vec_t angle);
|
|
/*! transform m4x4 by translation/euler/scaling vec3 (transform = translation.euler.scale) */
|
|
void m4x4_transform_by_vec3(m4x4_t matrix, const vec3_t translation, const vec3_t euler, eulerOrder_t order, const vec3_t scale);
|
|
/*! rotate m4x4 around a pivot point by euler(degrees) vec3 */
|
|
void m4x4_pivoted_rotate_by_vec3(m4x4_t matrix, const vec3_t euler, eulerOrder_t order, const vec3_t pivotpoint);
|
|
/*! scale m4x4 around a pivot point by scaling vec3 */
|
|
void m4x4_pivoted_scale_by_vec3(m4x4_t matrix, const vec3_t scale, const vec3_t pivotpoint);
|
|
/*! transform m4x4 around a pivot point by translation/euler/scaling vec3 */
|
|
void m4x4_pivoted_transform_by_vec3(m4x4_t matrix, const vec3_t translation, const vec3_t euler, eulerOrder_t order, const vec3_t scale, const vec3_t pivotpoint);
|
|
/*! rotate m4x4 around a pivot point by quaternion vec4 */
|
|
void m4x4_pivoted_rotate_by_quat(m4x4_t matrix, const vec4_t rotation, const vec3_t pivotpoint);
|
|
/*! rotate m4x4 around a pivot point by axis vec3 and angle (radians) */
|
|
void m4x4_pivoted_rotate_by_axisangle(m4x4_t matrix, const vec3_t axis, vec_t angle, const vec3_t pivotpoint);
|
|
/*! post-multiply m4x4 by another m4x4 */
|
|
void m4x4_multiply_by_m4x4(m4x4_t matrix, const m4x4_t other);
|
|
/*! pre-multiply m4x4 by another m4x4 */
|
|
void m4x4_premultiply_by_m4x4(m4x4_t matrix, const m4x4_t other);
|
|
|
|
/*! multiply a point (x,y,z,1) by matrix */
|
|
void m4x4_transform_point(const m4x4_t matrix, vec3_t point);
|
|
/*! multiply a normal (x,y,z,0) by matrix */
|
|
void m4x4_transform_normal(const m4x4_t matrix, vec3_t normal);
|
|
/*! multiply a vec4 (x,y,z,w) by matrix */
|
|
void m4x4_transform_vec4(const m4x4_t matrix, vec4_t vector);
|
|
|
|
/*! multiply a point (x,y,z,1) by matrix */
|
|
void m4x4_transform_point(const m4x4_t matrix, vec3_t point);
|
|
/*! multiply a normal (x,y,z,0) by matrix */
|
|
void m4x4_transform_normal(const m4x4_t matrix, vec3_t normal);
|
|
|
|
/*! transpose a m4x4 */
|
|
void m4x4_transpose(m4x4_t matrix);
|
|
/*! invert an orthogonal 4x3 subset of a 4x4 matrix */
|
|
void m4x4_orthogonal_invert(m4x4_t matrix);
|
|
/*! invert any m4x4 using Kramer's rule.. return 1 if matrix is singular, else return 0 */
|
|
int m4x4_invert(m4x4_t matrix);
|
|
|
|
/*!
|
|
\todo object/ray intersection functions should maybe return a point rather than a distance?
|
|
*/
|
|
|
|
/*!
|
|
aabb_t - "axis-aligned" bounding box...
|
|
origin: centre of bounding box...
|
|
extents: +/- extents of box from origin...
|
|
radius: cached length of extents vector...
|
|
*/
|
|
typedef struct aabb_s
|
|
{
|
|
vec3_t origin;
|
|
vec3_t extents;
|
|
vec_t radius;
|
|
} aabb_t;
|
|
|
|
/*!
|
|
bbox_t - oriented bounding box...
|
|
aabb: axis-aligned bounding box...
|
|
axes: orientation axes...
|
|
*/
|
|
typedef struct bbox_s
|
|
{
|
|
aabb_t aabb;
|
|
vec3_t axes[3];
|
|
} bbox_t;
|
|
|
|
/*!
|
|
ray_t - origin point and direction unit-vector
|
|
*/
|
|
typedef struct ray_s
|
|
{
|
|
vec3_t origin;
|
|
vec3_t direction;
|
|
} ray_t;
|
|
|
|
|
|
/*! Generate AABB from min/max. */
|
|
void aabb_construct_for_vec3(aabb_t *aabb, const vec3_t min, const vec3_t max);
|
|
/*! Update bounding-sphere radius. */
|
|
void aabb_update_radius(aabb_t *aabb);
|
|
/*! Initialise AABB to negative size. */
|
|
void aabb_clear(aabb_t *aabb);
|
|
|
|
/*! Extend AABB to include point. */
|
|
void aabb_extend_by_point(aabb_t *aabb, const vec3_t point);
|
|
/*! Extend AABB to include aabb_src. */
|
|
void aabb_extend_by_aabb(aabb_t *aabb, const aabb_t *aabb_src);
|
|
/*! Extend AABB by +/- extension vector. */
|
|
void aabb_extend_by_vec3(aabb_t *aabb, vec3_t extension);
|
|
|
|
/*! Return 2 if point is inside, else 1 if point is on surface, else 0. */
|
|
int aabb_intersect_point(const aabb_t *aabb, const vec3_t point);
|
|
/*! Return 2 if aabb_src intersects, else 1 if aabb_src touches exactly, else 0. */
|
|
int aabb_intersect_aabb(const aabb_t *aabb, const aabb_t *aabb_src);
|
|
/*! Return 2 if aabb is behind plane, else 1 if aabb intersects plane, else 0. */
|
|
int aabb_intersect_plane(const aabb_t *aabb, const float *plane);
|
|
/*! Return 1 if aabb intersects ray, else 0... dist = closest intersection. */
|
|
int aabb_intersect_ray(const aabb_t *aabb, const ray_t *ray, vec_t *dist);
|
|
/*! Return 1 if aabb intersects ray, else 0. Faster, but does not provide point of intersection */
|
|
int aabb_test_ray(const aabb_t* aabb, const ray_t* ray);
|
|
|
|
/*! Generate AABB from oriented bounding box. */
|
|
void aabb_for_bbox(aabb_t *aabb, const bbox_t *bbox);
|
|
/*! Generate AABB from 2-dimensions of min/max, specified by axis. */
|
|
void aabb_for_area(aabb_t *aabb, vec3_t area_tl, vec3_t area_br, int axis);
|
|
/*! Generate AABB to contain src * transform. NOTE: transform must be orthogonal */
|
|
void aabb_for_transformed_aabb(aabb_t* dst, const aabb_t* src, const m4x4_t transform);
|
|
|
|
|
|
/*! Generate oriented bounding box from AABB and transformation matrix. */
|
|
/*!\todo Remove need to specify euler/scale. */
|
|
void bbox_for_oriented_aabb(bbox_t *bbox, const aabb_t *aabb,
|
|
const m4x4_t matrix, const vec3_t euler, const vec3_t scale);
|
|
/*! Return 2 is bbox is behind plane, else return 1 if bbox intersects plane, else return 0. */
|
|
int bbox_intersect_plane(const bbox_t *bbox, const vec_t* plane);
|
|
|
|
|
|
/*! Generate a ray from an origin point and a direction unit-vector */
|
|
void ray_construct_for_vec3(ray_t *ray, const vec3_t origin, const vec3_t direction);
|
|
|
|
/*! Transform a ray */
|
|
void ray_transform(ray_t *ray, const m4x4_t matrix);
|
|
|
|
/*! return true if point intersects cone formed by ray, divergence and epsilon */
|
|
vec_t ray_intersect_point(const ray_t *ray, const vec3_t point, vec_t epsilon, vec_t divergence);
|
|
/*! return true if triangle intersects ray... dist = dist from intersection point to ray-origin */
|
|
vec_t ray_intersect_triangle(const ray_t *ray, qboolean bCullBack, const vec3_t vert0, const vec3_t vert1, const vec3_t vert2);
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Below is double-precision math stuff. This was initially needed by the new
|
|
// "base winding" code in q3map2 brush processing in order to fix the famous
|
|
// "disappearing triangles" issue. These definitions can be used wherever extra
|
|
// precision is needed.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
typedef double vec_accu_t;
|
|
typedef vec_accu_t vec3_accu_t[3];
|
|
|
|
// Smallest positive value for vec_accu_t such that 1.0 + VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE != 1.0.
|
|
// In the case of 64 bit doubles (which is almost certainly the case), it's 0.00000000000000022204.
|
|
// Don't forget that your epsilons should depend on the possible range of values,
|
|
// because for example adding VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE to 1024.0 will have no effect.
|
|
#define VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE DBL_EPSILON
|
|
|
|
vec_accu_t VectorLengthAccu(const vec3_accu_t v);
|
|
|
|
// I have a feeling it may be safer to break these #define functions out into actual functions
|
|
// in order to avoid accidental loss of precision. For example, say you call
|
|
// VectorScaleAccu(vec3_t, vec_t, vec3_accu_t). The scale would take place in 32 bit land
|
|
// and the result would be cast to 64 bit, which would cause total loss of precision when
|
|
// scaling by a large factor.
|
|
//#define DotProductAccu(x, y) ((x)[0] * (y)[0] + (x)[1] * (y)[1] + (x)[2] * (y)[2])
|
|
//#define VectorSubtractAccu(a, b, c) ((c)[0] = (a)[0] - (b)[0], (c)[1] = (a)[1] - (b)[1], (c)[2] = (a)[2] - (b)[2])
|
|
//#define VectorAddAccu(a, b, c) ((c)[0] = (a)[0] + (b)[0], (c)[1] = (a)[1] + (b)[1], (c)[2] = (a)[2] + (b)[2])
|
|
//#define VectorCopyAccu(a, b) ((b)[0] = (a)[0], (b)[1] = (a)[1], (b)[2] = (a)[2])
|
|
//#define VectorScaleAccu(a, b, c) ((c)[0] = (b) * (a)[0], (c)[1] = (b) * (a)[1], (c)[2] = (b) * (a)[2])
|
|
//#define CrossProductAccu(a, b, c) ((c)[0] = (a)[1] * (b)[2] - (a)[2] * (b)[1], (c)[1] = (a)[2] * (b)[0] - (a)[0] * (b)[2], (c)[2] = (a)[0] * (b)[1] - (a)[1] * (b)[0])
|
|
//#define Q_rintAccu(in) ((vec_accu_t) floor(in + 0.5))
|
|
|
|
vec_accu_t DotProductAccu(const vec3_accu_t a, const vec3_accu_t b);
|
|
void VectorSubtractAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out);
|
|
void VectorAddAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out);
|
|
void VectorCopyAccu(const vec3_accu_t in, vec3_accu_t out);
|
|
void VectorScaleAccu(const vec3_accu_t in, vec_accu_t scaleFactor, vec3_accu_t out);
|
|
void CrossProductAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out);
|
|
vec_accu_t Q_rintAccu(vec_accu_t val);
|
|
|
|
void VectorCopyAccuToRegular(const vec3_accu_t in, vec3_t out);
|
|
void VectorCopyRegularToAccu(const vec3_t in, vec3_accu_t out);
|
|
vec_accu_t VectorNormalizeAccu(const vec3_accu_t in, vec3_accu_t out);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* __MATHLIB__ */
|